
Statistics and Its Interface Volume 9 (2016) 485–496

Generative modeling of convolutional neural
networks

Jifeng Dai, Yang Lu, and Ying Nian Wu
∗

The convolutional neural networks (ConvNets) have
proven to be a powerful tool for discriminative learning. Re-
cently researchers have also started to show interest in the
generative aspects of ConvNets in order to gain a deeper un-
derstanding of what ConvNets have learned and how to fur-
ther improve them. This paper investigates generative mod-
eling of ConvNets. The main contributions include: (1) We
construct a generative model for the ConvNet in the form of
exponential tilting of a reference distribution. (2) We pro-
pose a generative gradient for pre-training ConvNets by a
non-parametric importance sampling scheme. It is funda-
mentally different from the commonly used discriminative
gradient, and yet shares the same computational architec-
ture and cost as the latter. (3) We propose a generative
visualization method for the ConvNets by sampling from an
explicit parametric image distribution. The proposed visual-
ization method can directly draw synthetic samples for any
given node in a trained ConvNet by the Hamiltonian Monte
Carlo algorithm, without resorting to any extra hold-out im-
ages. Experiments on the challenging ImageNet benchmark
show that the proposed generative gradient pre-training
helps improve the performances of ConvNets in both super-
vised and semi-supervised settings, and the proposed gener-
ative visualization method generates meaningful and varied
samples of synthetic images from a large and deep ConvNet.

Keywords and phrases: Big data, Deep learning.

1. INTRODUCTION

1.1 Big data and big model

Recent years have witnessed the triumphant return of the
feedforward neural networks, especially the convolutional
neural networks (ConvNets) [16]. Fueled by the availabili-
ties of large labeled data sets such as ImageNet [1] and the
increased computing power, ConvNets have proven to be a
powerful tool for discriminative or predictive learning [14, 6].

The ImageNet dataset and the associated ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [23]
were the products of the big data era. The ImageNet dataset,
first released in 2009, is a collection of more than 15 mil-
lion images organized into roughly 22,000 categories. The
categories are from the visually meaningful concepts in the

∗Corresponding author.

WordNet, a database of English words. The images were
collected by querying the categories on the internet search
engines such as Google, and were manually examined by
crowed-sourcing workers from Amazon’s Mechanical Turk.
Starting from 2010, the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) has been held annually. It is a
challenging large-scale contest in computer vision. In its im-
age classification task, which is to assign each image to a cat-
egory, there are roughly 1.2 million training images, 50,000
validation images, and 100,000 testing images from a 1,000
category subset of the ImageNet dataset.

In ILSVRC 2012, [14] won the image classification task
using a big and deep ConvNet. This big model, now
commonly called AlexNet, has 60 million parameters and
650,000 hidden nodes. It consists of 5 convolutional lay-
ers (some of them are followed by max-pooling layers), and
3 fully-connected layers. AlexNet significantly reduced the
classification error on the classification task and surpassed
the runner-up by big margin, a feat that stunned the com-
puter vision community. Subsequent research further re-
vealed that the deep ConvNet pre-trained on ImageNet can
be adapted to other vision tasks with limited training data,
e.g., object detection [6] and semantic segmentation [7]. This
indicates that deep convolutional network can learn power-
ful generic features from the big ImageNet dataset.

1.2 Generative modeling

Despite the successes of the discriminative learning of
ConvNets, the generative aspect of ConvNets has not been
thoroughly investigated. But it can be very useful for the
following reasons: (1) The generative pre-training has the
potential to lead the network to a better local optimum; (2)
The generative semi-supervised learning algorithms can be
employed to absorb knowledge from the unlabeled data; (3)
Samples can be drawn from the generative model to reveal
the knowledge learned by the ConvNet. Although many gen-
erative models and learning algorithms have been proposed
[8, 9, 21, 24], most of them do not scale well and have not
been applied to learning large and deep ConvNets.

In this paper, we study the generative modeling of the
ConvNets. We start from defining probability distributions
of images given the underlying object categories or class la-
bels, such that the ConvNet with a final logistic regression
layer serves as the corresponding conditional distribution of
the class labels given the images. These distributions are in
the form of exponential tilting of a reference distribution,

http://www.intlpress.com/SII/

i.e., exponential family models relative to a reference distri-
bution.

With such a generative model, we proceed to study it
along two related themes, which differ in how to handle the
reference distribution or the null model. In the first theme,
we propose a non-parametric generative gradient for pre-
training the ConvNet, where the ConvNet is learned by the
stochastic gradient algorithm that seeks to maximize the
log-likelihood of the generative model. The gradient of the
log-likelihood is approximated by the importance sampling
method that keeps reweighing the images that are sampled
from a non-parametric implicit reference distribution, such
as the marginal distribution of all the training images. The
generative gradient is fundamentally different from the com-
monly used discriminative gradient, and yet in batch train-
ing, it shares the same computational architecture as well as
computational cost as the discriminative gradient. This gen-
erative learning scheme can be used in a pre-training stage
that is to be followed by the usual discriminative training.
The generative log-likelihood provides stronger driving force
than the discriminative criteria for stochastic gradient by
requiring the learned parameters to explain the images in-
stead of their labels. Experiments on the MNIST [17] and
the challenging ImageNet [1] classification benchmarks show
that this generative pre-training scheme consistently helps
improve the performance of ConvNets in both supervised
and semi-supervised settings.

