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BIG-SIR a Sliced Inverse Regression approach for
massive data
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In a massive data setting, we focus on a semiparametric
regression model involving a real dependent variable Y and
a p-dimensional covariate X (with p ≥ 1). This model in-
cludes a dimension reduction of X via an index X ′β. The
Effective Dimension Reduction (EDR) direction β cannot
be directly estimated by the Sliced Inverse Regression (SIR)
method due to the large volume of the data. To deal with the
main challenges of analyzing massive data sets which are the
storage and computational efficiency, we propose a new SIR
estimator of the EDR direction by following the “divide and
conquer” strategy. The data is divided into subsets. EDR di-
rections are estimated in each subset which is a small data
set. The recombination step is based on the optimization of
a criterion which assesses the proximity between the EDR
directions of each subset. Computations are run in parallel
with no communication among them.

The consistency of our estimator is established and its
asymptotic distribution is given. Extensions to multiple in-
dices models, q-dimensional response variable and/or SIRα-
based methods are also discussed. A simulation study using
our edrGraphicalTools R package shows that our approach
enables us to reduce the computation time and conquer the
memory constraint problem posed by massive data sets. A
combination of foreach and bigmemory R packages are ex-
ploited to offer efficiency of execution in both speed and
memory. Results are visualized using the bin-summarise-
smooth approach through the bigvis R package. Finally,
we illustrate our proposed approach on a massive airline
data set.

Keywords and phrases: High performance computing,
Effective Dimension Reduction (EDR), Parallel program-
ming, R software, Sliced Inverse Regression (SIR).

1. INTRODUCTION

Regression analysis studies the relationship between a re-
sponse variable Y and a covariate X. In parametric regres-
sion, the link function is a simple algebraic function of X,
and least squares or maximum likelihood methods (among
others) can be applied in order to find the best global fit. In
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nonparametric regression, the class of fitted functions is en-
larged in order to obtain greater flexibility via sophisticated
smoothing procedures (such as kernel or smoothing splines
methods). However as the dimension p of the covariate X
becomes large, increased difficulties in modeling are often
encountered. This is the well-known curse of dimensional-
ity. One way to overcome this problem is to use dimension
reduction techniques which aim at replacing X with a pro-
jection onto a smaller dimensional subspace.

In the framework of high dimensional data, the following
semiparametric dimension reduction single index model has
been proposed by Duan and Li [17]:

(1) Y = f(X ′β, ε),

where the univariate response variable Y is linked with the
p-dimensional regressor X (with expectation E(X) = μ and
covariance matrix V(X) = Σ) only through the single in-
dex X ′β. The error term ε is independent of X. The link
function f and the vector β are unknown. Since β is not
totally identifiable in this model, we are interested in find-
ing the linear subspace spanned by β, called the Effective
Dimension Reduction (EDR) space.

Li [31] introduced Sliced Inverse Regression (SIR) which
is a computationally simple and fast method to estimate the
EDR space without assuming neither the functional form of
f nor the distribution of ε. This method is based on some
properties of the conditional distribution of X given Y and
exploits a property of the first inverse moment E(X|Y ); see
for instance Duan and Li [17], Carroll and Li [7], Hsing and
Carroll [27], Zhu and Ng [50], Kötter [29], Saracco [38, 39],
Aragon and Saracco [3], Bura and Cook [6] or Gather et al.
[23] among others.

In this paper we focus on massive data sets, that is, the
size of the data is large and analyzing it takes a significant
amount of time and computer memory. Emerson & Kane
[18] consider a data set large if it exceeds 20% of the RAM
(Random Access Memory) on a given machine, and massive
if it exceeds 50%. While SIR is a computationally simple
and fast method, the current version implemented in our
edrGraphicalTools [15] R package cannot directly handle
massive data sets.

To tackle the analysis of massive data sets through the
SIR approach, we introduce a new SIR estimator. The main
idea follows the “divide and conquer” principle (also called
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“divide and recombine” [25, 46]) by processing the data by
chunks (blocks) and combining/aggregating the results (see
e.g., [11, 33]). The aggregation step is based on the optimiza-
tion of a criterion which assesses the proximity between the
EDR directions of each block. This optimization problem
is similar to the one exploited by Chavent at al. [8] in a
data stream context. Our new SIR (denoted BIG-SIR) esti-
mator can easily handle massive data sets by using parallel
computing as there is no dependency between parallel tasks
and only the storage of the EDR directions in each chunk is
required to get the final estimator.

This BIG-SIR estimator can be easily implemented using
R software through our edrGraphicalTools package. We
exploit the latest development in R for dealing with massive
data sets exceeding available computer memory ([28, 45]).
As recommended by Kane et al. ([28]) a combination of the
foreach [1] and bigmemory [28] packages offers efficiency of
execution in both speed and memory.

Finally, the link function between the variable of interest
and the common estimated index can be first nonparametri-
cally estimated with any smooth method, and subsequently
parametrically modeled if necessary. However, this task is
still not straightforward in the massive data set setting.
Lumley [37] developed the R package biglm which offers the
possibility to fit a linear generalized model. More recently,
Wood et al. [49] proposed the bam function from the mvcv

R package to perform generalized additive models for large
data sets. In this work, we use a bin-summarise-smooth ap-
proach developed by Wickham [47] and available through
the R package bigvis [48] which enables us to visualize and
display an estimation of the link function in the massive
data set setting.

The remainder of the paper is structured as follows: in
Section 2, after a brief review on SIR, we introduce our BIG-
SIR estimator for massive data. Both population and sample
versions are described. Several extensions of this approach
are presented in Section 3: (i) multiple indices models; (ii)
symmetric dependent models; (iii) models with a multivari-
ate response variable. A simulation study is carried out in
Section 4 in order to illustrate the behavior of our estima-
tor and to compare it to classical SIR. Different strategies
are compared using parallel computing and a memory map-
ping approach. R code is presented through the simulation
section and results are visualized using the bin-summarise-
smooth approach through the bigvis R package. In section
5, we illustrate the proposed BIG-SIR approach on a mas-
sive airline data set.

