
Statistics and Its Interface Volume 9 (2016) 497–508

Embarrassingly parallel sequential Markov-chain
Monte Carlo for large sets of time series
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Bayesian computation crucially relies on Markov chain
Monte Carlo (MCMC) algorithms. In the case of massive
data sets, running the Metropolis-Hastings sampler to draw
from the posterior distribution becomes prohibitive due to
the large number of likelihood terms that need to be calcu-
lated at each iteration. In order to perform Bayesian infer-
ence for a large set of time series, we consider an algorithm
that combines “divide and conquer” ideas previously used
to design MCMC algorithms for big data with a sequential
MCMC strategy. The performance of the method is illus-
trated using a large set of financial data.

AMS 2000 subject classifications: Primary 62C40,
37M10; secondary 62M99.
Keywords and phrases: Big Data, Panel of time se-
ries, Parallel Monte Carlo, Sequential Markov-chain Monte
Carlo.

1. INTRODUCTION

There is little doubt that one of the main challenges
brought on by the advent of Big Data in Bayesian statis-
tics is to develop Markov chain Monte Carlo (MCMC) al-
gorithms for sampling a posterior distribution derived from
a very large sample. While MCMC has become the default
tool to study posterior distributions when they are not avail-
able in closed form, many commonly used sampling algo-
rithms, e.g. the Metropolis-Hastings samplers, can become
computationally prohibitive when a large number of likeli-
hood calculations are needed at each iteration.

In recent years we have witnessed a large research effort
devoted to dividing the MCMC computational load among a
number of available processors and recombining the results
with as little loss in statistical efficiency as possible. For in-
stance, the approaches developed in [27] and [25] divide the
available data in smaller batches and sample the resulting
partial posteriors obtained from each batch of data. They
propose different methods to combine the resulting draws
so that the efficiency of the resulting Monte Carlo estimator
is close to the one that would have been obtained if the full
data posterior had been sampled. In the consensus MCMC
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of [27] this is achieved via reweighting the partial posterior
samples, while the embarrassingly parallel approach of [25]
relies on kernel density approximations of the partial pos-
teriors to produce an approximation of the full one. In [31]
the authors propose a refined recombination strategy based
on the Weierstrass transformation of all partial posteriors.

While dividing the whole data into batches can be done
easily when the data are independent, one must proceed cau-
tiously when the data exhibit long range dependencies, as is
the case in time series. In such cases, simply splitting time
series into blocks can lead to poor estimates of the parame-
ters. Instead, one can sometimes bypass the computational
load by sequentially updating the posterior over time [see,
for instance, 18].

Sequential sampling may be improved when combined
with parallel and possibly interacting Monte Carlo methods
that were used elsewhere, e.g. for parallel adaptive MCMC
[12], for interacting MTM [9], for population Monte Carlo
[7], for Sequential Monte Carlo [16, 15] and for massively
parallel computing [23].

Sequential estimation is useful in many applied contexts
such as on-line inference of econometric models for both
out-of-sample and in-sample analyses. However, sequential
estimation is a challenging issue in Bayesian analysis due
to the computational cost of the numerical procedures for
posterior approximation. Moreover, the computational cost
rapidly increases with the dimension of the model and the
inferential task becomes impossible. In this sense our paper
contributes to the recent expansion of the literature on the
use of Central Processing Unit (CPU) and Graphics Process-
ing Unit (GPU) parallel computing in econometrics (e.g., see
[17], [29], [13], [14], [28]).

Our contribution here is to consider possible ways to com-
bine strategies following the work of [25] with sequential
MCMC in order to address difficulties that appear when
studying large panel time series data models. Analyses of
panel time series data are frequently encountered in the
econometrics literature, as discussed in the review papers
of [6] and [20]. However, the use of latent variables for time
series panel models in combination with a Bayesian infer-
ence approach [21, 22, 3] can be quite challenging, due to
the computational burden required for the latent variable
estimation. These challenges motivate this work in which
the Bayesian stochastic volatility model recently proposed
in [32] and discussed in [8] is adapted to the context of large
panel of time series.
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In Sections 2 and 3 we introduce, respectively, the issues
related to sequential sampling in models with latent vari-
ables and present our algorithm. Section 4 contains the sim-
ulation studies and the real data analysis. The paper closes
with conclusions and future directions.