The second theme in our study of generative modeling is
to assume an explicit parametric form of the reference dis-
tribution, such as the Gaussian white noise model, so that
we can draw synthetic images from the resulting probability
distributions of images. The sampling can be accomplished
by the Hamiltonian Monte Carlo algorithm [20], which iter-
ates between a bottom-up convolution step and a top-down
deconvolution step. The proposed visualization method can
directly draw samples of synthetic images for any given node
in a trained ConvNet, without resorting to any extra hold-
out images. Experiments on ImageNet show that meaningful
and varied synthetic images can be generated for nodes of
a big and deep ConvNet discriminatively trained on Ima-
geNet.

2. PAST WORK

The generative model that we study is an energy-based
model. Such models include field of experts [22], product
of experts [10], Boltzmann machines [8], model based on
neural networks [9], etc. However, most of these generative
models and learning algorithms have not been applied to
learning deep ConvNets. The proposed non-parametric gen-
erative gradient as well as the generative model based on
deep ConvNets have not been studied in the literature to
the best of our knowledge.

The relationship between the generative models and the
discriminative approaches has been extensively studied, per-
haps starting from Efron [3], and more recently by [12, 18],
etc. Moreover, the usefulness of generative pre-training for

Figure 1. Filtering or convolution: applying a filter F (3× 3)
on an image I (6× 6) to get a filtered image (6× 6) or
feature map F ∗ I. Each pixel of F ∗ I is computed by the
weighted sum of the 3× 3 pixels of I centered at this pixel.

deep learning has been studied by [4] etc. However, this
issue has not been thoroughly investigated for ConvNets.
Moreover, unlike previous pre-training methods, our non-
parametric generative gradient shares the same computa-
tional architecture as the discriminative gradient.

As to visualization, our work is related to [5, 15, 6, 26, 19].
In [6, 19], the high-scoring image patches are directly pre-
sented. In [26], a top-down deconvolution step is used to un-
derstand what contents are emphasized in the high-scoring
input image patches. Visualization of nodes in neural net-
works has also been studied in [5, 15], where images are syn-
thesized by maximizing the responses of the nodes. In our
approach, a generative model is formally defined. We sample
from the well-defined probability distribution by the HMC
algorithm, generating meaningful and varying synthetic im-
ages, without resorting to a large collection of hold-out im-
ages [6, 26, 19].

3. BACKGROUND

3.1 Filters

To fix notation, let I(x) be an image defined on the
square (or rectangular) domain D, where x = (x1, x2) (a
two-dimensional vector) indexes the coordinates of pixels.
We can treat I(x) as a two-dimensional function defined on
D. We can also treat I(x) as a vector if we fix an ordering
for the pixels.

A linear filter is just a local weighted sum of image in-
tensities around each pixel. Suppose we have a set of linear
filters {Fk, k = 1, ...,K}. We can apply each Fk to image I
to obtain a filtered image or feature map, denoted by Fk ∗ I,
which is of the same size as I and is also defined on D (with
proper handling of boundaries). Let [Fk ∗ I](y) be the filter
response or feature at position y. Then

[Fk ∗ I](y) =
∑
x∈S

wk,xI(y + x),(1)

where the weights or coefficients wk,x define the filter Fk,
and S is the localized support of the filter centered at the
origin. See Fig. 1 for an illustration, where S is 3 × 3, and

486 J. Dai, Y. Lu, and Y. N. Wu

Figure 2. Convolutional neural networks consist of multiple layers of filtering and sub-sampling operations for bottom-up
feature extraction, resulting in multiple layers of feature maps and their sub-sampled versions. The top layer features are used

for classification via multinomial logistic regression. The discriminative direction is from image to category, whereas the
generative direction is from category to image. This illustration is adapted from [17].

D is 6 × 6. In practice, both S and D can be much larger.
S can be different for different Fk. The filtering operation is
also a convolution operation.

3.2 ConvNet: filters on top of filters

For statisticians, a neural network can be viewed as a
generalization of the generalized linear model (GLM) such
as logistic regression. Specifically, it can be viewed as a
multi-layer recursive composition of GLMs. The convolu-
tional neural network, or ConvNet [17], is a specialized neu-
ral network devised for analyzing signals such as images,
where the linear combinations take place around each pixel,
i.e., they are filters or convolutions. See Fig. 2 for an illus-
tration.

