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Sparse generalized principal component analysis
for large-scale applications beyond Gaussianity

QIAOYA ZHANG' AND Y1vUuaN SHE*®!

Principal Component Analysis (PCA) is a dimension re-
duction technique. It produces inconsistent estimators when
the dimensionality is moderate to high, which is often the
problem in modern large-scale applications where algorithm
scalability and model interpretability are difficult to achieve,
not to mention the prevalence of missing values. While ex-
isting sparse PCA methods alleviate inconsistency, they are
constrained to the Gaussian assumption of classical PCA
and fail to address algorithm scalability issues. We gener-
alize sparse PCA to the broad exponential family distribu-
tions under high-dimensional setup, with built-in treatment
for missing values. Meanwhile, we propose a family of it-
erative sparse generalized PCA (SG-PCA) algorithms such
that despite the non-convexity and non-smoothness of the
optimization task, the loss function decreases in every iter-
ation. In terms of ease and intuitive parameter tuning, our
sparsity-inducing regularization is far superior to the pop-
ular Lasso. Furthermore, to promote overall scalability, ac-
celerated gradient is integrated for fast convergence, while a
progressive screening technique gradually squeezes out nui-
sance dimensions of a large-scale problem for feasible opti-
mization. High-dimensional simulation and real data exper-
iments demonstrate the efficiency and efficacy of SG-PCA.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H25,
62J12; secondary 62H12.

KEYWORDS AND PHRASES: Sparsity, Low rank estimation,
Principal component analysis, Generalized linear models,
Non-convex optimization, Missing values, Variable screen-
ing.

1. INTRODUCTION

Suppose an n X p matrix X represents a data set with n
observations on p variables centered column-wise. In modern
statistical applications, both n and p can be quite large espe-
cially with p > n. Principal Component Analysis (PCA) is
a well-known and popular dimension reduction technique. It
sequentially searches r (r < p) leading principal directions
along which the projected data points have maximal vari-
ance. Equivalently, it can also be realized jointly by solving
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a multivariate low-rank matrix approximation problem
: 2

(1) o X — B,

with the optimal B given by XV,V? where V, =
[v1, - ,v,] are formed by the top r right singular vectors
of X [8]. The principal components (PCs) {z1, -, z,} are
then given by Z = XV and v;’s are called the principal
loading vectors. Clearly, PCs are also the eigenvectors of the
sample covariance matrix, which further explains its power
in illustrating the variability within the multivariate data in
a lower-dimensional space.

There are, however, many characteristics to modern
large-scale data that regular PCA finds inappropriate to
handle. Three specific challenges we want to address in this
article are: a) the prevalence of non-Gaussian Data, b) the
curse of dimensionality, as well as c) the existence of missing
entries in data arrays.

1.1 Modern challenges

Non-Gaussianity PCA is often employed without address-
ing any parametric assumption on the original data set X,
however, its criterion inherently assumes a Gaussian distri-
bution: the squared-error loss function (1) does not make the
best sense with, for example, the misclassification error asso-
ciated with categorical data. The sample covariance matrix,
whose eigenvectors are computed as principal components,
does not capture all kinds of association either. When the
data does not follow a Gaussian distribution, an alternative
loss functions might be more proper in measuring the affin-
ity between X and its low-rank estimate. There are a lot of
real-world motivations: Netflix’s user rating system is typi-
cal of a categorical data type, SNPs data denotes mutation
by binary coding, and spam email detection often examines
the number of times a flagged word appears.

Curse of dimensionality Besides the jeopardy of soundness
PCA faces when prompted with an extended range of data
types, the method itself also encounters theoretical, practi-
cal, and computational challenges when the dimensionality
p is high.

Theoretically, the estimated PCs prove to be inconsistent
if lim,,—,0c p/n does not go to zero [11, 21, 18], that is, when
the number of variables p is comparable or larger than n,
which is often the case in applications related to network,
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genetics and so on. This conclusion manifests a surprising
and controversial result: the statistical accuracy of PCA is
highly restricted to p <« n despite that its incentive stems
from the challenge of high dimension itself.

What’s worse, when the squared signal-to-noise ratio is
less than the converging constant of p/n, the estimated prin-
cipal components can be asymptotically orthogonal to the
true ones, essentially containing no authentic information at
all! Practically, since each PC z; = Zé’:l x;v;; still utilizes
all p dimensions in X with the loading matrix as weights,
there is essentially no hope of interpretability if the entries
in V are mostly nonzero. Therefore, the ideal model in terms
of both theoretical consistency and practical selective prop-
erty, calls for a parsimonious representation of the original
dimensions, which corresponds to enforcing sparse nonzero
entries in the loading matrix.

The big data era exacerbates the curse of dimensionality
from the computational perspective. Even when p is mod-
erately high, many existing algorithms find it difficult to
handle such computation complexity. Fast and feasible al-
gorithms need to be developed without sacrificing accuracy.

Missing values One might argue that missing value is not
as modern a challenge as its previous peers, but it is for
sure a problem that evolves with modern data formats. The
Netflix’s MovieLens, for example, has a missing percentage
of up to 99% [13] and a pattern of missingness distinct from
traditional problem. If these entries were to be removed or
imputed in a conventional fashion, the training of the model
is likely to suffer from a great deal of inaccuracy due to
missingness. Under such circumstances, it is much desired
to develop a novel approach which makes no assumptions on
the missing entries and integrate them into the optimization
problem itself.

With these challenges in mind, we examine the exist-
ing literature for ideas explored. On the topic sparse PCA,
there are quite a few iterative estimating algorithms such

s [12], [30], [36], [40], among others, where each column of
the loading matrix is sequentially retrieved. Despite of its
simple formulation and the resulting nested spaces, sequen-
tial techniques lack joint optimality and joint orthogonal-
ity when multiple features are desired. More importantly,
these methodologies are proposed under Gaussian assump-
tion. Generalizations of PCA to fit various non-Gaussian
data types are seen mostly in the machine learning com-
munity targeted on specific applications, such as [14], [10],
[2], [23], [7], [17]. [5] generalizes PCA to the exponential
family. However, it discusses the rank-one case only under
a large-n background. In the statistical literature, perhaps
the most similar work to ours is logisticPCA by [16] and
[15]—both utilizing ¢; regularization for sparsity, whose pa-
rameter is tuned by a greedy sequential grid search which
may result in a suboptimal estimator. The criterion is es-
tablished for binary data in specific, a subset of our tar-
get. Missing values are discussed, but proposed to han-
dle in a conventional imputation manner. More details of
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logisticPCA will be given in Section 4.1. None of the afore-
mentioned works addresses algorithm scalability when p is
high and computationally demanding. While sparsity lies in
the heart of these methods, it is often enforced rank by rank
such that no overall selection power is guaranteed unless the
rank level is very low. In sum, there is a scarcity of exist-
ing literature that compares to the scope and scale of our
work.