2. POSTERIOR DISTRIBUTION
FACTORIZATION

Consider a time series sample yt = (yt1, . . . , ytm) ∈ Y ⊂
R

m, t = 1, . . . , T with probability density function (pdf)
ht(yt|θ) where θ ∈ Θ ⊂ R

p is a parameter vector. Of inter-
est is sampling from the posterior distribution of θ. We are
considering here the case in which the latter task is made
easier if a data augmentation approach is adopted. We in-
troduce auxiliary variables xt ∈ X ⊂ R

n, 1 ≤ t ≤ T that
exhibit Markovian serial dependence, i.e. each xt has pdf
g(xt|xt−1,θ). If f(yt|xt,θ) is the conditional pdf of yt given
xt and θ, then for prior distribution π(θ) we obtain the joint
posterior of the parameters and the latent variables as

π(θ,x1:T |y1:T ) =
1

Z

T∏
t=1

f(yt|xt,θ)g(xt|xt−1,θ)π(θ)

where Z is the normalizing constant of π(θ,x1:T |y1:T ),
x1:T = {x1, . . . ,xT } and y1:T = {y1, . . . ,yT }.

Henceforth, we assume that the time series data has panel
structure such that if we consider all the data collected up
to time t, y1:t, then it is possible to partition them into M
blocks of size K each,

(1) y1:t =

M⋃
i=1

y
(i)
1:t

where the ith block y
(i)
1:t contains the measurements up to

time t for the components ki−1+1, ki−1+2, . . . , ki of y1:t (for
notational simplicity we set ki = K× i but other allocations
are possible), i.e. for all 0 ≤ i ≤ M

y
(i)
1:t =

ki⋃
j=ki−1+1

{y1j , . . . , ytj} :=

ki⋃
j=ki−1+1

y1:t,j .

Each set y
(i)
1:t of the partition contains the ith panel of de-

pendent components of yt. An important assumption of the
model is that, conditional on a parameter value θ, the com-
ponents in two partition sets are independent, i.e.

(2) y
(i)
1:t ⊥ y

(i′)
1:t ,

for any i �= i′.
Corresponding to the partition (1) there is an equivalent

partition of the auxiliary variables

(3) x1:t =

M⋃
i=1

x
(i)
1:t,

where the components of x
(i)
1:t correspond to the components

of yt included in y
(i)
1:t. A second crucial assumption for the

validity of our algorithm is the independence of the auxiliary
variables contained in two elements of the partition (3), i.e.

(4) x
(i)
1:t ⊥ x

(i′)
1:t ,

for all 1 ≤ i �= i′ ≤ M . Finally, we assume that y
(i)
1:t depends

only on those auxiliary variables included in x
(i)
1:t, i.e. given

the latter we have

(5) y
(i)
1:t ⊥ x

(i′)
1:t .

These assumptions are not unusual in the context of dy-
namic panel data models as they are used for theoretical
derivations in [2], [4] and [5] as well as in applications [see,
for instance, 1, 21, 22, 3].

The basic principle underlying our approach is to learn
sequentially over time using different cross-sectional data
blocks. Our algorithm relies on samples from the the joint

posterior distribution of θ and x
(i)
1:t, πit(θ,x

(i)
1:t), conditional

on the sub-sample y
(i)
1:t

πit(θ,x
(i)
1:t) = π(θ,x

(i)
1:t|y

(i)
1:t)

=
1

Zit

t∏
s=1

f(y(i)
s |x(i)

s ,θ)g(x(i)
s |x(i)

s−1,θ)π(θ)
1/M(6)

where y
(i)
s = {yski−1+1, . . . , yski}, x

(i)
s =

{xski−1+1, . . . , xski} and Zit is the i-th block normal-
izing constant.

Using the assumptions (2) and (4) we obtain

π(θ,x1:t|y1:t) ∝ π(θ)f(y1:t|x1:t,θ)g(x1:t|θ) =

= [π(θ)1/M ]M
M∏
i=1

f(y
(i)
1:t|x

(i)
1:t,θ)g(x

(i)
1:t|θ)

∝
M∏
i=1

πit(θ,x
(i)
1:t|y

(i)
1:t)(7)

From (7) we can infer that the type of factorization of
the posterior distribution used in [25] holds in this case for
every t since

π(θ|y1:t) ∝
∫

π(θ,x1:t|y1:t)dx1:t

∝
∫

. . .

∫ M∏
i=1

πit(θ,x
(i)
1:t|y

(i)
1:t)dx

(1)
1:t . . . dx

(M)
1:t

=

M∏
i=1

πit(θ|y(i)
1:t).(8)

3. EMBARRASSINGLY PARALLEL SMCMC

So far we have discussed the factorization of the posterior
distribution based on the panel-type structure of the data.
In this section we show how the algorithm handles the serial
dependence in the data and samples from {πit : 1 ≤ t ≤ T}
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for each i ∈ {1, . . . ,M} using a sequential MCMC strategy.
For expository purposes we assume that the parameter es-
timates are updated every time a new observation becomes
available, but in the application we will update the estimates
after every Jth observation is collected.