A ConvNet consists of multiple layers of linear filtering
and non-linear transformation, as expressed by the following
recursive formula of filters on top of filters

[F
(l)
j ∗ I](y) = h

⎛
⎝Nl−1∑

k=1

∑
x∈Sl

w
(l,j)
k,x [F

(l−1)
k ∗ I](y + x) + bl,j

⎞
⎠ ,

(2)

where l indexes the layer. {F (l)
j , j = 1, ..., Nl} are the filters

at layer l, {F (l−1)
k , k = 1, ..., Nl−1} are the filters at layer

l − 1. j and k are used to index filters at layers l and l − 1
respectively, and Nl and Nl−1 are the numbers of filters at
layers l and l − 1 respectively. The filters are locally sup-
ported, so the range of x in

∑
x is within a local support Sl

(such as a 7×7 image patch). We define the image I to be the
feature map at the 0-th layer. The filter responses at layer l
are computed from the filter responses at layer l− 1, by lin-

ear filtering defined by the weights w
(l,j)
k,x as well as the bias

term bl,j (w
(l,j)
k,x and bl,j correspond to the coefficients and

the intercept of a GLM), followed by the non-linear transfor-
mation h() (corresponding to the link function of a GLM).

{F (l)
j } are non-linear filters because we incorporate h() in

the computation of the filter responses. We call F
(l)
j ∗ I the

filtered image or the feature map of filter j at layer l. There
are a total Nl feature maps in layer l, and j = 1, ..., Nl. In
Fig. 2, the feature maps are illustrated by the square shapes.

Each [F
(l)
j ∗ I](x) is called a feature extracted by a node or

a unit at layer l.
The filtering operations are often followed by sub-

sampling and local-max pooling (e.g., I(x1, x2) ←
max(δ1,δ2)∈{0,1}2 I(2x1 + δ1, 2x2 + δ2)). See Fig. 2 for an il-
lustration of sub-sampling. After a number of layers with
sub-sampling, the filtered images or feature maps are re-
duced to 1 × 1 at the top layer. These features are then
used for classification (e.g., does the image contain a hum-
mingbird or a seagull or a dog). Specifically, let the top layer

filter responses or features be {F (L)
k ∗I, k = 1, ..., NL}. These

features are used for classification via multinomial logistic
regression. Specifically, let c ∈ {1, 2, ..., C} be the category
of image I, then the score is

fc(I;w) =
∑
k

wc,k[F
(L)
k ∗ I] + bc,k,(3)

where wc,k and bc,k are the weights (coefficients) and bias
(intercept) for computing the score of category c, and the
parameter w includes the category-specific wc,k and bc,k,
as well as the weight and bias parameters at all the layers
below. The conditional probability of the category c given
the image I is

Generative ConvNet 487

p(c|I, w) = exp(fc(I;w))∑
c exp(fc(I;w))

.(4)

For identifiability, we may choose a base category, e.g., back-
ground, with c = 0, and define f0(I) = 0.

The estimation of the weight and bias parameters can be
accomplished by gradient ascent on the log-likelihood. For
big data, we can divide the data into mini-batches, so that at
each step, we run gradient ascent based on the log-likelihood
of a randomly sampled mini-batch. The gradient can be cal-
culated by back-propagation, which is an application of the
chain rule.

4. GENERATIVE MODELING OF CONVNET

4.1 Probability distributions on images

For the rest of the paper, we shall switch to the conven-
tional notation in statistical literature where we use x to
denote the input (which was denoted by I for input image
in the above subsection), and we use y to denote the output
(which was denoted by c for output category in the above
subsection).

Suppose we observe images from many different object
categories. Let x be an observed image from an object cate-
gory y. Consider the following probability distribution on x,

py(x;w) =
1

Zy(w)
exp (fy(x;w)) q(x),(5)

where q(x) is a reference distribution common to all the
categories, fy(x;w) is a scoring function for class y, w col-
lects the unknown parameters to be learned from the data,
and Zy(w) = Eq[exp(fy(x;w))] =

∫
exp(fy(x;w))q(x)dx is

the normalizing constant. The distribution py(x;w) is in the
form of an exponential tilting of the reference distribution
q(x), and can be considered an energy-based model or an
exponential family model. In Model (5), the reference dis-
tribution q(x) may not be unique. If we change q(x) to q1(x),
then we can change fy(x;w) to fy(x;w) − log[q1(x)/q(x)],
which may correspond to a fy(x;w1) for a different w1 if the
parametrization of fy(x,w) is flexible enough. We want to
choose q(x) so that either q(x) is reasonably close to py(x;w)
as in our non-parametric generative gradient method, or the
resulting py(x;w) based on q(x) is easy to sample from as
in our generative visualization method.

For an image x, let y be the underlying object category or
class label, so that p(x|y;w) = py(x;w). Suppose the prior
distribution on y is p(y) = ρy. The posterior distribution of
y given x is

p(y|x,w) = exp(fy(x;w) + αy)∑
y exp(fy(x;w) + αy)

,(6)

where αy = log ρy − logZy(w). p(y|x,w) is in the form of a
multi-class logistic regression, where αy can be treated as an
intercept parameter to be estimated directly if the model is

trained discriminatively. Thus for notational simplicity, we
shall assume that the intercept term αy is already absorbed
into w for the rest of the paper. Note that fy(x;w) is not
unique in (6). If we change fy(x;w) to fy(x;w) − g(x) for
a g(x) that is common to all the categories, we still have
the same p(y|x;w). This non-uniqueness corresponds to the
non-uniqueness of q(x) in (5) mentioned above.