1.2 An outline

We propose a novel low-rank multivariate data approxi-
mation method called SG-PCA. SG-PCA establishes a uni-
versal framework for any exponential family distribution un-
der the high-dimensional setting. We launch from a low-
rank data approximation perspective and propose a joint
rank-r algorithm with built-in treatment for missing val-
ues. To achieve this goal, we solve a non-smooth optimiza-
tion criterion with non-convex rank, sparsity and orthogo-
nality regularization. Matrix decomposition eases the low-
rank condition in the optimization criterion. Element-wise
and group-wise sparsity constraints are studied and differ-
entiated. A Stiefel manifold optimization problem is simpli-
fied by an iterative process with some MM (majorization
minimization) flavor. As a result, we are able to recover
the loading space with rank reduction and dimension selec-
tion all in one step, while rectifying the inconsistency is-
sue brought by high dimensionality. Our formulation treats
missing values inherently as a part of the criterion. For
fast computation, accelerated gradient methods are incor-
porated in SG-PCA to promote algorithm efficiency. Last
but not least, we develop what is essential to the feasibility
of large-scale applications—a progressive screening scheme
which throws away nuisance dimensions gradually, providing
a smaller problem size each round.

The rest of the paper is organized as below. In Section 2,
we formulate the criterion for non-Gaussian data with miss-
ing values and describe the necessity and approach to en-
force sparse loading vectors. Section 3 gives the SG-PCA
algorithms to solve the rank-r problem under both sparsity
and orthogonality constraints and incorporate accelerated
gradient methods, a line search scheme, and a powerful pro-
gressive screening strategy to enhance algorithm efficiency
and scalability. Simulation studies and real data applications
are given in Section 4.

2. SPARSE GENERALIZED PCA

This section is dedicated to formulate and layout the
SG-PCA procedure in every detail. We start with deriving a
suitable criterion, proceed to discussion of the penalties and
constraints used for regularization and the missing data is-
sues.

2.1 The regularized log-likelihood criterion

Suppose our data is stored in an n X p matrix X that fol-
lows some underlying distribution. Low-rank data approxi-



Table 1. A list of functions of interest with respect to various

distributions

Distribution  g(u)  b(8) = g *(0) b(6) b"(9)

Gaussian m 0 % 1

Bernoulli .

Binomial  log 1% Too log(1 + €%) m
Multinomial

Poisson log ef ef el
Exponential 1 1 —log(|0)) 1

Gamma Iz 0 o8 62

mation methods search for the projection B of the data to
an r-dimensional (r < p) subspace such that the loss of infor-
mation L(X, B) is minimized. Under the Gaussian assump-
tion, sparse PCA finds B by maximizing a sum-of-squares
criterion || X — @™ ||3 + Px(v) sequentially, the data matrix
deflated each time getting a pair of (@, ®) [30]. The sparsity
regularization is enforced on v to obtain an estimated load-
ing vector. Therefore, sparse PCA has a closed-form update
under the simple quadratic loss.

However, our data of interest encompass all distributions
in the exponential family, for which the sum-of-squares cri-
terion may fail. The negative log-likelihood is an intuitive
alternative for such non-Gaussian data types.

This extension of loss function resembles that of the
generalized linear models (GLMs). GLMs deal with non-
Gaussian response variables for the lack of linear relation-
ship between the predictors and the response. Let u =
E(X) and g¢(-) denote the canonical link function, then
® = g(p) is the natural parameter. We assume that all
the x;;’s are independent given the low-rank structure in
® and write the negative log-likelihood function in matrix
form:

(2)

where the matrix component-wise inner product is defined
as (A, B) = tr(A” B), the term log(h(X)) is treated as a
constant, thus omitted during optimization. Note that the
derivative of the log partition function b'(-) is equal to the
inverse of the canonical link function g=1(-). The negative
log-likelihood of a Gaussian X returns equation (1), the
squared-error loss. Table 1 gives a list of functions of inter-
est with respect to some commonly used exponential family
distributions, where p and 6 stand for the mean and natural
parameter in general.

To represent the natural parameter in a low-rank fash-
ion, we rewrite ©® = 1,a” + VST, where 1,, is a column
vector of 1’s and « the intercept vector. Here we require
Ve ={AcR>*"ATA = I,.,}. S € RP*" gives
the principal loading matrix but does not necessarily have
orthogonal columns. Instead, we require S to be sparse. Such
a VST setup prepares the objective function for regulariza-
tion ease.

~U(0]X) = ~(X,0) + (1,1}, b(©)) — log(h(X)),

The objective function minimizes the regularized negative
log-likelihood:

(3)
—(X,1,a” +VST) + (1,17 b(1,a” + VST)) + P(S; N)

subject to Vv =1,

where P(S;)) denotes a sparsity-inducing regularization
with A as its parameter.

This criterion is applicable to a variety of large-scale ap-
plications for its wide assumptions on distributions. The en-
tire low-rank approximation can also be derived as a whole,
preserving joint optimality as compared to the sequential
fashion.

2.2 S for sparsity

Since S denotes the principal loading matrix, the PCs are
written as z; = X's;. When the dimension p is high, relative
to the sample size n, it is necessary for S to have sparse
nonzero entries to ensure consistency [11]. Furthermore, the
scope of dimension reduction can and should be improved
by the addition of sparsity constraints. Dimension reduction
traditionally refers to rank reduction in the context of PCA.
Geometrically it is a projection of the observed data points
to a lower r-dimensional subspace. What promotes model
parsimony is the elimination of nuisance dimensions along
with rank reduction, leading to sparse representation in the
PCs.