Let us define λt = (θ,x1:t), t ∈ N, the time sequence of
augmented parameter vectors with non-decreasing dimen-
sion dt = dt−1 + d, t ≥ 1. In order to take advantage of
the partition described in the previous section we also in-

troduce λ
(i)
t = (θ,x

(i)
1:t), a parameter vector of dimension

d
(i)
t . Since the augmented parameter vector can then be

partitioned as λt = (λt−1,xt) and λ
(i)
t = (λ

(i)
t−1,x

(i)
t ) for

all 1 ≤ i ≤ M , the correctness of the algorithms relies on

the compatibility condition for the priors on λ
(i)
t at each

time t and for each ith block of data. Specifically, we as-

sume that if the prior is p
(i)
t (λ

(i)
t ) = p(θ)p(x

(i)
1:t|θ), where

p(x
(i)
1:t|θ) =

∏T
t=1 g(x

(i)
t |x(i)

t−1,θ), then it satisfies the com-
patibility condition

(9) p
(i)
t (λ

(i)
t ) =

∫
p
(i)
t+1(λ

(i)
t ,x

(i)
t+1)dx

(i)
t+1,

for all i = 1, . . . ,M and t = 1, . . . , T − 1.
Our embarrassing SMCMC algorithm iterates over time

and data blocks. At each time t = 1, . . . , T , the algorithm
consists of two steps. In the first step, for each data block

y
(i)
1:t, i = 1, . . . ,M we use L parallel SMCMC chains, each

of which yields nt samples from πit(λ), i.e. we generate

λ
(l,j)
it , j = 1, . . . , nt, and l = 1, . . . , L from πit(λ). Based

on all samples θ
(l,j)
it , j = 1, . . . , nt, and l = 1, . . . , L we

produce the kernel density estimates π̂it(θ) of the marginal
sub-posteriors πit(θ).

In the second step we take advantage of the factorization
(7) and the posterior π(θ|y1:T ) is approximated by combin-
ing the approximate sub-posteriors π̂iT (θ), i = 1, . . . ,M .
Samples from this distribution can be obtained by apply-
ing the asymptotically exact posterior sampling procedure
detailed in Algorithm 1 of [25]. It is worth noting that (7)
holds for any t = 1, . . . , T so, if needed, one can approximate
π(θ|y1:t) at intermediate times t ∈ {1, . . . , T} by combining
the π̂it’s. However, π(θ|y1:t) is not used directly in the final
posterior π(θ|y1:T ) so if one is interested only in the latter
then the merging of partial posteriors is performed only at
time T .

The pseudocode of the proposed EP-SMCMC is given in
Algorithm 1 and the details of the SMCMC and of the merge
step are detailed in the following sections.

3.1 Sequential MCMC

In this section we discuss the construction of the SMCMC
samplers that are used in the first step of the EP-SMCMC.
To simplify the notation we drop the index i indicative of
the data block. In the SMCMC algorithm a population of
L parallel inhomogeneous Markov chains are used to gener-

ate the samples λ
(l,j)
t with j = 1, . . . , nt, l = 1, . . . , L and

Algorithm 1 Embarrassingly Parallel SMCMC (EP-
SMCMC
For t = 1, 2, . . . , T

1. For i = 1, . . . ,M draw λ
(l,j)
it , j = 1, . . . , nt, and

l = 1, . . . , L from πit(λ) by using the SMCMC transition.

2. When needed (usually at time t = T ):

(a) Compute the kernel density estimate π̂it(θ) of the
marginal sub-posteriors πit(θ) by using the samples

θ
(l,j)
it , j = 1, . . . , nt, and l = 1, . . . , L.

(b) approximate the posterior π(θ|y1:t) by combining the
approximate sub-posteriors π̂it(θ), i = 1, . . . ,M .

t = 1, . . . , T from the sequence of posterior distributions
πt, t = 1, . . . , T . Each Markov chain of the population is
defined by a sequence of transition kernels Kt(λ, A), t ∈ N,
that are operators from (Rd

t−1,B(Rd
t−1)) to (R

d
t ,B(Rd

t )), such
that Kt(λ, ·) is a probability measure for all λ ∈ R

dt−1 , and
Kt(·, A) is measurable for all A ∈ B(Rdt).

The kernel Kt(λ, A) has πt as stationary distribution and
results from the composition of a jumping kernel, Jt and a
transition kernel, Tt, that is

Kt(λ, A) = Jt ◦ Tnt
t (λ, A) =

∫
Rdt

Jt(λ, dλ
′)Tnt

t (λ′, A)

where the fixed dimension transition is defined as

Tnt
t (λ, A) = Tt ◦ Tnt−1

t (λ, A) =

∫
Rdt

Tt(λ, dλ
′)Tnt−1

t (λ′, A)

with nt ∈ N, and T 0 = Id is the identity kernel. We assume
that the jumping kernel satisfies

Jt+1(λt,λt+1) = Jt+1(λt,xt+1)δλt(λ̃t),

where λt+1 = (λ̃t,xt+1) and Jt+1(λt,xt+1) =
Jt+1(λt, (λt,xt+1)). This condition ensures that the
error propagation through the jumping kernel can be
controlled over the SMCMC iterations.