2. AN SIR ESTIMATOR FOR MASSIVE
DATA: BIG-SIR

Let us first recall in Section 2.1 the population and sam-
ple versions of SIR based on the whole data set. Then, the
population and sample versions of our BIG-SIR estimator
for massive data are presented in Section 2.2.

2.1 Brief review of usual SIR

Inverse regression step The basic principle of the SIR
method is to reverse the role of Y and X, that is, instead
of regressing the univariate variable Y on the multivariate
variable X, the covariate X is regressed on the response
variable Y . The price we have to pay in order to succeed
in inverting the role of X and Y is an additional assump-
tion on the distribution of X, named the linearity condition
(described hereafter).

Usual SIR estimate is based on the first moment E(X|Y ).
It has been initially introduced by Duan and Li [17] for the
single index model and by Li [31] for the multiple indices
model.

Recall now the geometric property on which SIR is based.
Let us introduce the linearity condition (LC):

∀θ ∈ R
p,E(X ′θ|X ′β) is linear in X ′β.(2)

Note that this condition is satisfied when X is elliptically
distributed (for instance normally distributed). The reader
can find an interesting discussion on this linearity condition
in [10].

Assuming model (1) and (LC), Li [31] showed that the
centered inverse regression curve is contained in the linear
subspace spanned by Σβ. Let T denote a monotonic trans-
formation of Y . He considered the eigendecomposition of
the Σ-symmetric matrix Σ−1M where M = V(E(X|T (Y ))).
Straightforwardly the eigenvector u of Σ−1M associated
with the non-null eigenvalue is an EDR direction (i.e., is
collinear with β). The vector u is Σ-normalized. Let us de-
fine b the Ip-normalized version of u as b = u/||u|| with
||u||2 = u′u.

Slicing step To easily estimate the matrix M , Li [31] pro-
posed a transformation T , called a slicing, which categorizes
the response Y into a new response. The support of Y is
partitioned into H non-overlapping slices s1, . . . , sh, . . . , sH .
With such a transformation T , the matrix of interest M can
be now written as M =

∑H
h=1 ph(mh − μ)(mh − μ)′ where

ph = P(Y ∈ sh) and mh = E(X|Y ∈ sh).

Estimation process When a sample {(Xi, Yi), i = 1, . . . , n}
is available, matrices Σ and M are estimated by substitut-
ing empirical versions of the moments for their theoretical
counterparts. Let

M̂ =
H∑

h=1

p̂h(m̂h − μ̂)(m̂h − μ̂)′,(3)

where p̂h = 1
n

∑n
i=1 I[Yi ∈ sh] and m̂h = 1

np̂h

∑n
i=1 XiI[Yi ∈

sh]. Therefore the estimated EDR direction û is the eigen-

vector associated with the largest eigenvalue of Σ̂−1M̂ . Let
us highlight that Σ̂ is assumed to be invertible which implies
that n > p. The vector û is Σ̂-normalized. Let us define b̂
the Ip-normalized version of û as b̂ = û/||û||. Convergence
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at rate
√
n and asymptotic normality of estimated EDR di-

rection have been obtained, see [31, 38] for instance.
The choice of the slicing T is discussed in [30, 31, 40]

but, theoretically, there is no optimal one. In practice, we
fix the number of observations per slice to �n/H� where �a�
stands for the integer part of a. If the sample size n is not
proportional to the number H of slices, some slices will then
contain �n/H�+ 1 observations.

Standardized version for SIR Another way to obtain a ba-
sis of the EDR space is to consider the eigendecomposi-
tion of Σ−1/2M∗Σ−1/2, that is the eigendecomposition of
M∗ = V(E(Z|T (Y )) where Z = Σ−1/2(X − μ) is the stan-
dardized version of the covariate X. Define η as the eigen-
vector of the Ip-symmetric matrix M∗ associated with the
largest eigenvalue. Transforming back to the original scale,
the vector Σ−1/2η is an EDR direction. The estimation pro-
cedure is a straightforward replication of the previous esti-
mation process using M̂∗ = Σ̂−1/2M̂ Σ̂−1/2.

Computational complexity and data storage The computa-
tional complexity of SIR is of order p2(n + p) (denoted as
O(p2(n+p)) hereafter). The first term (np2) corresponds to

the cost of computing the empirical covariance matrix Σ̂, the
second term (p3) is the cost for computing the matrix Σ̂−1M̂
and its eigendecomposition. SIR requires the storage of the
whole matrix of regressors which corresponds to O(np). This
is clearly problematic in a massive data set setting.

2.2 Population and sample version of
BIG-SIR

Our proposed BIG-SIR estimator deals with the issue of
analyzing massive data sets which exceed 50% of the RAM
or cannot be loaded in a single computer. BIG-SIR is based
on the divide and recombine (D&R) principle (also called
divide and conquer) which consists in: (i) divide the massive
data set into G chunks (blocks); (ii) apply the usual SIR
estimator on each block separately; (iii) combine the EDR
directions from each block to get a solution to the full data.
Define b1, . . . , bg, . . . , bG the EDR directions obtained from
each block. We exploit the same idea as in Chavent et al. [8]
to aggregate the EDR directions by recovering the direction
“most collinear” with the vectors b1, . . . , bG. Noting that the
collinearity between two unit vectors a and b is measured
by m(a, b) = cos2(a, b) = (a′b)2, the following optimization
problem is proposed:

(4) max
a∈�p

G∑
g=1

wgm(bg, a) s.t. ||a|| = 1.

where the wg’s are positive weights such that
∑G

g=1 wg =
1. These weights allow the algorithm to take into account
different block sizes.