On the other hand, enforcing element-wise sparsity does
not yield the smallest subset of variables for principal
components unless 7 is extremely low. To remove an en-
tire column of X in the construction of all PCs given by
Z = XS, introducing row-sparsity in S, i.e., P(S;\) =

P L P(||sill2; A) (with some abuse of notation), would do
the trick. It is easy to see that the row-sparsity in S cor-
responds to the column sparsity in B = V.87, verified due
to the orthoganality of V. It is essential for efficiency and
selectivity of the algorithm and for the overall interpretabil-
ity of the results. We will blend the two types of sparsity on
the loading matrix for fast computation, with row sparsity
employed in a screening step to reduce p to some dimension
d (d < p) prior to the element-wise sparsity pursuit in each
individual loading vector.

There are abundant choices of sparsity-inducing penalty
functions P(-;-) in 32, ; P(|sij[sA) and 3°7_) P([|si]l2; A).
The ¢; penalty [31] is most popular among the sparse PCA
literature, but it suffers from inconsistency and biased es-
timation [39, 37] especially when predictors are correlated.
To alleviate those issues, other non-convex approximations
of the ideal non-convex £y (|| S|lo = >, ; 1s;;0) penalty such
as ¢, (0 < p < 1) penalty, SCAD [9] and capped ¢; [38] are
proposed. However, we propose to use the £ itself for its ap-
pealing properties in sparsity promotion, because it can di-
rectly limit the cardinality of nonzero elements/rows in the
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loading matrix hence encourage accurate selection. More-
over, the constraint form of ¢, is yet preferred over the
penalty form due to its tuning ease. While the grid search
process of A is traditionally cumbersome, tuning for the con-
straint form 3, . 1s,,20/(pr) < ¢e is intuitive and easy: ge
serves as the upper bound for percent of nonzero entries in
the loading matrix, thus the selection accuracy should re-
main sound as long as parameter ¢. is larger than the true
value. In fact, it corresponds to a rank-constrained screening
problem described in [27].

Note that orthogonality is only imposed on V. While
this makes VST a general representation for any matrix
B of rank no higher than r—a convenient translation of the
non-convex low-rank constraint, it implies that the obtained
sparse PCs are not decorrelated as in ordinary PCA. How-
ever, the loss of orthogonality is generally considered a price
that sparse PCA has to pay [40, 30, 36].

2.3 Handling missing values

We propose a masking approach for efficient handling
of missing entries. Conventionally, it is a common practice
to impute or simply remove missing entries before training
the model, both holding assumptions on the missing entries
thereby introducing additional inaccuracy into the training
process. On the contrary, we do not assume any prior knowl-
edge on the missing entries, rather, we mask them as un-
known information such that their contribution to the loss
function is not taken into consideration. This is made pos-
sible by approximating the low-rank and sparse structure of
the data, such that masking some amount of missing values
does not interfere with matrix recovery. Perhaps it is inter-
esting to note that our masking technique for missing data
is deeply connected and naturally applicable to matrix com-
pletion type of problems (see examples in [4]), where only
an extraordinary small fraction of data is observed and im-
putation of the missing values is precisely the goal. Instead
of writing the problem as a summation in a subset, we will
develop a multivariate approach that utilizes matrix-wise
operations, making it easier in implementation. The mask-
ing method introduces minimal cost to the computational
algorithm even as the dimension of the problem is rocket
high, and it is entirely integrated into the estimation pro-
cess.

Let © denote the index set of all available observations,
intuitively the optimization criterion (3) is only evaluated
when X € Q. However, for computation efficiency and ease
in analysis, we prefer the following formulation. Define the
masking matrix H = [h;;] such that

if (i,5) € Q

1
@ hij = {o if (4, 7) € QF

Throughout the paper we use the Hadamard Product o to
denote the element-wise matrix multiplication: VX where
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dim(X) = dim(H),

HoX = [h” . (EZ]]
From here on, our attention shifts to the loss function f™
below:

(5) —(HoX,1,a” + V8" 4+ (H,b(1,aT + VST))

The gradients of the masked loss function can be calcu-
lated (details omitted):

(6)
Gs=—-(HoX)"V+(Hog Y 1,ar + VST)TV
Gv =—(HoX)S+(Hog '(1,a” +VS"))S
Go=-(HoX)'1,+(Hog (1,07 +VST)T1,

For simplicity, we use X = H o X hereafter to demon-
strate the masked observed data matrix.

3. AN ITERATIVE ALGORITHM

3.1 A surrogate function

A natural idea to solve optimization problem 3 is to uti-
lize a block coordinate descent (BCD) [32] algorithm where
a, S and V are updated alternatively. While a*! has a
closed-form solution when all entries are observed and the
distribution is Gaussian, in the existence of missing values
or under GLM setting, a!*! has no explicit form.

The bigger challenge lies in optimizing V' while holding
a and S fixed. Although the objective function is smooth
in V, the unitary constraint V'V = I,., is non-convex
and non-smooth. One may treat the update of V' as a con-
strained optimization problem with quite a few Lagrangian
multipliers, but it is awkward and slow in computation. The
problem is better phrased as a Stiefel manifold optimization
one, for which packages are already available [35, 28]. That
is what we first try. We have implemented and tested the
manifold optimization algorithm for SG-PCA only to find it
to be a valid yet rather expensive method when the prob-
lem size is big. With no need to call any external package
we develop a new algorithm with some MM (majorization
minimization) flavor in its employment of a surrogate func-
tion.

Consider the optimization problem in the element-wise
sparse case as an instance. We minimize the objective func-
tion
(7)

min_f =~ (X, 1,a” + VST + (H,b(1,a” + VST))

+ P(S; ), subject to viv = Iy,

where I(a, V,8) = —(X,1,a” + VST + (H,b(1,a” +
VvV 8T)) denotes the loss.

Solving this non-quadratic loss function with a non-
convex orthogonality constraint is rather difficult, for the



prerequisites of the convenient candidate approaches such
as Procrustes rotation are deprived. We seek to utilize a
quadratic loss through deriving a surrogate function.