In order to apply the SMCMC one need to specify the
transition kernel Tt+1 and the jumping kernel Jt+1 at the
iteration t + 1. The transition kernel Tt at the iteration t
allows each parallel chain to explore the sample space of a

given dimension, dt, and to generate samples λ
(l,j)
t , from

the posterior distribution πt. The jumping kernel Jt+1 at
the iteration t + 1, allows the chains to go from a space of
dimension dt to one of dimension dt+1.

3.2 Merge step

The merge step relies on the following approximation the
posterior distribution

(10) πt(θ) =

M∏
i=1

π̂it(θ)
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where

π̂it(θ) =
1

Nt

L∑
l=1

nt∑
j=1

1

hp
K

(
||θ − θ

(l,j)
it ||

h

)

=
1

Nt

Nt∑
ji=1

1

hp
K

(
||θ − θ

(ji)
it ||

h

)
(11)

where θ
(k)
it = θ

(l,j)
it with l = k divL + 1 and j = kmodL,

Nt = ntL, and K is a Gaussian kernel with bandwidth pa-
rameter h. Following the embarrassing MCMC approach the
posterior distribution can be written as

(12) πt(θ) ∝
Nt∑

j1=1

. . .

Nt∑
jm=1

wj·
1

h̄p
K

(
θ − θ̄j·

h̄

)
,

where h̄ = h/
√
M , and

θ̄j· =
1

M

M∑
i=1

θ
(ji)
it , wj· =

M∏
i=1

1

h̄p
K

(
||θ(ji)

it − θ̄t·||
h

)
.

3.3 Parameter tuning

As suggested by [18], the number of iterations of the Se-
quential MCMC sampler at each time nt are chosen accord-
ingly to the correlation across the parallel chains. We let the
number of iterations at the iteration t, nt, be the smallest
integer s such that rt (s) ≤ 1 − ε, where rt (s) is the rate
function associated with the transition kernel Tt and ε is a
given threshold level. An upper bound for the rate function
is provided by chain autocorrelation function at the s-th
lag. It can be estimated sequentially using the output of all
the parallel chains: r̂t (s) = max{r̂(s, j), j = 1, . . . , (nt + p)}
where

r̂(s, j) =

[
L∑

l=1

(
λ
(s+1,t,l)
j − λ̄

(s+1,t)
j

)(
λ
(1,t,l)
j − λ̄

(1,t)
j

)]
:

:

⎧⎨
⎩
[

L∑
l=1

(
λ
(s+1,t,l)
j − λ̄

(s+1,t)
j

)2
] 1

2

×

×
[

L∑
l=1

(
λ
(1,t,l)
j − λ̄

(1,t)
j

)2
] 1

2

⎫⎬
⎭ ,(13)

with λ
(s,t,l)
j the j-th element of the vector λ(s,t,l) of the pa-

rameters γ(l) and the latent states generated up to time

t by the l–th chain at the the s–th iteration. λ̄
(s,t)
j =

L−1
∑L

l=1 λ
(s,t,l)
j is the average of the draws over the L par-

allel chains.

4. NUMERICAL EXPERIMENTS

4.1 Simulated data

We consider a time series model in which yit is the real-
ized variance for the i-th log-return series at time t, and xit

Figure 1. Samples yit (in log-scale), i = 1, . . . ,m,
t = 1, . . . , T , simulated from the state-space model in

Eq. 14–15, with T = 1,000, m = 1,000 and parameter setting
λ = 0.7, κ = 3.8 and ν = 10.

is the latent stochastic volatility process. In order to cap-
ture the time variations in the volatility of the series, we
consider the exponential family state space model for posi-
tive observations recently proposed in [32] and extend it to
the context of panel data. The model can be mathematically
described then as:

yit|xit ∼ Ga (κ/2, κxit/2)(14)

xit|xit−1 ∼ xit−1ψit/λ, ψit ∼ Be(ν/2, κ/2)(15)

for t = 1, . . . , T , where Ga(a, b) denotes the gamma distri-
bution and Be(a, b) the beta distribution of the first type.

We generate 1,000 time series of 1,000 observations each,
and obtain a dataset of 1 million observations. In Fig. 1 we
illustrate such a simulated dataset. Inference for a nonlinear
latent variable model with this large a sample via MCMC
sampling can be computationally challenging. In the simu-
lation we set λ = 0.7, κ = 3.8 and ν = 10, with initial con-
dition x0i = 10, ∀i. For each series we have generated 3,000
realizations, but the initial 2,000 samples were discarded so
that dependence on initial conditions can be considered neg-
ligible.

We aim to estimate the common parameters λ, n and
κ and assume a uniform prior distribution for λ, i.e. λ ∼
U [0, 1] and proper vague prior distributions for ν and κ,
that is ν ∼ Ga(0.5, 0.5) and κ ∼ Ga(0.5, 0.5) truncated on
the region {(ν, κ) : ν > κ− 1}.