Given a set of labeled data {(xi, yi)}, equations (5) and
(6) suggest two different methods to estimate the parameters
w. One is to maximize the generative log-likelihood lG(w) =∑

i log p(xi|yi, w), which is the same as maximizing the full
log-likelihood

∑
i log p(xi, yi|w), where the prior probability

of ρy can be estimated by class frequency of category y.
The other is to maximize the discriminative log-likelihood
lD(w) =

∑
i log p(yi|xi, w).

4.2 Generative gradient

The gradient of the discriminative log-likelihood defined
by (6) is calculated according to

∂

∂w
log p(yi|xi, w)

=
∂

∂w
fyi(xi;w)− ED

[
∂

∂w
fy(xi;w)

]
,

(7)

where αy is absorbed into w as mentioned above, and

ED

[
∂

∂w
fy(xi;w)

]

=
∑
y

∂

∂w
fy(xi;w)

exp(fy(xi;w))∑
y exp(fy(xi;w))

.
(8)

The gradient of the generative log-likelihood defined by
(5) is calculated according to

∂

∂w
log pyi(xi;w)

=
∂

∂w
fyi(xi;w)− EG

[
∂

∂w
fyi(x;w)

]
,

(9)

where

EG

[
∂

∂w
fyi(x;w)

]

=

∫
∂

∂w
fyi(x;w)

1

Zyi(w)
exp(fyi(x;w))q(x),

(10)

which can be approximated by importance sampling. Specif-
ically, let {x̃j}mj=1 be a set of samples from q(x), for instance,
q(x) is the distribution of images from all the categories.
Here we do not attempt to model q(x) parametrically, in-
stead, we treat it as an implicit non-parametric distribution.
Then by importance sampling,

EG

[
∂

∂w
fyi(x;w)

]
≈

∑
j

∂

∂w
fyi(x̃j ;w)Wj ,(11)

488 J. Dai, Y. Lu, and Y. N. Wu

where the importance weight Wj ∝ exp(fyi(x̃j ;w)) and is
normalized to have sum 1. Namely,

∂

∂w
log pyi(xi;w) ≈

∂

∂w
fyi(xi;w)

−
∑
j

∂

∂w
fyi(x̃j ;w)

exp(fyi(x̃j ;w))∑
k exp(fyi(x̃k;w))

.
(12)

The discriminative gradient and the generative gra-
dient differ subtly and yet fundamentally in calculat-
ing E[∂fy(x;w)/∂w], whose difference from the observed
∂fyi(xi;w)/∂w provides the driving force for updating w.
In the discriminative gradient, the expectation is with re-
spect to the posterior distribution of the class label y while
the image xi is fixed, whereas in the generative gradient, the
expectation is with respect to the distribution of the images
x while the class label yi is fixed. In general, it is easier to
adjust the parameters w to predict the class labels than to
reproduce the features of the images. So it is expected that
the generative gradient provides stronger driving force for
updating w.

The non-parametric generative gradient can be especially
useful in the beginning stage of training or what can be
called pre-training, where w is small, so that the current
py(x;w) for each category y is not very separated from q(x),
which is the overall marginal distribution of x. In this stage,
the importance weights Wj are not very skewed and the ef-
fective sample size for importance sampling can be large. So
updating w according to the generative gradient can pro-
vide useful pre-training with the potential to lead w to a
good local optimum. If the importance weights Wj start to
become skewed and the effective sample size starts to dwin-
dle, then this indicates that the categories py(x;w) start
to separate from q(x) as well as from each other, so we can
switch to discriminative training to further separate the cat-
egories.

4.3 Batch training and generative loss layer

At first glance, the generative gradient appears compu-
tationally expensive due to the need to sample from q(x).
In fact, with q(x) being the collection of images from all the
categories, we may use each batch of samples as an approx-
imation to q(x) in the batch training mode.

Specifically, let {(xi, yi)}ni=1 be a batch set of training ex-
amples, and we seek to maximize

∑
i log pyi(xi;w) via gen-

erative gradient. In the calculation of ∂ log pyi(xi;w)/∂w,
{xj}nj=1 can be used as samples from q(x). In this
way, the computational cost of the generative gradient
is about the same as that of the discriminative gradi-
ent.

Moreover, the computation of the generative gradient can
be induced to share the same back propagation architecture
as the discriminative gradient. Specifically, the calculation of
the generative gradient can be decoupled into the calculation
at a new generative loss layer and the calculation at lower

layers. To be more specific, by replacing {x̃j}mj=1 in (12)
by the batch sample {xj}nj=1, we can rewrite (12) in the
following form,

∂

∂w
log pyi(xi;w)

≈
∑
y,j

∂ log pyi(xi;w)

∂fy(xj ;w)

∂fy(xj ;w)

∂w
,

(13)

where ∂ log pyi(xi;w)/∂fy(xj ;w) is called the generative loss
layer (to be defined below, with fy(xj ;w) being treated here
as a variable in the chain rule), while the calculation of
∂fy(xj ;w)/∂w is exactly the same as that in the discrim-
inative gradient. This decoupling brings simplicity to pro-
gramming.