Concretely, given the (k — 1)* step estimates
a[k*”,S[kfl],V[kfl], define ©F~Y as a function of
(X[k;—l]7 V[k_l], S[k_l]:

olk-1 _ lna[kq]T L yl-1ghk-uT

Linearization will be applied at ©F1 instead—a similar
idea we used in [26] to deal with singular-value penalized
vector GLMs. Define

h(@* elk-1l

= |1y t (Vel@F 1) @ — ek
+ 5@ - 03 + P(s; )

=1 1)+
e — ek

(-X +Hog '(®F),
+ 5@ — etk + p(si)

as our surrogate function. Then the k*" iterate is given by

(8) (a[k], S[k], V[k])

= argmin h(a, S, V:alf-1, S[k—ll’ V[k_l]),
a,S,veO

It is clear that h satisfies h(alb—1 gk=1 yk-1.
alb=11, §l=11 yk=1y — f(qlk=1] glh—1] Vk 1y, Suppose
Pk is chosen such that

(9) (a[k] Skl V[k] [k—1] S[k_l],V[k_l])

> f(al,s", V)

This can be realized by setting a large enough p; based on
Taylor expansion, as detailed in Section 3.2. The objective
function value is guaranteed nonincreasing throughout the
iteration, as demonstrated by the sequence below:

f(a[k],S[k], V[k]) <h(al, Sl Yk, k=11 glk—1] V[kfl])
<h(alF=1, Sl=1] k=1l
alk=1 glk=1] V[k—l])
:f(a[kfl],s[k%L V[kfl])_

Clearly the second inequality does not depend on the op-
timality of (a®, S" V) in equation (8). One can use
iterative methods which approximates the solution to solve
(8), as detailed below. Problem (8) can be rewritten as:

(a[k]7s[/€], V[k]) = argmin <v®l(®[1€—1])7 1naT + vsT
a,S,VeQnxr
— el 4 %||1naT L vsT

-0 )2 4+ P(S;\)

1
= argmin —|[1,a” + vst — E[k]H%
a,8,Veonxr
1
+ —P(S;)),
Pk
where
(10) 8% =ely (x - Hog (@)

Pk

For notational simplicity, we write the problem as

-1
in f=-|1,af +VvsT —=F|2 + p(s;\
an arfl‘;{lsf 2|| no + 7 + P(S; \p.)

subject to viv = I,

where X,, is defined such that P(t;\)/pr = P(t; A,,), Vt €
R. The quadratic problem is much simpler than the initial
criterion. As illustrated below, BCD can be easily applied,
leading to an inner loop from line 8 to 13 in Algorithm 1.

t*" inner iteration step, o has a

=[k] -1, aT

a-optimization For the i1
closed-form solution: let Vo f = 0, then (2

vST)T1, =0, that is @171, = =H"

== — SvT1,, there-
1k’ gty [t—l]T) 1,

fore a%Pt =

S-optimization To solve the S-optimization problem for
a general penalty function P(#;\), we propose to use
the thresholding rule based ©-estimators, because multiple
penalty functions often correspond to one threshold rule.
Thresholding-based iterative selection procedure (TISP)
[24] can be used to solve a P-penalized problem for any
P associated with a thresholding rule (an odd, unbounded
monotone shrinkage function) [29]. According to [25], ©-
estimator is linked to a general penalty function P(¢; A) by
(12)

P(t; A) — P(0; )

Il
= /0 (sup{s : O(s; A) <wu} —u)du+ q(t; N)

for some nonnegative ¢(-; A) such that ¢(©(s;\)) = 0 for
all s. This conclusion is valid for any thresholding rule, so
through O-estimators, we can handle all popular penalties
including but not limited to the aforementioned ¢;, SCAD,
and £, (0 < p < 1), making this technique universally ap-
plicable.

Recall that we advocate the use of £y constraint

1Sllo/(pr) < ge

in place of the ¢y penalty A||S||o for tuning ease. The mod-
ified algorithm guarantees the nonincreasing of function
value. TISP can be nicely adapted to solve the problem
by employing a quantile thresholding rule ©#. The quan-
tile thresholding rule is a special case of hard thresholding
which correspond to the £y penalty. Let ©%(S;q.) be the
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Algorithm 1 The SG-PCA Algorithm
Input: X € R"*?; r: the desired rank; Mo,/ M;y: the
maximum outer/inner iteration number; €out/€in: inner and

outer error tolerance; and the initial estimates a!” € RPX!,
viol ¢ Q"< Sl ¢ rpxr,

1: k+ 0
2. @ — 1na[0] + V[O]S[O]T;
3: repeat
4: k< k+1;
5. =k — @[k 1] Jr (X Hog™ (@[k—l]))
6: t < 0;
7: Initialize & + al* S <— Sk=1 v ] « ylk=1]
8: repeat
9: t—t+1;
10: al) (g _plughounyry
11 S et M — & Ty g,
n y4e )y
12: Compute SVD of (EF — lnd[t]T)SM = PDQ7, set
f/[t] — PQT;
13: until ¢ > M;,, or changes in &, S’, V no bigger than e;,
14: ok (_at] S[k <_S,[t] V! ]<_‘~/[t};
15 O« 1,aM" 4 VIFGHT,
16: until k > M,y or (|©F — @lk Ullmax < cour & |fH —

f[kil]‘ S Eout)

17: return o!*l, V¥ gkl

element-wise quantile threshold function, then

0 |sijl < Ae

13
(13) sij  |8ij] > e

0% (S; qe) —{

where A, is the (1 — ¢.)!" quantile of the |s;;|’s. The tun-
ing parameter ¢. has a definite range (0 < g. < 1), which
serves as an upper bound for the nonzero percentage hence
is much easier to interpret. Thus, the closed-form solution
for S associated with (11) given v and V is

Sopt

@#((HW —a1V:q.).

See [25] for further details.

V -optimization The optimization problem given a and S
with respect to V' becomes
T
min |EX — a1 — SVT|2
(14) v
subject to vy = I,y .

This can be identified as a Procrustes rotation problem, real-
izable through computing the Singular Value Decomposition
of (Bl —1,aT)8 = PDQT. The optimal Vo' = PQ”.

The full optimization process is given in details as Algo-
rithm 1.

Although for simplicity of presentation, the main algo-
rithm is illustrated with the element-wise form, group spar-
sity regularization can be used for screening and selection
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purposes and is also interesting to us. In particular, for the
group ¥y constraint

1Sl2,0/P < qq,

1t calls for the multivariate version of quantile thresholding
S CE (S T, Qg)

0 [[3ill < Ag

(15) e
i I3ill > Ag,

8#(ST;qg) = {

where ), is the (1 —q,)!"* quantile of the p row norm |[|3;]|’s.
The group-wise constralnt version can be realized by simply
changing ©% to 9# in line 11 of Algorithm 1, which also
satisfies the inequality (9) given py properly Chosen.