In order to apply the EP-SMCMC algorithm we assume
that the m series are split into M blocks of K = m/M
series each. The updates are performed every J observa-
tions, so the total number of updates is n = T/J . Let us
denote with the column vector u1:t = (us, . . . , ut)

′ a col-
lection of variables ur with r = s, . . . , t. We define the
i-th block of series and the i-th block of latent variables
as the (t × K)-matrices Yit = (y(i−1)K+1,1:t, . . . ,yiK,1:t)
and Xit = (x(i−1)K+1,1:t, . . . ,xiK,1:t), respectively, with
yj,1:t = (yj1, . . . , yjt)

′, and xj,1:t = (xj1, . . . , xjt)
′. Then,

the complete-data likelihood function at time t for the i-th
block is
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L(Yit, Xit|θ) =
ki∏

j=ki−1+1

t∏
s=1

1

Γ(κ2 )

(κxjs

2

)κ/2

y
κ
2 −1
js

(16)

exp
(
−κxjs

2
yjs

)(
λxjs

xjs−1

)n
2 −1 (

1− λxjs

xjs−1

)κ
2 −1

λ

xjs−1

(17)

where θ = (λ, κ, ν). Then the sub-sample posterior, based
on the complete-data likelihood function of the i-th block is

π(θ, Xit|Yit) ∝ L(Yit, Xit|θ)(ν + κ)−
M
2 ×

× exp

(
−M(ν + κ)

2

)
I(ν > κ− 1)

At time t, and for the i-th block, the l-th SMCMC parallel
chain has the transition kernel of a Gibbs sampler which
iterates over the following steps:

1.1 generate θ(l,j) from f(θ|Yit, X
(l,j−1)
it )

1.2 generate X
(l,j)
it from f(Xit|θ(l,j), Yit)

with j = 1, . . . , nt, and X
(l,0)
it = ((X

(l,nt−1)
it−1 )′,

(x
(l,1)
ki−1+1,t, . . . , x

(l,1)
ki,t

)′)′ is a (t × K)-dim matrix where the
t-th row elements drawn from the jumping kernel at time
t− 1. At time t+1, as a new observation become available,
the dimension of the state space for the i-th block SMCMC
chains increase from dt to dt+1 = dt + J . We choose as
jumping kernel of the l-th parallel chain to be the transition
kernel of a Gibbs sampler with the following full conditional
distribution

2. x
(l,1)
kt+1 ∼ f(xkt+1|X(l,j)

it , X
(l,j)
it ,θ(l,j)), with k = ki−1 +

1, . . . , ki

where j = nt. The details of the sampling procedures for
the three steps are given in Appendix A.

In the simulation example we compare our EP-SMCMC
with a MCMC repeated sequentially over time and a Sequen-
tial Monte Carlo (SMC) with unknown parameters. For the
EP-SMCMC we used L = 10 parallel chains and a number of
iterations nt close to 50, on average. For the MCMC we use
a multi-move Gibbs sampler where the latent states are sam-
pled in one block by applying a forward-filtering backward
sampling (FFBS) procedure. The filtering and smoothing re-
lationships are given in Appendix C. In order to update the
parameters we have used a Metropolis-Hastings step. The
MCMC chain of our multi-move sampler is mixing quite well
due to the FFBS, and also the Metropolis step has accep-
tance rates about 0.3, which is a good rate for many models
as argued in [26].

In our MCMC analysis we considered two cases. The first
one is based on samples of 1,000 iterations after a burn-in
phase of 500 iterations in order to have a computational
complexity similar to the one of the EP-SMCMC. The sec-
ond one is based on samples of 25,000 iterations after a

burn-in phase of 20,000 iterations and is used to have reli-
able MCMC estimates of the parameter posterior distribu-
tion based on the whole sample.

For the SMC we also consider the regularized auxiliary
particle filter (RAPF) combined with the embarrassingly
parallel algorithm to obtain a EP-RAPF. In Appendix B
we present the computational details of running the r-APF
for our stochastic volatility model. We refer to [24] for the
definition of regularized particle filter and to [10] for a com-
parison of different regularized filters for stochastic volatility
models.

When we compare the EP-SMCMC, MCMC and EP-
RAPF algorithms, we use as a measure of efficiency the
mean square errors for the parameters κ, ν and λ after
the last time-block of data has been processed. The mean
square errors have been estimated using 40 independent runs
of each algorithm. The same set of data has been used to
reduce the standard error of the MSE estimates. The exper-
iments have been conducted on a cluster multiprocessor sys-
tem with 4 nodes; each node comprises of four Xeon E5-4610
v2 2.3GHz CPUs, with 8 cores, 256GB ECC PC3-12800R
RAM, Ethernet 10Gbit, 20TB hard disk system with Linux.
The algorithms have been implemented in Matlab (see [30])
and the parallel computing makes use of the Matlab parallel
computing toolbox.