We use the notation ∂ log pyi(xi;w)/∂fy(xj ;w) for the
top generative layer mainly to make it conformal to the
chain rule calculation. According to (12), ∂ log pyi(xi;w)/
∂fy(xj ;w) is defined by

∂ log pyi(xi;w)

∂fy(xj ;w)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 y �= yi;

1− exp(fyi (xj ;w))∑
k exp(fyi (xk;w)) y = yi, j = i;

− exp(fyi (xj ;w))∑
k exp(fyi (xk;w)) y = yi, j �= i.

(14)

4.4 Generative vs discriminative for batch
training

We can derive the generative gradient for batch train-
ing more directly as follows. During training, on a batch
of training examples, {(xi, yi), i = 1, ..., n}, the generative
log-likelihood is,

lG(w) =
∑
i

log p(xi|yi, w) =
∑
i

log
exp (fy(x;w))

Zy(w)

≈
∑
i

log
exp (fy(x;w))∑

i exp (fy(xi;w)) /n
.

(15)

The gradient with respect to w is

l′G(w) =
∑
i

[
∂

∂w
fyi(xi;w)

−
∑
j

∂

∂w
fyi(xj ;w)

exp(fyi(xj ;w))∑
k exp(fyi(xk;w))

]
.

(16)

As a comparison, the discriminative log-likelihood is

lD(w) =
∑
i

log p(yi|xi, w)

=
∑
i

log
exp(fyi(xi;w))∑
y exp(fy(xi;w))

.
(17)

The gradient with respect to w is

Generative ConvNet 489

l′D(w) =
∑
i

[
∂

∂w
fyi(xi;w)

−
∑
y

∂

∂w
fy(xi;w)

exp(fy(xi;w))∑
y exp(fy(xi;w))

]
.

(18)

l′D and l′G are similar in form but they are different in the
summation operations. In l′D, the summation is over cate-
gory y while xi is fixed, whereas in l′G, the summation is
over example xj while yi is fixed.

In the generative gradient, we want fyi to assign high
score to xi as well as those observations that belong to yi,
but assign low scores to those observations that do not be-
long to yi. This constraint is for the same fyi , regardless of
what other fy do for y �= yi.

In the discriminative gradient, we want fy(xi) to work
together for all different y, so that fyi assigns high score to
xi than other fy for y �= yi.

Apparently, the discriminative constraint is weaker be-
cause it involves all fy, and the generative constraint is
stronger because it involves single fy. After generative learn-
ing, these fy are well behaved and then we can continue to
adjust them (as well as the intercepts for different y) to
satisfy the discriminative constraint.

4.5 Semi-supervised learning

In semi-supervised learning, given a set of labeled train-
ing examples {(xi, yi)}li=1 and a set of unlabeled training ex-
amples {xi}l+u

i=l+1, we seek to maximize the semi-supervised
log-likelihood

lS(w) =

l∑
i=1

log pyi(xi;w) + λ

l+u∑
i=l+1

log p(xi;w),(19)

where λ is a tuning parameter, and p(xi;w) =∑
y py(xi;w)ρy.
As a common practice, we approximate p(xi;w) by

maxy py(xi;w)ρy. Since p(xi;w) ≥ maxy py(xi;w)ρ(y), we
maximize a lower bound of equation (19). The gradient can
be calculated according to Section 4.3.

4.6 Generative visualization

Recently, researchers have become interested in under-
standing what the ConvNet has learned. Suppose we care
about the node at the top layer. The idea can be applied to
the nodes at any layer.

We consider generating samples from py(x;w) with w al-
ready learned by discriminative training (or any other meth-
ods). For this purpose, we need to assume a parametric ref-
erence distribution q(x), such as Gaussian white noise dis-
tribution, which is the maximum entropy distribution or the
most featureless distribution fitted to the observed training
images with normalized marginal variances. After discrimi-
natively learning fy(x;w) for all y, we can sample from the
corresponding py(x;w) by Hamiltonian Monte Carlo (HMC)
[20].

Specifically, we can write py(x;w) as py(x;w) ∝
exp(−U(x)), where U(x) = (−fy(x;w)+

1
2σ2 |x|2)/T , with T

being the temperature. In physics context, x can be regarded
as a position vector and U(x) the potential energy func-
tion. To allow Hamiltonian dynamics to operate, we need
to introduce an auxiliary momentum vector φ and the cor-
responding kinetic energy function K(φ) = |φ|2/2m, where
m represents the mass. After that, a fictitious physical sys-
tem described by the canonical coordinates (x, φ) is defined,
and its total energy is H(x, φ) = U(x) + K(φ). Instead
of sampling from p(x;w) directly, HMC samples from the
joint canonical distribution p(x, φ) ∝ exp(−H(x, φ)), under
which x ∼ p(x) marginally and φ follows a Gaussian distri-
bution and is independent of x. Each time HMC draws a
random sample from the marginal Gaussian distribution of
φ, and then evolve according to the Hamiltonian dynamics
that conserves the total energy.