3.2 Step size

Define 7, = 1/ps. as the step size along the gradient in
Equation (10). To guarantee function value nonincreasing,
it suffices to derive a minimal py, or a maximal step size 7y
such that inequality (9) holds. Note that the regularization
terms cancel out on both sides of the inequality, hence we
focus on the negative log likelihood loss I(-) of f(-) through-
out this section. Since the function value of [(-) depends on
a, V and S only through ©, we regard © as the target
variable accordingly.

Such a pj can be obtained by various line search methods
with (9) served as a stopping criterion. However, in some
cases a universal step size may be derived based on Taylor
expansion. Fortunately [(®) is usually smooth under the
GLM setting, making Taylor expansion appropriate in order
to derive a universal step size.

In the univariate case, for arbitrary y and = and f that
is at least differentiable to the second degree, we have the
approximation f(y) ~ f(x)+ f'(z)(y — ) + 1 () (y — v)?.
To show the multivariate Taylor expansion for ! (G[k])7 we
consider a perturbation in the gradient function of the loss:

viek-1 4 A)
—— X+ Hob(OF LA
=—X+HoW®OF )+ (Hob"(e*)oA
=Vi(©" 1) + (Hov"(€" 1)) o A,

with A = % — @Y for some £ = c®OF 1 4 (1 - c)0W

where ¢ € [0, 1]. Hence

(e = 1(6[’“) (Vol(OF1) A)+

E<H ob(€F o A A).
Denote A = [6;;], H = [hy;], b"(€) = [bs;], we have
f(e")
S(H o b/(E1

h(G[k], @[k*ﬂ) _

Pk
=S lAlf - Don. a)



Pk 1
ZEHAH% -3 Z@thijbij

0,J
S Pk
> a3 - 26

Pk
> P2 Al — L) e |
where || - [|max is defined as the maximal absolute value in
the matrix, and H is a matrix of at most 1’s.

If pr. > [|b”(€)|lmax, that is, step size

1
T =—< I/Hb//(s)”maxv
Pk

function value will decrease.

16" (€)||max depends on the specific distribution. Table 1
provides the forms of b”(-) according to a list of distribu-
tions. Notice that it always equals 1 under Gaussian distri-
bution and it is bounded by % for Bernoulli, Binomial and
Multinomial data. By taking these suprema, nonincreasing
function value can be guaranteed via the universal step size
choices 7 = 1 or 7 = 4 respectively for all k. However,
in the Poisson, Gamma, and Exponential cases, ||b” (&) |lmax
has no finite supremum, thus no universal step size may be
achieved. Since inequality (9) only requires decrease on the
(k — 1) step, we may select 7 based on an ad-hoc reason-
ably large value of ||b” (€)]|max or from line search methods to
satisfy the local descent condition. Since an arbitrary small
constant 7y, easily leads to slow convergence and inaccurate
results, line search is vastly preferred for efficient and accu-
rate convergence. The line search scheme will be outlined in
details as a part of Algorithm 2.

3.3 Fast computation
3.3.1 Accelerated gradient with line search

The lack of theoretical maximal step size under some dis-
tributions is expected to result in slow convergence, which
motivates us to find an accelerated algorithm. Nesterov’s
second accelerated first-order method [19] is a popular tool
to improve the convergence speed for unconstrained smooth
problem. It can achieve the convergence rate O(1/k?) where
k is the iteration number. This rate is shown to be the op-
timal convergence rate for smooth and convex first-order
problems, and later extended to a large class of non-smooth
convex ones including Lasso [1]. We borrow the framework
of accelerated proximal gradient [33, 20] and define an op-
erator P(-) : R™ — R™ which solves a non-convezr optimiza-
tion problem. Theoretical work has been done analyzing the
approximation accuracy when such regularization is convex
[34], to which our problem does not belong. However, ex-
perience shows that under non-convex settings the second
accelerated method still works well if the step size 7y is fur-
ther reduced and appropriately selected.

For notation simplicity, we take ® to represent o, V' and

Algorithm 2 The SG-PCA? Algorithm with acceleration
and line search
Input: X € R"*?; r: the desired rank; Moyt /M;y: the
maximum outer / inner iteration number; €,y¢ / €in: Inner and
outer error tolerance; n(0 < n < 1); and the initial estimates

0] c RPX1, V[O] c @nxr’ S[O] c RPXT.
1: k« 0
2: O« 1,al 4 V[O]S[O]T;
3: v el
4: repeat
5: k< k+1;
6: 0r < 1 when k£ =1,2, and 6, = ki+2 otherwise;
7 nys < 0;
8 vt vl e - OF Y 7 = 1/ X [lmax;
9: repeat
10: nis — Nis + 15
11: T < NT;
12: Y « (1 —0r)O5" + 0pvid™;
13: vt — vt — —Vlo( ) where Vig(Y) = —X +
Hog '(Y);
14: t < 0;
15: Initialize &l « alf~1, S'[O] « Sl V[O] —
k-1
16: repeat
17: tt+1;
18: d[” — (v — yligh=tryry
19: §Y  oF (i — &V g,
20: Compute SVD of (vi*" — 1nd[t]T)S’[t] = PDQ",
set V[t] « PQ7;
21: until ¢ > M;, or changes in &, S, V no bigger than
Ein
22: vpew o 1,a107 4 v gl
23: O +— (1— 0,07 + ekuf;“,
feryy < fly) + (Vf = Y) +
24: until ||@M2” Y||%(or )nls ><10 ), )
25 ol a[t], CIOIPE-L S A0 vl
2 M vy, O e

27: until k > Moy or (O — ©F |0 < cou & | —
f[k71]| S €out)

28: return al®, V¥ g

S jointly. The second method introduces two momentum
terms Y and v[¥ in the k*" iterate such that

(16) Y = (1-6,)0F 1 4 g k-1
(17) vl = pe - g—kvzm),

k
(18) el = (1 —g,)eF1 4 g,

P yields the answers to the non-convex optimization prob-
lem

argmin  [(Y) 4 (VI(Y),0 —Y) + pp0i]|© — vIF]||2,

0=1,aT+VST
+ P(S;))
subject to VIV = I,
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essentially problem (11) with 2 = @ —p, 0, VI(Y). ) should
be chosen such that

1—0, 1
< N2
0 o0k
and 0 = k—JQFQ functions as a simple choice that satisfies this
inequality.