Theorem 2.1. (i) The solution vG ∈ �p of the maximiza-
tion problem (4) is the normalized principal eigenvector of

(5) MG =
G∑

g=1

wgbgb
′
g

associated to the largest eigenvalue
∑G

g=1 wgm(bg, vG).
(ii) Under the linearity condition (LC) and model (1) for
each block g, vG is an EDR direction.

The proof is similar to the one offered by Chavent et al.
[8] in a data stream context (see Appendix of [8]). Note
that their optimization problem takes into account the pos-
sible evolution of the parametric part of the semiparametric
model in each block. We adopt a different setting by as-
suming the same model in each block. In this context, our
matrix of interest is similar to the one proposed in the SIR
approach for a stratified population developed by Chavent
et al. [9].

Sample version of BIG-SIR For g = 1, . . . , G, let us denote
by b̂g the estimator of the EDR direction calculated on each
block G. The estimator v̂G of the EDR direction vG with the
BIG-SIR approach is the principal eigenvector of the p × p
matrix defined as

(6) M̂G =
G∑

g=1

wg b̂g b̂
′
g

where wg =
ng∑G

g=1 ng
for g = 1, . . . , G. I.e., we take as weights

the relative size of the block g. The most natural way is
to divide the data set into blocks with equal sample size
(ng = n/G). Convergence at rate

√
n and the asymptotic

normality of estimated EDR direction have been obtained,
see Chavent et al. [8].

Computational complexity and data storage The computa-
tional complexity of BIG-SIR is given by:

O
(
G

( n

G
p2

)
+Gp2 +Gp3

)
= O

(
np2 +Gp2 +Gp3

)
,

where O(np2) corresponds to the cost of computing the em-

pirical covariance matrices Σ̂ in each block g, O(Gp2) repre-

sents the calculation of the matrix M̂G and O(Gp3) stands
for the cost of the eigendecompositions. The computational
complexity of BIG-SIR is greater than SIR. However, BIG-
SIR can handle massive data sets as the method could be
performed in a parallel computing environment. Then, each
cluster requires the storage of only a subset of the matrix of
regressors which corresponds to O((n/G)p). The final com-
putation of the estimated EDR direction by BIG-SIR re-
quires only the storage of the G EDR directions computed
on each cluster.

3. SOME EXTENSIONS OF THE
PROPOSED APPROACH

We suggest some possible extensions of the proposed ap-
proach. The first one concerns the case of a multiple indices
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model. In the second one, we suggest to use an SIRα-based
approach rather than classical SIR. The last extension in-
vestigates the case when the dependent variable Y is multi-
variate.

3.1 Extension to multiple indices models

This first extension is similar to the one we have proposed
in a data stream setting (see Chavent et al. [8]). We present
in the following, the main idea and procedure. The response
variable Y is related to the p-dimensional quantitative re-
gressor X (with E(X) = μ and V(X) = Σ) only through the
K indices X ′βk:

Y = h(X ′β1, . . . , X
′βK , ε).(7)

As in the single index model, the error term ε is independent
of X and the link function h is unknown. In other words, Y
and X are independent conditionally on (X ′β1, . . . , X

′βK).
In this multiple indices model, we search for a basis that
spans theK-dimensional EDR space E = Span(β1, . . . , βK).
As for the single index model, we will seek, using SIR,
for a basis of the EDR space for each block. In order
to get theoretical results, we need to adapt the linearity
condition and we now assume that for any θ ∈ R

p we
have

(LC’) E(X ′θ|X ′β1, . . . , X
′βK) is linear in X ′β1, . . . , X

′βK .

For each block g, the eigenvectors u1,g, . . . , uK,g associ-
ated with the largest K eigenvalues of the matrix Σ−1Mg

are EDR directions, where the matrix Mg corresponds to
the matrix, M , for the g-th chunk (block). Note that the
number H of slices for each block must be greater than K
in order to avoid artificial dimension reduction. Let us de-
fine the matrix Ug = [u1,g, . . . , uK,g] containing these EDR
directions which form a Σ-orthogonal basis of E. Then the
first K eigenvectors, b1,g, . . . , bK,g of the matrix UgU

′
g form

an Ip-orthonormal basis of E. We store them in the p ×K
matrix Bg = [b1,g, . . . , bK,g].

Population and sample version of BIG-SIR For K > 1,
the optimization problem (4) requires some modifications.
Direction bg is replaced by an Ip-orthonormal basis Bg of the
EDR space and the proximity measure between two linear
subspaces spanned by Bg and Bl from the blocks g and l is
defined by:

m(Bg,Bl) =
Trace(PgPl)

K
,

where Pt = Bt(B
′
tBt)

−1
B
′
t is the Ip-orthogonal projector

onto Span(Bt), the EDR space obtained from block t (equal
to g or l). This measure takes its values in [0,1]. Note that
m(Bg,Bl) = 1 when Span(Bg)=Span(Bl). The closer this
measure to one, the closer is the linear subspace Span(Bg)
is to the linear subspace Span(Bl).

Let A be a p × K matrix such that A
′
A = IK . Now

define Q(A,B1, . . . ,BG) to be the proximity measure be-
tween the linear subspace Span(A) and the EDR spaces

Span(B1),. . .,Span(BG) respectively obtained from the G
blocks:

Q(A,B1, . . . ,BG) =
G∑

g=1

wgm(A,Bg),

where the wg’s are positive weights such that
∑G

g=1 wg =
1. This measure takes its values in [0,1]. Note that
Q(A,B1, . . . ,BG) = 1 when Span(A) = Span(Bg) = . . . =
Span(BG). The closer this measure to one, the closer is the
linear subspace Span(A) is to all the G linear subspaces
Span(Bg), g = 1, . . . , G.