The structure of the EP-SMCMC sampler allows for se-
quential data acquisition and for parallel estimation based
on different cross-sectional blocks. Thus, the MSE obtained
after processing the last block is given in Table 1 for differ-
ent dimensions of the time blocks J (rows) and of the cross
section blocks M (columns). Fig. 2 shows the posterior ap-
proximation obtained from one run of the EP-SMCMC on
the dataset shown in Fig. 1. From our experiments we find
that the parameters that are most difficult to estimate are
κ and ν, whereas λ has lower MSEs regardless of the choice
of block size and type of algorithm. For the EP-SMCMC
sampler a larger size J of the time blocks reduces the MSE,
possibly due to a reduction in the propagation of the ap-
proximation error over the iterations. The behaviour of the
MSE with respect to the cross-sectional block size K is not
monotonic. The MSE initially decreases with K, but for
larger K it increases. From our experiments, values of K
between 20 and 40 yield the best results. The κ and ν MSEs
for the MCMC are higher than their EP-SMCMC counter-
parts, likely due to the lack of convergence of the MCMC in
the 1,500 iterations per time block. The large MSEs for the
EP-RAPF are due to artificial noise introduced by the reg-
ularization step for the parameters, and also to the hidden
state estimation. In the EP-RAPF implementation we have
used 1,500 particles and the artificial noise is necessary to
avoid degeneration of their weights. Note that within each
time block the EP-RAPF is using the filtered states instead
of the smoothed states. A combination of the RAPF with
a MH step or a particle MCMC would improve the perfor-
mance of the EP-RAPF algorithm in the estimation of both
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Table 1. Mean square error for the parameters κ, ν and λ, for different size of the time blocks, J , and of the cross-sectional
blocks, K, for the EP-SMCMC and a sequence of MCMC (1,500 iterations) started each time a block of observations is

acquired and EP-RAPF with 1,500 particles. The average standard deviation, across algorithms and experiments, of the κ, ν
and λ MSE estimates is 0.3, 1.13 and 0.00001, respectively

Parameter κ MSE

J EP-SMCMC MCMC EP-RAPF
(K = 10) (K = 20) (K = 30) (K = 40) (K = 50)

50 3.91 2.37 2.07 4.81 7.02 29.68 1.14
100 2.09 1.68 2.11 3.06 6.75 32.33 0.90
200 3.07 1.68 1.20 0.77 3.98 25.06 6.90

Parameter ν MSE

m EP-SMCMC MCMC EP-RAPF
(K = 10) (K = 20) (K = 30) (K = 40) (K = 50)

50 45.04 48.52 39.73 53.55 51.90 78.20 31.18
100 28.41 29.14 20.52 39.01 43.52 56.19 101.14
200 29.83 21.01 11.92 28.54 39.07 58.23 53.12

Parameter λ MSE

m EP-SMCMC MCMC EP-RAPF
(K = 10) (K = 20) (K = 30) (K = 40) (K = 50)

50 0.02 0.01 0.01 0.01 0.01 0.01 0.02
100 0.02 0.01 0.01 0.01 0.01 0.01 0.01
200 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 2. Computing time, in hours, for fixed cross-sectional
block size K = 40, for different size of the time blocks J and
different number of parallel CPU cores r, for the EP-SMCMC
and a sequence of MCMC (1,500 iterations) started each time

a block of observations is acquired

J EP-SMCMC MCMC
(r = 10) (r = 20) (r = 30) (r = 40) (r = 50)

50 10.87 6.66 2.66 1.64 1.01 49.39
100 5.13 2.45 1.88 0.70 0.47 28.10
200 2.57 1.43 0.71 0.32 0.19 15.27

states and parameters, at a price of increasing computing.
We leave the further study of this issue for a future commu-
nication.

Also, we compare EP-SMCMC, MCMC and EP-RAPF in
terms of computing time. For the EP-SMCMC we consider
cross-sectional blocks of size K = 30. The computing times
are given in Table 2 for different time acquisition rates J
(rows) and different CPUs r working in parallel (columns).
We conclude that the EP-SMCMC implemented on cluster
multiprocessor system can be up to 80 times faster than the
standard MCMC. These results are in line with the ones ob-
tained in previous studies on parallel Monte Carlo methods
([11], [23], [19]). The calculation in all our experiments have
been carried out using double precision. If an application
allows for a lower degree of precision, then single precision
calculation can lead to large gains in computing time as
documented by [23] in the context of GPU parallel comput-
ing.

4.2 Real data

We consider a panel of 12,933 assets of the US stock mar-
ket and collect prices at a daily frequency from 29 December
2000 to 22 August 2014, which yields 3,562 time observa-
tions. Then we compute logarithmic returns for all stocks
and obtain a dataset of 46,067,346 observations.