When the theoretical step size 7 is not available, it can
be relaxed by an initial guess and further decreased in every
iterate until the backtracking criterion is met—in our case,
inequality (9): the idea is to take a conservative step size
7 first in iteration k, and repeatedly proceed along the
gradient with a subsequently even smaller step size 7™ =
nTm=D (0 < n < 1) until sufficient decrease in function
value has been achieved, before entering iteration &k + 1.

Algorithm 2 lines out SG-PCA?, geared especially to-
wards the Poisson case. Note that line 13 to line 22 in
Algorithm 2 compose the non-convex P which includes a
low-rank and a sparsity regularization.

3.3.2 Progressive screening

In cases where p is extremely high, it is sometimes just
infeasible to iterate till convergence, neither is it suitable to
remove a big fraction of dimensions altogether in carrying
out the algorithm once. For instance, p is 1,000 and the de-
sired post-screening dimension is 100. It is considered greedy
to deem 90% of the original dimensions nuisance from the
very first iteration.

To enhance the scalability as well as to reduce such greed-
iness as problem size blows up, it is natural to adaptively
kill the dimensions depending on the iteration progress. The
elimination of one dimension is equivalent to enforcing the
row norm of S to zero. Therefore, by optimizing the problem
subject to a row-sparse criterion repeatedly and complying
a once-zero-stays-zero strategy, we are able to progressively
screen and squeeze the dimensions.

The screening problem is considered under the group-
wise sparse setting. Let the desired percentage of nonzero
dimensions be g4, then instead of enforcing ¢, as the tuning
parameter directly in step 19 of Algorithm 2, we introduce a
sequence Q(t, k) which decreases from p to gyp and discard
the zero dimensions, where ¢ and k stands for the inner and
outer loop iteration number respectively. Q(t, k)/d serves as
the new sparsity parameter with d denoting the cardinality
of the nonzero index set A/ in the current iteration. In this
way, the problem is tackled in a smaller space as the iteration
proceeds. Since reducing the same amount of dimension is
often easier at the beginning when the candidate d is much
higher than towards the end, a sigmoidal decay best suits
the need—Q(¢, k) = 2p/(1 + exp(aT’)) is recommended in
particular, where a € [0.01,0.1] determines the speed of the
decay. T = k,t, kt controls whether the decaying process is
dependent on the outer, inner loop progression or both, with
the choice of inner loop being the fastest one and outer loop
on the conservative side.
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Algorithm 3 Progressive Screening
Input: 5 ¢ R &M, Vit

: d + card(N)

;8 BH (T — &V Qe k) d);

L T e T 18" G 1)) £ 0y

N« N(J);

§Y 8710, X « X1 n,T),a" « a(7);

: return S’[t], alt, ‘N/[til], X, J,N.

DX, Q(t k), N

Algorithm 3 lines out the progressive screening scheme
to replace step 19 of Algorithm 2. N stands for the index
set of nonzero dimensions with respect to the original index
and it is initialized as N = (1,2,--- , p).

The progressive screening design integrated in SG-PCA
greatly enhances the scalability of our algorithm when prob-
lem complexity explodes. Section 4.2 includes results with
dimension up to p = 13,220 to demonstrate such scalability
when the competing methods take several times longer or
even fail to converge within reasonable time.

4. NUMERICAL EXPERIMENT
4.1 Simulation data

We generate Gaussian, Bernoulli and Poisson simulation
data under three different settings. Simulation data set is
built similarly to the spiked covariance model, which is pop-
ular among sparse PCA related research [11, 3]. Simulate an
n X p matrix X such that
(19) 9(B(X)) = PDQ".
where P € R™ " has independent and identically dis-
tributed standard normal entries, D is a diagonal matrix
with (A1,---A.) on its diagonal, @ is a deterministic p x r
orthonormal matrix, and ¢* is the true nonzero rate in Q,
with g; denoting element-wise nonzero percentage and gy
the percentage of nonzero rows.

The three scenarios are generated with n = 100 observa-
tions and p = 200 dimensions. We further specify the true
r*, g and g, below: (a) r* = 1 with sparse vector q such
that ¢& = |lqllo/p = 1%, with the exception of Bernoulli
data at ¢f = 5%; (b) r* = 4 with element-wise sparse ma-
trix @ such that ¢ = [|Q]|o/(pr) = 8%; and (c) r* = 4 with
row sparse matrix Q such that g; = [|Q||2,0/p = 20%.

We implement logisticPCA [15] to compare Bernoulli ex-
periments, and sSPCA-rSVD [30] is applied for all distribu-
tion types.

To gauge the precision of algorithms, we compare the
error on O, function value, subspace and selection. Dif-
ferent from a supervised problem, the complexity goes up
whenever n or p increases. We thus scale the ®-error to
1000(|© — ©*||%./np. Deviance is defined as 2(I(X;©) —
I(X;Og5)) where @ denotes the estimated parameter and



Table 2. n =100, p = 200. Trimmed mean (10%) results of 100 repetitions. Gaussian experiments utilizes 2 out of 10 initial
points; Bernoulli 3/20; Poisson examines 5/30. Gaussian methods under the Poisson model produces © as estimators of
E(X), and it results in numerically unstable deviance thus omitted in table

Error Selection Time

Data Method ©-Frror Dev Angle MR(%) FP(%) (s)

Setting (a): r* =1, q7 = 0.01, g = ¢}
Gaussian SG-PCA 0.39 1.00 0.14 0.00 0.00 0.23
sPCA-rSVD 0.48 1.17 0.14 0.00 0.00 0.25
Bernoulli SG-PCA 3.48 1.00 21.17 15.48 0.81 0.58
B logisticPCA 4.00 1.01 22.19 22.00 1.15 0.48
ge = 0.05 sPCA-rSVD 4.63 1.02 24.59 20.00 1.05 0.51
SG-PCA’ 8.83 1.00 22.93 49.00 0.49 1.45
Poisson sPCA-rSVD 49.04 — 16.02 15.00 0.15 1.50
SG-PCAC 8.74 — 16.02 15.00 0.15 0.36
Setting (b): r* =4, q; =0.08, e = 4q;, q9 = 44}
SG-PCA 0.03 1.00 0.13 3.53 26.26 0.02
Gaussian sPCA-rSVD 0.93 52.28 0.13 1.56 26.13 0.27
SG-PCA, 0.03 1.00 0.12 0.10 26.10 0.02
SG-PCA 6.43 1.00 33.22 51.33 30.55 0.79
Bernoulli logisticPCA 7.64 1.03 46.38 48.70 30.32 1.41
sPCA-rSVD 9.14 1.10 44.66 42.19 29.76 1.67
SG-PCA, 5.94 1.01 29.53 12.29 27.16 0.79
SG-PCA? 12.31 1.00 88.74 66.17 31.84 1.32
Poisson sPCA-rSVD 46.35 — 77.83 27.64 27.64 6.07
SG-PCA; 12.25 0.55 88.54 66.26 31.85 1.29
SG—PCAgGa“ 13.09 — 76.98 21.31 27.94 0.56
Setting (c): v* =4, q; = 0.20, ge = 2q;, g4 = 2q,