The maximization problem for the multiple indices model
is defined as

(8) max
A

Q(A,B1, . . . ,BG) s.t. A′
A = IK .

Theorem 3.1. (i) The solution VG = [v1,G, . . . , vK,G] of
the maximization problem (8) is an Ip-orthonormal basis of
the K-dimensional eigenspace associated with the K largest
eigenvalues λ1, . . . , λK of the p× p matrix

(9) MG =
G∑

g=1

wg

BgB
′
g

K
.

Moreover Q(VG,B1, . . . ,BG) = λ1 + . . .+ λK .
(ii) Under the linearity condition (LC’) and model (7), the
column vectors of VG form an Ip-orthonormal basis of the
EDR space E.

The proof is similar to the one offered by Chavent et al.
[8] in a data stream context (see Appendix of [8]).

Sample version of BIG-SIR For each block g, using the cor-
responding sample, a Σ̂-orthogonal basis of the EDR space
is first estimated with SIR. The basis vectors are stored in
the matrix Ûg. Then the first K eigenvectors of the matrix

ÛgÛ
′
g are computed and stored in the matrix B̂g. They form

an Ip-orthogonal basis of the estimated EDR space. Finally
the estimator of MG is constructed as follows:

M̂G =

G∑
g=1

wg

B̂gB̂
′
g

K
.

TheK eigenvectors associated with theK major eigenvalues
of this matrix M̂G, denoted by V̂G = [v̂1,G, . . . , v̂K,G] provide

an Ip-basis of the estimated EDR space denoted Ê. The
convergence at rate

√
n and the asymptotic normality of

estimated EDR directions can be obtained as in Chavent et
al. [8].

Choice of dimension K In most applications the number of
indices, K, is a priori unknown and hence must be estimated
from the data. Several approaches have been proposed in the
literature for SIR. Some approaches are based on hypothesis
tests on the nullity of the last (p − K) eigenvalues, see Li
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[31], Schott [42] or Barrios and Velilla [5]. Another approach
relies on a quality measure based on the square trace corre-
lation between the true EDR space and its estimate, see for
instance Ferré [19] or Liquet and Saracco [35] for a graphical
bootstrap based approach.
In the massive data set context, under assumption (LC’), the
dimension K is common to all the blocks since it is assumed
that the underlying model in each block relies on the same
EDR space E. From the theoretical point of view, it can
thus be estimated from any block or from any combinations
of blocks. From the practical point of view, we recommend
choosing the dimension K using classical SIR in one block
chosen randomly.

3.2 Extension to SIRα

The proposed method described in Section 2.1 is based
on SIR, also named SIR-I, which relies on a geometric prop-
erty of the conditional expectation (first moment) ofX given
T (Y ). Cook and Weisberg [12] exhibited a pathological case
for SIR-I; they showed that SIR-I is “blind” for “symmet-
ric dependencies”. Then, several methods based on higher
inverse conditional moment have been proposed in the liter-
ature. For instance, Li [31] introduced the SIR-II approach
relying on a property of V(X|T (Y )), and Cook and Weis-
berg [12] developed the sliced average variance estimator
(SAVE) approach, see also Cook [13]. In order to conjugate
information from SIR-I and SIR-II approaches and for in-
creasing the chance of discovering all the EDR directions,
Li [31] proposed the SIRα method which is a suitable com-
bination of the matrices of interest of these methods. Note
that SAVE can be viewed as a particular case of SIRα when
α = 0.5.

An additional condition (called the constant variance as-
sumption) is necessary for the consistency of the SIR-II,
SAVE and SIRα methods. For a multiple indices model, this
assumption is written as follows:

(CV) V(X|X ′β1, . . . , X
′βK) is non-random.

Note that the (LC’) and (CV) conditions are satisfied when
X has a multivariate normal distribution.

Let us give now a brief overview of the SIR-II and
SIRα approaches. The SIR-II matrix of interest is defined
by MII = E

{
(V − E(V )) Σ−1 (V − E(V ))

′}
where V =

V(X|T (Y )). Under model (7) and the (LC’) and (CV) as-
sumptions, it can be shown that the eigenvectors associ-
ated with the largest K eigenvalues of Σ−1MII are some
EDR directions. In SIRα approach, the eigendecomposi-
tion of the matrix Σ−1Mα where α ∈ [0, 1] and Mα =
(1 − α)MIΣ

−1MI + αMII . It can also be proved that the
eigenvectors associated with the largest K eigenvalues of
Σ−1Mα are some EDR directions, see Li [31]. Let us remark
that, when α = 0 (resp. α = 1), SIRα is equivalent to SIR-I
(resp. SIR-II).

When transformation T is a slicing which parti-
tions the support of Y into H > K non-overlapping

slices sh, the matrix MII is now written as MII =∑H
h=1 ph

(
Vh − V

)
Σ−1

(
Vh − V

)
, where Vh = V(X|Y ∈ sh)

and V =
H∑

h=1

phVh. It is straightforward to estimate the

matrices MII and Mα by substituting empirical versions of
the moments for their theoretical counterparts, and there-
fore to obtain the estimation of the EDR directions. Each
estimated EDR direction converges to an EDR direction at√
n rate when the corresponding eigenvalues are assumed to

be distinct, see for instance Li [31] or Saracco [40]. Asymp-
totic normality of the SIRα estimates has been studied by
Gannoun and Saracco [21].

An extension of the proposed approach is to replace the
SIR-I estimators of the EDR directions by the corresponding
SIRα ones in the population and sample versions. Then,
the corresponding version will be insensitive to symmetric
dependence in the model for a good choice of α.