In practical implementation, the leapfrog algorithm [20]
is used to discretize the continuous Hamiltonian dynamics
as follows, with ε being the step-size:

φ(t+ε/2) = φ(t) − (ε/2)
∂U

∂x
(x(t)),(20)

x(t+ε) = x(t) + ε
φ(t+ε/2)

m
,(21)

φ(t+ε) = φ(t+ε/2) − (ε/2)
∂U

∂x
(x(t+ε)),(22)

that is, a half-step update of φ is performed first and then
it is used to compute x(t+ε) and φ(t+ε). The discretization
of the leapfrog algorithm cannot keep H(x, φ) exactly con-
stant, so a Metropolis acceptance/rejection step is added to
correct the discretization error.

A key step in the leapfrog algorithm is the compu-
tation of the derivative of the potential energy function
∂U/∂x, which involves calculating ∂fy(x;w)/∂x. Note that
the above derivative is with respect to x, not with respect
to w. There are two types of structures in fy(x;w). One
is rectified linear unit r = max(

∑
i wiai, 0), where we in-

corporate the bias term into the sum with ai = −1. Then
∂r/∂ai = wi if r > 0, and ∂r/∂ai = 0 if r = 0. The other
structure is local max pooling unit with r = maxi(ai). Then
∂r/∂ai = 1 if ai is the maximum, and ∂r/∂ai = 0 otherwise.
That is, the derivative is the arg-max un-pooling. There-
fore the computation of ∂fy(x;w)/∂x involves two steps: (1)
Bottom-up scoring for computing r, which consists of con-
volution steps and local max pooling steps. (2) Top-down
derivative computation which involves deconvolution steps
for taking derivatives of the rectified linear units and the
arg-max un-pooling steps for taking derivatives of the lo-
cal max pooling units. The derivative calculation is imple-
mented within each leapfrog step. They are different from
the scheme in [26]. The visualization sequence of a sample
is shown in Fig. 3.

The above method can be adapted to visualize the nodes
at lower layers too. We only need to use the corresponding
scoring function fy(x;w) for a node y.

490 J. Dai, Y. Lu, and Y. N. Wu

Figure 3. The sequence of images produced by HMC that samples from the “Starfish, sea star” category of the “AlexNet”
network [14] discriminatively trained on ImageNet ILSVRC-2012.

5. EXPERIMENTS

5.1 Generative pre-training

In generative pre-training experiments, three different
training approaches are studied: i) discriminative gradient
(DG); ii) generative gradient (GG); iii) generative gradient
pre-training + discriminative gradient tuning (GG+DG).
We build algorithms on the code of Caffe [11] and the ex-
periment settings are identical to [11]. Experiments are per-
formed on two widely used image classification benchmarks:
MNIST [17] handwritten digit recognition and ImageNet
ILSVRC-2012 [1] natural image classification.

MNIST handwritten digit recognition. We first
study generative pre-training on the MNIST dataset. The
“LeNet” network [17] is utilized, which is default for MNIST
in Caffe. Although higher accuracy can be achieved by uti-
lizing deeper networks, random image distortion etc, here
we stick to the baseline network for fair comparison and
experimental efficiency. Network training and testing are
performed on the train and test sets respectively. For all
the three training approaches, stochastic gradient descent is
performed in training with a batch size of 64, a base learn-
ing rate of 0.01, a weight decay term of 0.0005, a momentum
term of 0.9, and a max epoch number of 25. For GG+DG,
the pre-training stage stops after 16 epochs and the discrim-
inative gradient tuning stage starts with a base learning rate
of 0.003.

The experimental results are presented in Table 1. The
error rate of LeNet trained by discriminative gradient
is 1.03%. When trained by generative gradient, the er-
ror rate reduces to 0.85%. When generative gradient pre-
training and discriminative gradient tuning are both ap-
plied, the error rate further reduces to 0.78%, which is 0.25%
(24% relatively) lower than that of discriminative gradi-
ent.

ImageNet ILSVRC-2012 natural image classifica-
tion. In experiments on ImageNet ILSVRC-2012, two net-
works are utilized, namely “AlexNet” [14] and “ZeilerFer-
gusNet” (fast) [26]. Network training and testing are per-
formed on the train and val sets respectively. In training, a

Table 1. Error rates on the MNIST test set of different
training approaches utilizing the “LeNet” network [17]

Training approaches DG Ours (GG) Ours (GG+DG)

Error rates 1.03 0.85 0.78

Table 2. Top-1 classification error rates on the ImageNet
ILSVRC-2012 val set of different training approaches

Training approaches DG Ours (GG) Ours (GG+DG)

AlexNet 40.7 45.8 39.6

ZeilerFergusNet 38.4 44.3 37.4

single network is trained by stochastic gradient descent with
a batch size of 256, a base learning rate of 0.01, a weight de-
cay term of 0.0005, a momentum term of 0.9, and a max
epoch number of 70. For GG+DG, the pre-training stage
stops after 45 epochs and the discriminative gradient tun-
ing stage starts with a base learning rate of 0.003. In testing,
top-1 classification error rates are reported on the val set by
classifying the center and the four corner crops of the input
images.