SG-PCA 0.03 1.00 0.18 0.19 25.03 0.19
Gaussian sPCA-rSVD 0.93 40.91 0.18 0.25 25.03 2.70
SG-PCA, 0.03 1.00 0.16 0.00 25.00 0.21
SG-PCA 6.05 1.00 31.93 23.91 30.98 0.85
Bernoulli logisticPCA 7.65 1.03 49.33 26.64 31.66 1.52
sPCA-rSVD 9.12 1.11 45.18 25.00 31.25 2.51
SG-PCA, 5.58 1.01 28.03 0.15 25.04 0.79
SG-PCA? 12.31 1.00 88.40 66.17 31.84 1.29
sPCA-rSVD 44.29 — 84.31 3.20 25.80 6.49
Poisson SG-PCA; 12.26 0.16 87.97 57.06 39.27 1.27
SG—PCA?““ 14.56 - 84.31 0.50 25.13 0.60
SG-PCA?’“ 1 11.19 — 49.20 0.00 35.71 0.69

®5 that of the saturated model. For simplicity of presenta-
tion and comparison, we scale the deviance of SG-PCA for
each distribution under each setting to 1, and deviance of
the other methods as a ratio to the first one. In addition, the
largest canonical angle between the estimated loading space
and the true space is also interesting. Selection accuracy
is evaluated by missing rate (MR) which stands for missed

r=3r*

nonzero loading elements, and false positive rate (FP) which
represents the false alarm rates for actual zero elements.
100 simulation experiments are run for each distribution
under each setting. The 10% trimmed means of evaluation
metrics are given in Table 2, since trimmed means are more
robust than means for non-Gaussian metrics and more com-
prehensive than median for using all the values. Notice that
sparsity parameter g. and g, differ among settings. r = 1
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is a much simpler problem compared to the others, thus
ge = ¢} would suffice. Setting (b) has ¢. = 4¢} and ¢, = 4¢;
compared to (c) where the sparsity parameter is only twice
that of the true nonzero level, because a more conservative
sparsity parameter is necessary for keeping the missing rate
under control when the loading matrix is simulated element-
wise sparse. The highly non-convex optimization problem
produces local minima, hindering the recovery of the global
optimal solution. Therefore we use a multiple-start scheme
[22]. Tt first utilizes m; random initial points, out of which
we choose ma (ma < mq) points with the lowest function
values after ny (ny = 2) iterations and proceed until con-
vergence; finally, the initial point producing the lowest func-
tion value is selected. Different m; and mo are used for the
three distributions, since the degree to which non-convexity
affects convergence differs across the distributions accord-
ing to our experiments. Notice that for the rank-four sce-
narios (b) and (c), both the element-wise and group-wise
SG-PCA are implemented. The element-wise version is em-
ployed as a fair reference comparing with the competitive
methods due to their sequential property, where any group
constraint would act just like an element one. However, the
group ¢y constraint should ideally be utilized for selection
and fit under setting (c), and for simplicity and speed under
setting (b).

In the Gaussian experiments, SG-PCA almost always
demonstrates better results to sSPCA-rSVD across all evalu-
ation metrics, establishing a trustworthy ground line for our
algorithm. SG-PCA also takes a fraction of the computa-
tion time of sSPCA-rSVD especially when r* = 4, probably
due to its joint estimating property, as opposed to the rank-
by-rank behavior of sSPCA-rSVD. In fact, SG-PCA always
demonstrates higher efficiency across all experiments. Under
settings (b) and (c), the group-wise algorithm SG-PCA,
further enhances the overall performance compared to the
element-wise form, especially in terms of selection accuracy.

This is also true among the Bernoulli experiments. While
our method consistently outperforms the comparison ones
across all three settings in every aspect—supporting the su-
perior formulation of the negative log-likelihood serving as
the loss function, SG-PCA, is always able to improve the
performance even further. Group sparsity constraint is an
effective tool unique to our algorithm which helps with fast
dimension elimination, makes selection possible and much
more accurate. Allowing g, to take a slightly higher value
enables it to function as an upper bound, reducing the miss-
ing rate considerably at a small cost of the false positive rate,
which in turn improves the space recovery accuracy.

The Poisson simulations are more challenging because of
its complexity in step size selection and its numerical ten-
dency to diverge. Algorithm 2 (SG-PCA?) is applied to all
Poisson settings for its comparatively superior performance.
Yet the r = 4 scenarios still see difficulty in Poisson estima-
tion due to the space ambiguity issues—the set of loading
vectors that define a space is not unique. It is suspected
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that sSPCA-rSVD outperforms SG-PCA under Poisson be-
cause of the simple Gaussian algorithm where numerical is-
sues are less likely to occur. Thus, we list our Gaussian al-
gorithm SG-PCA for comparison as well. Better results
are achieved through the SG-PCA%** and SG—PCAgGa" al-
gorithms. In an attempt to cope with the space ambiguity,
SG—PCA?““ with 7 = 3r* is also included under setting (c),
because a higher rank parameter introduces more flexibil-
ity in defining the subspace. This results in substantially
superior space recovery accuracy.

To sum up, our method demonstrates better efficacy and
efficiency of the joint space much more accurately under the
Gaussian and Bernoulli settings. It is able to directly elim-
inate nuisance dimensions for either screening or selection
purposes due to the group sparsity constraint, regardless of
the underlying true sparse pattern of the loading matrix.
Although the Poisson experiments do not show results as
excellent as the other two, we are able to achieve encour-
aging recovery accuracy with the Gaussian alternative of
SG-PCA. Relaxation of rank r to a higher number may also
help relieve space ambiguity issues. It is important to note
that the results and conclusions are restricted to the formu-
lation of the synthetic examples above.