Choice of α The practical choice of α can be based on
hypothesis test approach (see Saracco [40]) or on cross-
validation criterion (see Gannoun and Saracco [22]). A
graphical bootstrap based approach has also been developed
by Liquet and Saracco [35] in order to select simultaneously
the couple (α,K).

3.3 Extension to a multivariate dependent
variable Y

Several authors (see for instance Aragon, [2], Hsing [26],
Li et al., [32], Lue, [36]) extended the univariate model
(1) to a multivariate response variable: Y is assumed to
be q-dimensional with q > 1, the corresponding link func-
tion is then Rq-valued. A few methods based on SIR-I ap-
proach have been developed in this multivariate context.
Saracco [41] and Barreda et al. [4] focused on some exten-
sions of the existing multivariate SIR approaches relying on
the SIRα method. Straightforwardly, we can extend our pro-
posed method to this multivariate framework. The idea is to
use a multivariate SIR method rather than SIR-I in order to
get an EDR basis for each block g. As in Liquet and Saracco
[34], we suggest to use the PMSα approach which is a Pooled
Marginal Slicing method based on SIRα; see Saracco [41] for
details. An alternative is to use the recent multivariate SIR
(MSIR) approach proposed by Coudret et al. [14] for es-
timating the K-dimensional EDR space which is common
to the q components of the multivariate response variable.
Similarly to the pooled marginal slicing (PMS), MSIR relies
on the univariate version of SIR, applied to each component
of Y . An advantage of MSIR is to offer a way to cluster
components of Y related to the same EDR space.

4. SIMULATION STUDIES

In this section we use R to carry out simulation studies
in order to illustrate the numerical behaviour of the new
proposed approach. Some of the code is presented through
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this section for the purpose of highlighting the simplicity of
the implementation for analyzing massive data sets with a
semiparametric model through R software [44]. The experi-
ments have been conducted using a laptop with a 2.53 GHz
processor and 8 GB of memory.

First we introduce in section 4.1 two simulated models:
a single index model (K = 1) and a multiple indices model
(K = 2) with some symmetric dependence. Numerical re-
sults are presented in section 4.2 by comparing and investi-
gating the quality and the running time of our new BIG-SIR
approaches compared to traditional SIR approaches per-
formed without dividing the whole data set. Different com-
putational strategies for performing our BIG-SIR estimator
are presented and compared to speed-up the computational
task.

4.1 Simulated models

In this simulation study, two semiparametric regression
models are considered:

(10) Y =
4

10
(X ′β)3 + ε,

and

(11) Y = (X ′β1)
2 + (X ′β2)

2 + ε,

where X follows the p-dimensional normal distribution
Np(0p,Σ) with a covariance matrix Σ arbitrarily chosen as
follows: a matrix A is randomly filled using the uniform dis-
tribution on [−1, 1], then Σ = AA′ + Ip in order to avoid
possible problems of inversion of Σ. The error term ε fol-
lows the normal distribution N (0, σ2) and is independent
of X. Model (10) is a single index model while model (11)
is a multiple indices model presenting a symmetric depen-
dence. We set p = 10, β = β1 = (1,−1, 2,−2, 0, . . . , 0)′/

√
10,

β2 = (0, . . . , 0, 1,−1, 2,−2)′/
√
10 and σ =

√
2. Figure 1

presents the link functions and the scatterplots of the true
index (indices) versus Y for models (10) and (11) using a
small data set of n = 500 observations.

The EDR direction of model (10) is estimated through
SIR-I approach while the EDR space of model (11) is esti-
mated with SIR-II approach as the model includes a sym-
metric dependence. Our edrGraphicalTools R package can
handle the estimation of both models providing estimation
of the EDR space in the first step and nonparametric estima-
tion of the link functions in a second step. As an illustration,
synthetic R code is presented in the following for estimating
model (11):

R> model.11 <- edr(Y,X,H=8,K=2,method="SIR-II")

R> plot(model.11)

The proximity measure m defined in section 3.1 evaluates
the quality of the estimated EDR space. Recall that this
measure belongs to [0, 1]. The closer this value is to one, the
better is the estimation. When K = 1 (single index model),

Figure 1. Link functions and scatterplots of the true index
X ′β (respectively true indices X ′β1 and X ′β2) versus Y for
model (10), on the top, and (11), at the bottom, using a

small data set of n = 500 observations.

this measure is the squared cosine between the true EDR
direction and the estimated one. As an example, we obtain
for a sample size of n = 500 a quality measure equals to 0.93
for SIR-I approach on model (10) and a quality measure
equals to 0.76 for SIR-II approach on model (11).

4.2 Numerical results

Let us now consider a massive data set framework by sim-
ulating large sample size data sets consuming a lot of mem-
ory in the R statistical programming environment. First, for
each model, numerical results obtained with traditional SIR
and BIG-SIR approaches are compared using the quality
measure m. Then, we focus on different strategies to speed-
up the computation of BIG-SIR. The running time of these
strategies is investigated and compared to a traditional SIR
analysis when the whole data set can still be loaded into
memory in the R statistical programming environment. Fi-
nally, the estimation and the visualisation of the link func-
tion is discussed.

4.2.1 Comparison of SIR and BIG-SIR approaches

SIR approaches for the whole data set are compared to
our “divide and conquer” BIG-SIR approaches through the
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Figure 2. Boxplots of the quality measures between the true
EDR direction and the EDR directions estimated with SIR

and BIG-SIR for different chunk sizes for various sample size.
Results for single index model on top panel and results for

multiple indices model on bottom panel.

quality measure m for various sample sizes n ∈ {103, 5 ×
103, 104, 5×104, 105, 106, 107} corresponding respectively to
storage requirements of approximately 86 GB, 430 GB,
860 GB, 4 MB, 8 MB, 84 MB, 840 MB, for the full data
set. In this simulation, we use different number of chunks
(blocks) G ∈ {10, 20, 50, 100}. For each model, M = 500
data replications of data sets are generated as previously.
Figure 2 shows some boxplots of the quality measure of the
corresponding estimated EDR directions for different sam-
ple sizes.