As shown in Table 2, the error rates of discriminative gra-
dient training applied on AlexNet and ZeilerFergusNet are
40.7% and 38.4% respectively. The error rates of generative
gradient are 45.8% and 44.3% respectively. Generative gra-
dient pre-training followed by discriminative gradient tuning
achieves error rates of 39.6% and 37.4% respectively, which
are 1.1% and 1.0% lower than those of discriminative gradi-
ent.

Experiment results on MNIST and ImageNet ILSVRC-
2012 show that generative gradient pre-training followed
by discriminative gradient tuning consistently improves the
classification accuracies for varying networks. At the begin-
ning stage of training, updating network parameters accord-
ing to the generative gradient provides useful pre-training,
which leads the network parameters to a good local opti-
mum.

As to the computational cost, generative gradient is on
par with discriminative gradient. The computational cost of

Generative ConvNet 491

Figure 4. Samples from the nodes at the final fully-connected layer in the fully trained LeNet model, which correspond to
different handwritten digits.

Table 3. Top-1 classification error rates on the ImageNet
ILSVRC-2012 val set of different semi-supervised learning

approaches (utilizing the “AlexNet”)

Labeled number 50,000 100,000 300,000

DG 92.2 78.7 61.3

TDG+DG [13] 91.0 77.2 60.1

LPAL [2] 94.3 - -

Ours (GG+DG) 89.2 75.0 57.7

the generative loss layer itself is ignorable in the network
compared to the computation at the convolutional layers
and the fully-connected layers. The total epoch numbers of
GG+DG is on par with that of DG. Better accuracies can
be achieved by generative gradient pre-training without in-
troducing additional computation overhead.

5.2 Semi-supervised learning

In semi-supervised learning experiments, we apply the
proposed semi-supervised learning algorithm on the large-
scale ImageNet ILSVRC-2012 natural image classifica-
tion benchmark, and compare with several semi-supervised
learning approaches [13, 2]. Although there are other semi-
supervised learning algorithms [25] available for ConvNets,
most of them do not scale well and are not applicable on
such a large-scale dataset.

In the experiments, a random subset of examples in the
train set are used as labeled examples, while all the other
examples in the train set are treated as unlabeled examples.
We apply the proposed semi-supervised learning algorithm
on the train dataset that consists of both labeled and unla-
beled examples, and then finetune the network by discrimi-
native gradient on the labeled subset (GG+DG). The tuning
parameter λ is set to 0.1 in our experiments. As a compari-
son, we also report the error rates of discriminative gradient
on the labeled subset (DG), a transductive discriminative
ConvNet [13] trained on the full dataset and finetuned by
discriminative gradient on the labeled subset (TDG+DG).

As shown in Table 3, when the numbers of labeled exam-
ples are 50,000, 100,000 and 300,000 respectively, the error
rates of the proposed approach on the val set are 89.2%,
75.0%, and 57.7% respectively. The error rates are 1.8%,
2.2% and 2.4% lower than those of [13], and 3.0%, 3.7%
and 3.6% lower than those of discriminative gradient (all
the approaches utilize the “AlexNet”). [2] performs semi-
supervised learning by linear propagation with active learn-
ing (LPAL), and reports an error rate of 94.3% on 50,000
labeled examples. Our approach’s error rate is 5.1% lower
than that.

The computational cost of the proposed semi-supervised
learning algorithm is the same as that in fully-supervised
training, because there is no additional computational over-
head.

5.3 Generative visualization

In the generative visualization experiments, we visualize
the nodes of the LeNet network and the AlexNet network
trained by discriminative gradient on MNIST and ImageNet
ILSVRC-2012 respectively. The networks trained by gener-
ative gradient can be visualized by the same algorithm as
well.

We first visualize the nodes at the final fully-connected
layer of LeNet. In the experiments, we delete the drop-
out layer to avoid unnecessary noise for visualization. At
the beginning of visualization, x is initialized from the ref-
erence distribution q(x). The HMC iteration number, the
leapfrog step size, the leapfrog step number, the standard
deviation of reference distribution σ, and the particle mass
are set to be 300, 10−4, 100, 10, and 0.01 respectively.
The visualization results are shown in Fig. 4. The sam-
ples drawn from a node clearly correspond to the handwrit-
ten digit of the corresponding category, and are of varying
shapes.

We further visualize the nodes in AlexNet, which is
a much larger network compared to LeNet. Both nodes
from the intermediate convolutional layers (conv1 to conv5)
and the final fully-connected layer (fc8) are visualized. The

492 J. Dai, Y. Lu, and Y. N. Wu

Figure 5. Samples from the nodes at the intermediate convolutional layers (conv1 to conv5) in the fully trained AlexNet model.

leapfrog step size, the leapfrog step number, the standard
deviation of reference distribution σ, and the particle mass
are set to be 3 × 10−6, 50, 10, and 10−5 respectively. The
HMC iteration numbers are 100 and 500 for nodes from
the intermediate convolutional and the final fully-connected
layers respectively. We set the temperature T = .001 in vi-
sualizing AlexNet.