4.2 SNPs data

Single nucleotide polymorphism (SNP) data denotes the
variation at the level of a single base pair in DNA sequence
that occurs at over 1% within a species. SNPs data attracts
a great amount of attention due to the belief of its undiscov-
ered association with various stratification ways, especially
diseases. Two tasks are of particular interest: one is to reveal
the underlying structure for a certain population, the other
is to select particular features meaningful in clustering the
observations. Our proposed methodology, while its primary
goal is to recover the jointly sparse and low-rank structure,
also takes an interest in learning the informative features.

The specific data set we use as an example is the SNPs
data made available from the international HapMap project
[6]. There are 1,322 shared base pair information from 270
observations, consisting of 90 Africans, 90 Caucasians and
90 Asians. The missing rate is 0.53% and it is handled by
the masking scheme. Since the data consist of binary en-
tries denoting the existence of a base pair mutation, tra-
ditional dimension reduction with Gaussian assumption is
inappropriate. SG-PCA is applied with parameters selected
as r = 3, g4 = 0.10 and ¢, = 0.60, while the group-wise
sparsity is enforced progressively and the elment-wise one
implemented afterwards. Rank and sparsity parameters in
our formulation are not as sensitive as some other algorithms
such as ¢1. We fix one, alternate the other on a crude scale
until the best clustering effect is achieved. Figure 1 shows the
data projected to the first three principal directions learned
by SG-PCA. Although the nature of our approach is unsu-
pervised, the European, Asian and African subjects are well
separated in the subspace. It is noteworthy that only 12.56%
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of the original dimensions are used in all three PCs, out of
which only 8 dimensions are shared by the three directions
in common.

To further demonstrate the selection capability and al-
gorithm scalability of SG-PCA, we inflate the original 270
by 1,322 data matrix with 9 times as many nuisance di-
mensions. With parameters chosen at r = 3, g4 = 0.01 and
ge = 0.60, our algorithm is able to produce the clustering in
Figure 2. Only 76 are selected from the starting 13,220 di-
mensions and none of the inflated junk dimensions is falsely
chosen. It is also worth noting that the entire algorithm with
3 second-stage initial points out of 20 first-stage ones takes
198 seconds, a fraction of the 712 seconds with logisticPCA.
sPCA-rSVD appears infeasible under such high-dimensional
setting, for each rank takes more than 10 minutes to con-
verge.

4.3 The CNAE-9 text data

The CNAE-9 text data is a set of 9 categories from the
National Classification of Economic Activities. It has been
preprocessed so that each document is presented as a row,
and each column contains the frequencies of a specific word
in the documents.

Three out of nine categories are extracted for use in the
experiments, where two thirds of the observations are for
training purposes, leaving the remaining one third as testing

data set. The training data consists of 240 observations only,
compared to a much larger p of 857.

The data set is highly zero-inflated (99.27%), which is a
native characteristic of text data, as not all words are present
in all categories of documents. It is not to be confused with
the missing rate 2.8%, handled by the masking method. The
low nonzero entries in data probably further supports the re-
covery of sparse loadings. A series of progressive group-wise
SG-PCA? models are fitted under the Poisson distribution,
projecting the data to some lower-dimensional subspaces,
after which a K-nearest-neighbor (KNN) classification pro-
cedure is carried out on the transformed space to calculate
the test misclassification error.

Rank r and sparsity parameter g, are tuned based on
the testing KNN misclassification error. The tuning ap-
proach is similar to the HapMap application by a series of
experiments, where the parameter values are alternatively
changed. Since g, serves as an upper bound of the true
nonzero loading vectors, the result is not very sensitive to g,
as long as a conservative choice is given. Hence an exhaustive
grid search is not necessary.

Classification on the reduced dimensions produces consid-
erably better results compared to the original space. Naive
KNN on the unprocessed data produces a misclassification
rate of 66.67%—the equivalence of random guess. Regu-
lar PCA projects the data to a new coordinate system,
greatly enhancing the classification accuracy from an error
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Figure 3. Misclassification rate comparison of SG-PCA? at
r = 8 on CNAE-3 data.

of 66.67% to 9.58% when r = 8, and 8.33% when r = 20.
However, since no sparse loading vector is pursued, each PC
still utilizes all the original words.

The new loss function coupled with the sparsity con-
straint delivers a parsimonious representation in the result-
ing PCs while keeping the strong classification power in the
following KNN procedure. Figure 3 shows the misclassifica-
tion rate at r = 8 corresponding to a range of g, values cho-
sen at ¢, = 0.11,0.15,0.20,0.25,0.30, 0.35, 0.40, 0.45, 0.50.
In sum, SG-PCA? with progressive screening seem to have
the best performance. It surpasses SG-PCA? without pro-
gressive screening especially at the lower ¢, values because
greediness is very much alleviated when the sparsity regu-
larization is stringent. Both achieve a much lower misclas-
sification error than all the other methods, with a selec-
tion rate as low as 11% of the original dimension. sPCA-
rSVD performs similarly to regular PCA. SG-PCA? with
progressive screening is also the most computationally ef-
ficient among all. One multiple-initial-point process con-
sumes on average 12.07 seconds, whereas regular SG-PCA?
takes 30.53 seconds and sPCA-rSVD 34.79 seconds to con-
verge.

5. SUMMARY

SG-PCA algorithm designs a scalable distribution-
specific methodology for the purpose of unsupervised low-
rank and sparse data representation, such that PCA is both
rectified in theory and accurate to exponential family distri-
butions beyond Gaussianity. Missing values are taken into
consideration with almost no cost to computation efficiency.
Nesterov’s second accelerated gradient method as well as
line search are incorporated for faster optimization espe-
cially under circumstances where theoretical maximal step
size is not calculable. A progressive screening strategy is
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employed to alleviate the greedy nature of sharp dimen-
sion reduction, while enhancing the scalability. Although
the canonical link function is favored throughout the paper
for its convenience, non-canonical links can also be handled
with the same surrogate function technique, as long as the
inverse link functions are differentiable.

However, the convenience of masking the missing values
is based upon the assumption that the observations are inde-
pendent given the missing indices. In fact, the whole model
depends on the conditional independence assumption among
the observations—apart from the association made possible
by the low-rank projection of the multivariate data matrix.
Such an assumption coincides with that of the regular PCA,
but it is obviously an over-simplification of reality. An imme-
diate extension is to corporate association structure into for-
mulating the model, capturing correlation among the non-
Gaussian covariates.
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