Not surprisingly, the quality measure increases with the
sample size. While, as expected, the SIR approaches appear
to provide slightly better results than BIG-SIR, it is evi-
dent that as the sample size increases, BIG-SIR performs
effectively just as well. But, as mentioned previously, the
disadvantage of the SIR approaches is in the requirement
of the storage of the big data set which is problematic for
massive data sets. BIG-SIR methods overcome this issue by
keeping only the estimated EDR directions of each chunk
(block) in memory, which is an interesting gain in storage.
The price to pay is a small loss of quality in the estima-
tion of the EDR directions. However, this loss is generally

insignificant for data sets with a sample size of more than
50,000 observations. Note that for higher sample sizes the
quality measures in both cases are very close to 1, hence we
do not present those results.

4.2.2 Computing strategies and running time

Here we focus on different strategies for computing in the
most efficient way our BIG-SIR estimators. The following
strategies are investigated:

1. Using loops: (i) load the whole data set into R; (ii) split
the data set into G subsets; (iii) apply the SIR ap-
proach on each subset in a sequential way using a loop;
(iv) combine the G EDR directions to get the final es-
timator.

2. foreach: (i) load the whole data set into R; (ii) split the
data set into G subsets; (iii) apply SIR on each subset
using the foreach package for running in parallel the G
EDR estimations. (iv) combine the G EDR directions
to get the final estimator.

3. Combining bigmemory and foreach: (i) use memory-
mapped files (called “filebacking”) through the
bigmemory package to allow matrices to exceed the
RAM size. The creation of the filebacking avoids sig-
nificant memory overhead. A big.matrix is created
which supports the use of shared memory for efficiency
in parallel computing. (ii) combine it using the foreach
strategy to implement the parallel computation of the
G EDR directions. (iii) combine the G EDR directions
to get the final estimator.

The running time (in seconds) of these different strate-
gies are now compared against the SIR approaches on
the whole data set. From model (10), M = 50 data
sets are generated for various values of the sample size
(n ∈ {5 × 105, 106, 5 × 106, 107}), the dimension p ∈
{5, 10, 20, 30, 50, 80} of the covariate X and the number G
of chunks (G ∈ {10, 50, 100, 150, 500}) required for BIG-
SIR estimator. Figure 3 presents the computational times
measured for SIR and all BIG-SIR strategies. The parallel
strategies utilize four processor cores.

As expected, we can clearly observe in Figure 3 that the
BIG-SIR approaches outperforms SIR for large and mas-
sive data sets (>200 MB). The combination of bigmemory
and foreach for computing BIG-SIR appears to be the best
strategies for large and massive data sets irrespective of the
number of chunks. This has a small effect on the running
time for massive data set. Moreover, only this strategy can
scale past the size of available RAM by using bigmemory

to manage big matrix data which allows parallel workers to
receive descriptors of a big matrix data and then to attach
to a big.matrix object, rather than transmitting the data
for an entire big matrix (see [28]). The R code to imple-
ment BIG-SIR for analyzing model (10) through the com-
bination of bigmemory and foreach is presented in the Ap-
pendix.

BIG-SIR a Sliced Inverse Regression approach for massive data 515



Figure 3. Mean of the running time (over 50 replications) for
SIR and 3 strategies to compute BIG-sir (“loop”, “foreach”,
“Bigmemory+foreach”) for various values of n, G and p. Top

panel: n ∈ {5× 105, 106, 5× 106, 107} for fixed G = 10
chunks and p = 10. Middle panel: G ∈ {10, 50, 100, 150, 500}

for fixed n = 107 and p = 10. Bottom panel:
p ∈ {5, 10, 20, 30, 50, 80} for fixed n = 106 and G = 10.

4.2.3 Visualisation of BIG-SIR outputs

In a first step, BIG-SIR approaches provide an estimation
of the true EDR space which are used to construct the K
estimated indices. In a second step, the link function could
be estimated non-parametrically through any smooth meth-
ods [24] based on the K-estimated indices and the response
variable Y . While our BIG-SIR approach overcomes the big-
data challenge associated with estimation of the EDR space,
the problem of estimating the link function in a big-data set-
ting now needs to be tackled. Non-parametric (or paramet-
ric) approaches should need to deal with a n× (K + 1) big
matrix including the response variable and the K indices.
The function bigglm from the R package biglm [37] offer the
possibility to fit generalized linear model on a bigmatrix ob-
ject. A smooth approach [49] has been recently implemented
with the bam function from the mcv R package.

We adopt here the bin-summarise-smooth approach de-
veloped by Wickham [46] which can also been combine with
foreach and bigmemory packages for computationally effi-
ciency. The bigvis [48] R package condenses the large raw
data to a summary on the same order of size as pixels on
the screen by binning and summarising steps. Then, the
smoothing step of the condensed data is fast and loses little
statistical strength. As an illustration, the following syn-
thetic R code presents a visualisation of the BIG-SIR out-
puts for data with n = 107 observations (occupying around
800 MB) from model (11):

R> result <-condense(bin(BIGsir[,2],0.1),

+ bin(BIGsir[,3],0.1), z = BIGsir[,1],

+ summary="mean")

R> autoplot(result)

where BIGsir is a bigmatrix object containing the response
variable and the two estimated indices obtained from BIG-
SIR approach. Figure 4 (middle) presents the average on the
response variable (colour) as a function of the two indices.
From this condensed object, we present in Figure 4 (top)
a smooth estimation of the link function through a local
quadratic regression method (loess) which can be compared
to the true simulated model represented in Figure 1 (bot-
tom). Note that we obtain a quality measure equal to 0.99
for this example. Regarding the model (10) with n = 107 ob-
servations the results of the estimation of the link function
of model (10) by a kernel weighted local regression are pre-
sented in the bottom of Figure 4. Combination of the BIG-
SIR approach and bin-summarise-smooth approach enables
us to unravel the relationship between the response variable
and the covariates (see true relation presented in the top of
Figure 1).