In order to control for the liquidity of the assets and con-
sequently for long sequences of zero returns, we impose that
each stock has been traded a number of days corresponding
to at least 40% of the sample size. Also, we focus on the
last part of the sample which includes observations from 8
February 2013 to 22 August 2014. After cleaning the dataset
we obtain 6,799 series and 400 time observations, and the
size of the dataset reduces to 2,846,038. The original and
the cleaned datasets are given in Fig. 3.

In order to capture the time variations in the volatility of
the series we consider the panel state space model presented
in the previous section. We apply our EP-SMCMC sampler
to the panel of 6,799 time series. The data are acquired
sequentially over time in blocks of 100 time observations
and each panel consists of K = 40 series. At each point in
time, for each parameter k, ν and λ we obtain 500 posterior
densities from each parallel SMCMC chain (see C.1–C.3 in
Appendix C an example for t = 100, 200, 300, 400).

Figure 4 shows the sequential posterior inference after
the merge step of the embarrassingly parallel SMCMC al-
gorithm is applied to the output of the SMCMC sam-
ples. At each point in time we obtain an approximated
posterior density for the whole cross-section from the em-
barrassingly parallel step (see solid lines in Figure 4 for
t = 100, 200, 300, 400).
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Figure 2. Estimation of the posterior densities of the
parameters κ (top panel), ν (middle panel) and λ (bottom
panel). The EP-SMCMC estimates are obtained at iterations
800 (solid line) and 1000 (dashed line) when K = 30 and
J = 200. The full posterior densities estimates are obtained

from a MCMC with 25,000 iterations (dotted line).

The approximation of the posterior produced by the EP-
SMCMC is close to the approximation based on a MCMC
analysis of the full posterior. This can be seen in Figure 4
where the solid line shows the EP-SMCMC approximation
at the last update (t = 400) and the dashed line represents
the full-sample estimate based on a standard MCMC with
25,000 iterations after a burn-in period of 20,000 iterations.
The posterior mean and posterior quantiles approximated
by EP-SMCMC are given in Tab. 3. In order to approximate
the high posterior density (HPD) intervals and the poste-
rior mean we generate samples from the posterior distribu-
tion given in Eq. 8 by applying the independent Metropolis
within Gibbs algorithm given in [25].

Figure 3. Quantiles at the 5% and 90% (gray area) and mean
(solid line) of the cross-sectional daily log-return distribution.
Returns for all the 12,933 assets (top panel) of the US stock
market, from 29 December 2000 to 22 August 2014 and for a
subsample of 6,799 assets (bottom panel) from 8 February to

22 August 2014.

Table 3. EP-SMCMC and MCMC approximation of the
posterior mean (θ̂) and the 95% high probability density
region HPD given by the 2.5% and 97.5% inter-quantile

inveral (q0.025, q0.975)

EP-SMCMC MCMC

θ θ̂ HPD θ̂ HPD

κ 0.66 (0.61,0.71) 0.54 (0.31,0.58)
ν 0.87 (0.79,0.95) 0.91 (0.86,1.01)
λ 0.98 (0.97,0.99) 0.96 (0.94,0.97)

5. CONCLUSION

We propose a new MCMC algorithm which combines em-
barrassingly parallel MCMC and Sequential MCMC. The
algorithm is developed for data that exhibit dependent pat-
terns, in particular for large sets of time series for which a
standard MCMC-based analysis would be very slow. Here
we take advantage of the independence between the unit-
specific observations and latent variables of the panel to par-
tition the data and factor the full posterior in a product of
partial posteriors. In the absence of clear independent panel
units, an interesting and difficult question concerns alterna-
tive strategies to divide the data and combine the partial
posterior samples.

It is apparent that the development of novel MCMC al-
gorithms for big data is evolving rapidly. While “divide and
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Figure 4. Sequential estimation of the posterior densities of
the parameter k (top panel), ν (middle panel) and λ (bottom
panel) at different points in time t. The whole sample and

pooled data posterior densities of the parameter are given by
the dashed line.

conquer” strategies continue to develop, one must devise
techniques to handle the additional approximations that are
introduced by the current existing methods, including EP-
SMCMC. Quantifying and controlling the error introduced

by these approximations remains central to the success of
MCMC for Big Data.
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APPENDIX A. COMPUTATIONAL DETAILS

A.1 Transition kernel

As regards the Step 1.1. of the transition kernel, the dis-

tribution π(θ|X(l,j)
it , Yit) ∝ π(θ, X l,j

it |Yit) is not tractable
and we applied a Metropolis-Hastings. At the j-th itera-
tion of the l-th SMCMC chain we generate the MH proposal
from a Gaussian random walk on the transformed parameter
space θ̃1 = log(κ), θ̃2 = log(ν) and θ̃3 = − log[(1− λ)/λ].