5. REAL DATA ANALYSIS

We apply the proposed BIG-SIR approach on the air-
line on-time performance data from the 2009 ASA Data
Expo (http://stat-computing.org/dataexpo). This data set
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Figure 4. Model (11): Smooth estimate of the link function
and scatterplot (on the top) of the estimated indices versus
the mean of Y after condensing the results of BIG-SIR by
using binning and summarizing approach (in the middle).
Model (10): Estimation of the link function with a kernel
weighted local regression and scatterplot of the estimated
index versus the mean of Y after condensing the results of
BIG-SIR by using binning and summarizing approach (at the

bottom).

is used as an example to illustrate the estimation of the
considered semiparametric regression model when deal-
ing with a massive data set that exceeds the RAM of
a single computer. The data are publicly available and
have been used for demonstration with massive data by
Kane et al. (2013) [28]. It consists of flight arrival and
departure details for all commercial flights within the
USA, from October 1987 to April 2008. About 12 mil-

lion flights were recorded with 29 variables. A compressed
version of the pre-processed data set from the bigmemory
project (http://data.jstatsoft.org/v55/i14/Airline.tar.bz2)
is approximately 1.7 GB, and it takes 12 GB when uncom-
pressed. This data set has been presented as a case study in
[45] for performing a logistic regression to explain the late
arrival given 4 explanatory variables: departure time (binary
coding with 1 for night departure); week end (1 if departure
occurred on weekends); departure hour and distance from
origin to destination.

We propose to analyse using the model (1) the mag-
nitude of delays (response variable) given the following
10 covariates: delay at departure, departure time (bi-
nary coding with 1 for night departure); week end (1
if departure occurred on weekends); departure hour (in
minutes); arrival hour (in minutes); distance from ori-
gin to destination (miles); air time (in minutes); Taxi in
time (minutes); Taxi out time (minutes) and age of the
plane. A full description on the variables can be found
in http://www.transtats.bts.gov/Fields.asp?Table ID=236.
After pre-processing the data set (using bigmemory and
foreach packages) by removing missing values, negative val-
ues for air time variable and create the new variable “Age
of the plane”, the data set contains 84,183,043 observations
for the response variable “Delay at arrival” and the 10 co-
variates. The dimension K of the EDR space E has been
determined by considering a full SIR approach on a random
sample of n = 50,000 observations. Figure 5 shows the scree
plot of the eigenvalues associated to the estimated indices
from the subset of observations. This plot suggests to choose
a single index model (K = 1). In this illustration, we used
G = 45 groups to compute our BIG-SIR estimator. The es-
timated EDR direction v̂G (corresponding to the coefficients
of the linear combination of the covariates in the estimated
EDR index) is equal to:

DepDelay Night Weekend DepMin

-0.419 -0.532 0.426 -0.00206

ArrMin Distance AirTime TaxiIn

-0.00111 0.0212 -0.169 -0.348

TaxiOut Age

-0.457 -0.000346

We used the same strategy as presented in section 4.2.3 to
visualize and estimate the link function between “delay at
arrival” and the estimated index (see Figure 6). This plot
suggests a linear relationship between the response variable
and the estimated index X ′v̂G. One can also visualize the
scatterplot of “delay at arrival” versus the estimated index
for a smaller random sample of size n = 60,000 observations
for example. Since we observe a linear decreasing link func-
tion between “delay at arrival” and the estimated index, it is
relevant to interpret the coefficients of the estimated EDR
direction v̂G using their signs. For instance, as the “delay
at departure” has a negative coefficient (−0.419), it means
that an increase in “delay at departure” implies a decrease of

BIG-SIR a Sliced Inverse Regression approach for massive data 517

http://data.jstatsoft.org/v55/i14/Airline.tar.bz2
http://www.transtats.bts.gov/Fields.asp?Table_ID=236


Figure 5. Eigenvalue scree plot of SIR model estimated on a
random sample of n = 50,000 observations.

the estimated index and this then implies (not surprisingly)
an increase of “delay at arrival”. Similarly, “night depar-
ture” (negative coefficient) increases the “delay at arrival”
while “week end departure” (positive coefficient) decreases
the “delay at arrival”. All other covariates (negative coeffi-
cients), except “Distance” (positive coefficient), impact neg-
atively the “delay at arrival”.

6. CONCLUDING REMARKS

In this paper, a new SIR estimator which we call, BIG-
SIR, has been introduced for analyzing massive data sets
through a semiparametric model. Exploiting the “divide
and conquer” principle, BIG-SIR can handle the analysis
of big data since SIR approach is a computationally very
fast method in each chunk. The BIG-SIR estimator exhibits
good theoretical properties. Its performance has been high-
lighted through a simulation study in various situations. Ex-
tensions to a multivariate indices model, multivariate depen-
dent variable Y and SIRα-based approach (for dependent
model) have been described. The method has been imple-
mented in R and the full code reproducing the results of this
paper is available from the author. The implementation of
BIG-SIR uses a combination of parallel strategy and shared-
memory structures providing a solution for analyzing mas-
sive data sets which exceed the size of the available RAM.
Moreover, the “divide and conquer” strategy of BIG-SIR
offers the possibility to compute our estimator on several
clusters using MapReduce programming [16] such as pro-
posed in Hadoop software [20]. Note that R users can used
Rhipe package [25] which offers the possibility to communi-
cate directly with Hadoop from R.