In the Step 1.2 of the transition kernel, we exploit the
tractability of the state space model and apply a multi-move
Gibbs sampler, where the hidden states xi1:t are updated in
one step. By applying Proposition 1 in [32] with m = 1, one
gets the following filtered, and prediction distributions

xit|θ, Yit ∼ Ga((κ+ k)/2, κσ2
it/2)(A.1)

xit+1|θ, Yit ∼ Ga(κ/2, κσ2
it/2/λ)(A.2)

where σ2
it = yit + λσ2

it−1, and the backward smoothed dis-
tribution
(A.3)
xit|θ, xit+1, Yit ∼λxit+1+zit+1, zit+1 ∼Ga(κ/2, (κσ2

it)/2).

which is used to generate X
(l,j)
it given θ(l,j) and Yit.

A.2 Jumping kernel

As regard to the jumping kernel, when dt+1 = dt + 1,
it is given by a Gibbs sampler transition kernel with full
conditional distribution

(A.4) xit+1|θ, Yi,t+1 ∼ Ga((κ+ k)/2, κσ2
it+1/2)
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APPENDIX B. COMPUTATIONAL DETAILS
FOR THE EP-RAPF

Let us consider the following reparametrization θ =

(log(κ), log(ν − κ + 1),− log[(1 − λ)/λ]. Given the initial

sets of weighted random samples
{
xj
it0

,θj
it0

, wj
it0

}N

j=1
, i =

1, . . . ,M the regularized APF performs the following steps,

for t0 < t ≤ T − 1, i = 1, . . . ,M and j = 1, . . . , N :

(i) Simulate rji ∼ q(ri) ∝
∑N

l=1 w
l
itδl(ri) where

wl
it ∝ wl

it−1

ki∏
k=ki−1+1

Ga(ykt+1|κri
it /2, κ

ri
itμ

ri
kt+1/2)

with

μr
kt+1 =

xr
kt

λr
it

νrit
νrit + κr

it

.

(ii) Simulate θj
it+1 ∼ N

(
aθ

rji
it + (1− a)θ̄it, h

2Vit

)
where

Vit and θ̄it are the empirical variance matrix and the

empirical mean respectively and a ∈ [0, 1] and h2 =

(1− a2),

(iii) Simulate xj
kt+1 ∼ x

rji
ktψ

j
it/λ

j
it+1, with ψj

kt ∼
Be(νjit/2, κ

j
it/2) for k = ki−1 + 1, . . . , ki

(iv) Update the weights

ωj
it+1 ∝

ki∏
k=ki−1+1

Ga(ykt+1|κj
it/2, κ

j
itx

j
kt+1/2)

Ga(ykt+1|κrji
it /2, κ

rji
it μ

rji
kt+1/2)

(v) If ESSt+1 < ε, simulate
{
xj
it+1,θ

j
it+1

}N

j=1
from{

xj
it+1,θ

j
it+1, ω

j
it+1

}N

j=1
and set wj

it+1 = 1/N . Other-

wise set wj
it+1 = ωj

it+1

where

ESSt =
N

1 +N
N∑
i=1

(
ωi
t −N−1

N∑
i=1

ωi
t

)2 /(
N∑
i=1

ωi
t

)2 .

is the effective sample size.

In the merge step of our EP-RAPF, the particle set{
θj
it, ω

j
it

}N

j=1
is used to build the following approximation

of the posterior distribution

(B.1) πt(θ) =
M∏
i=1

π̂it(θ)

by applying the embarrassingly parallel algorithm, as in the

EP-SMCMC.

APPENDIX C. SMCMC OUTPUT

Figures C.1–C.3 show an example of sequential SM-
CMC approximation of the posterior densities of the pa-
rameters k, ν and λ for the different blocks of observa-
tions (different lines in each plot) and at different point in
time t = 100, 200, 300, 400 (different plots) for our panel of

Figure C.1. Sequential estimation of the posterior densities of
the parameter k, for the different blocks of observations
(different lines) and at different point in time t (different

plots). For expository purposes the 
m/K� = 169 lines have
been subsampled and the grey area represents the area below

the envelope of the N densities.

Parallel sequential MCMC for large sets of time series 505



Figure C.2. Sequential estimation of the posterior densities of
the parameter ν, for the different blocks of observations and

at different point in time t. For expository purposes the

m/K� = 169 lines have been subsampled and the grey area
represents the area below the envelope of the N densities.

Figure C.3. Sequential estimation of the posterior densities of
the parameter λ, for different blocks of observations (different
lines) and at different points in time t = 100, 200, 300, 400.
For expository purposes the 
m/K� = 169 lines have been
subsampled and the grey area represents the area below the

envelope of the N densities.
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m = 6,799 time series. We consider 
m/M� = 169 cross-
sectional blocks with M = 40 observations each.
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