In this article, BIG-SIR aims to tackle massive data sets
with a very large number of observations. However the cur-
rent BIG-SIR approach is not suitable for ultrahigh dimen-
sional regression when the dimension p of the covariate is
much larger than a very large sample size n. In this context,
an open problem is to define a SIR estimator after dividing
the data into subsets of covariates as the split-and-merge
(SAM) method proposed in [43].

Figure 6. Model (10): Smooth estimate of the link function
and scatterplot of the estimated index versus the mean of
delay at arrival after condensing the results of BIG-SIR
by using binning and summarizing approach (on the top).

Visualization of the delay at arrival versus the index for
a random sample of size n = 60,000 observations (at the

bottom).

APPENDIX

In the following, we present the R code to compute the
BIG-SIR estimator using a combination of bigmemory and
foreach R packages.

R> library("bigmemory")

R> library("edrGraphicalTools")
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R> library("foreach")

R> library("doSNOW")

## create a filebacking from data stored

## in a csv file

R> dataYX <- read.big.matrix("myBIGdata.csv",

+ header=TRUE, backingfile="test-sir.bin",

+ descriptorfile="test-sir.desc", type="double")

R> BIGmatdes <- describe(dataYX)

R> cl <- makeCluster(4)

R> registerDoSNOW(cl)

R> ng <- 10 # number of chunks

R> x <- attach.big.matrix(BIGmatdes)

R> matEDR.block <- function(x){

+ bhat <- matrix(x/sqrt((sum(x**2))),ncol=1)

+ bhat%*%t(bhat)}

R> Scalable.sir <- function(g,data,size.chunk){

+ rows <- ((g-1)*size.chunk+1):(g*size.chunk)

+ matEDR.block(edr(data[rows,1],data[rows,-1],

+ H=8,K=1,method="SIR-I")$matEDR[,1])}

R> size.chunk <- nrow(x)/ng

R> BIGsir <- foreach(g=1:ng, .combine="+")%dopar%{

+ require("edrGraphicalTools")

+ require("bigmemory")

+ x <- attach.big.matrix(BIGmatdes)

+ Scalable.sir(g,x,size.chunk)}

R> stopCluster(cl)

R> BIGsir.estimator <- eigen(BIGsir)$vectors[,1]

Received 26 April 2015

REFERENCES
[1] Analytics, R. and Weston, S. (2014). foreach: foreach looping

construct for R, R package version 1.4.2.

[2] Aragon, Y. (1997). A Gauss implementation of multivariate
sliced inverse regression. Computational Statistics 12 355–372.
MR1477270

[3] Aragon, Y. and Saracco, J. (1997). Sliced Inverse Regression
(SIR): an appraisal of small sample alternatives to slicing. Com-
putational Statistics 12 109–130. MR1435812

[4] Barreda, L., Gannoun, A. and Saracco, J. (2007). Some ex-
tensions of multivariate SIR. Journal of Statistical Computation
and Simulation 77 1–17. MR2343408

[5] Barrios, M. P. and Velilla, S. (2007). A bootstrap method for
assessing the dimension of a general regression problem. Statistics
& Probability Letters 77 247–255. MR2339028

[6] Bura, E. and Cook, R. D. (2001). Estimating the structural di-
mension of regressions via parametric inverse regression. Journal

of the Royal Statistical Society. Series B. Statistical Methodology
63 393–410. MR1841422

[7] Carroll, R. J. and Li, K. C. (1992). Measurement error re-
gression with unknown link: dimension reduction and data vi-
sualization. Journal of the American Statistical Association 87
1040–1050. MR1209565

[8] Chavent, M., Girard, S., Kuentz-Simonet, V., Liquet, B.,
Nguyen, T. and Saracco, J. (2014). A sliced inverse regres-
sion approach for data stream. Computational Statistics 29 1129–
1152. MR3266051

[9] Chavent, M., Kuentz, V., Liquet, B. and Saracco, J. (2011).
A sliced inverse regression approach for a stratified population.
Communications in Statistics – Theory and Methods 40 3857–
3878. MR2864124

[10] Chen, C. H. and Li, K. C. (1998). Can SIR be as popu-
lar as multiple linear regression? Statistica Sinica 8 289–316.
MR1624402

[11] Chen, X. and Xie, M. G. (2014). A split-and-conquer approach
for analysis of extraordinarily large data. Statistica Sinica 24
1655–1684. MR3308656

[12] Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced in-
verse regression for dimension reduction”. Journal of the Ameri-
can Statistical Association 86 328–332. MR1137117

[13] Cook, R. D. (2000). SAVE: a method for dimension reduction
and graphics in regression. Communications in statistics – Theory
and Methods 29 2109–2121.

[14] Coudret, R., Girard, S. and Saracco, J. (2014). A new sliced
inverse regression method for multivariate response. Computa-
tional Statistics & Data Analysis 77 285–299. MR3210063

[15] Coudret, R., Liquet, B. and Saracco, J. (2013). edrGraphical-
Tools: provides tools for dimension reduction methods, R package
version 2.1.

[16] Dean, J. and Ghemawat, S. N. (2008). MapReduce: simplified
data processing on large cluster. Commun. ACM 107–113.

[17] Duan, N. and Li, K. C. (1991). Slicing regression: a link-free
regression method. Annals of Statistics 19 505–530. MR1105834

[18] Emerson, J. W. and Kane, M. J. (2012). Don’t drown in the
data. Significance 9 38–39.
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