The samples from the intermediate convolutional layers
of AlexNet are shown in Fig. 5, while those from the fi-
nal fully-connected layer are shown in Fig. 6 to Fig. 7. The
HMC algorithm produces meaningful and varied samples,
which vividly reveals what is learned by nodes at differ-
ent hierarchies in the network. Note that such samples are
generated by the HMC algorithm from the trained model

directly, without using a large hold-out collection of images
as in [6, 26, 19].

As to the computational cost, it varies for nodes at differ-
ent layers within different networks. On a desktop with GTX
Titian, it takes about 0.4 minute to draw a sample for nodes
at the final fully-connected layer of LeNet. In AlexNet, for
nodes at the first convolutional layer and at the final fully-
connected layer, it takes about 0.5 minute and 12 minutes
to draw a sample respectively.

6. CONCLUSION

Given the recent successes of ConvNets, it is worthwhile
to explore their generative aspects. In this work, we show

Generative ConvNet 493

Figure 6. Samples from the nodes at the final fully-connected layer (fc8) of the AlexNet model, which correspond to different
object categories.

that a simple generative model can be constructed based
on the ConvNet. The generative model helps to pre-train
the ConvNet. It also helps to visualize the knowledge of the
learned ConvNet. Although we work on the image data in
this paper, the proposed method can be applied to other
types of data where ConvNets apply.

The proposed visualization scheme can sample from the
generative model, and it may be turned into a parametric
generative learning algorithm, where the generative gradient

can be approximated by samples generated by the current
model.

ACKNOWLEDGEMENT

We thank Adrian Barbu for helpful discussions. The work
is supported by NSF DMS 1310391, ONRMURI N00014-10-
1-0933, DARPA SIMPLEX N66001-15-C-4035, and DARPA
MSEE FA 8650-11-1-7149.

494 J. Dai, Y. Lu, and Y. N. Wu

Figure 7. Samples from the nodes at the final fully-connected layer (fc8) of the AlexNet model, which correspond to different
object categories.

Generative ConvNet 495

Received 2 April 2015

REFERENCES

[1] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and
Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image
database. In CVPR.

[2] Ebert, S., Fritz, M. and Schiele, B. (2012). Semi-supervised
learning on a budget: Scaling up to large datasets. In ACCV.

[3] Efron, B. (1975). The efficiency of logistic regression compared to
normal discriminant analysis. Journal of the American Statistical
Association. MR0391403

[4] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vin-

cent, P. and Bengio, S. (2010). Why does unsupervised pre-
training help deep learning? JMLR 11. MR2600623

[5] Erhan, D., Bengio, Y., Courville, A. and Vincent, P. (2009).
Visualizing higher-layer features of a deep network. Dept. IRO,
Université de Montréal, Tech. Rep.

[6] Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2013).
Rich feature hierarchies for accurate object detection and seman-
tic segmentation. arXiv preprint arXiv:1311.2524.

[7] Hariharan, B., Arbeláez, P., Girshick, R. and Malik, J.

(2014). Simultaneous detection and segmentation. In ECCV.
[8] Hinton, G.,Osindero, S. and Teh, Y.-W. (2006). A fast learning

algorithm for deep belief nets. Neural Computation 18 1527–1554.
MR2224485

[9] Hinton, G., Osindero, S., Welling, M. and Teh, Y.-W. (2006).
Unsupervised discovery of nonlinear structure using contrastive
backpropagation. Cognitive Science.

[10] Hinton, G. E. (2002). Training products of experts by minimizing
contrastive divergence. Neural Computation 14.

[11] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S. and Darrell, T. (2014). Caffe:
Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.

[12] Jordan, A. (2002). On discriminative vs. generative classifiers:
A comparison of logistic regression and naive bayes. NIPS 14
841.

[13] Karlen, M., Weston, J., Erkan, A. and Collobert, R. (2008).
Large scale manifold transduction. In ICML.

[14] Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural networks. In
NIPS.

[15] Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K.,
Corrado, G. S., Dean, J. and Ng, A. Y. (2012). Building
high-level features using large scale unsupervised learning. In
ICML.

[16] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. and Jackel, L. D. (1989). Back-
propagation applied to handwritten zip code recognition. Neural
Computation.

[17] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE.

[18] Liang, P. and Jordan, M. I. (2008). An asymptotic analysis
of generative, discriminative, and pseudolikelihood estimators. In
ICML.

[19] Long, J. L., Zhang, N. and Darrell, T. (2014). Do convnets
learn correspondence? In NIPS.

[20] Neal, R. (2011). MCMC using Hamiltonian dynamics. Handbook
of Markov Chain Monte Carlo. MR2858447

[21] Rifai, S., Vincent, P., Muller, X., Glorot, X. and Bengio, Y.

(2011). Contractive auto-encoders: Explicit invariance during fea-
ture extraction. In ICML 833–840.

[22] Roth, S. and Black, M. J. (2009). Fields of experts. IJCV.
[23] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C. and Fei-Fei, L. (2014). ImageNet Large Scale Visual
Recognition Challenge. arXiv preprint arXiv:1409.0575.

[24] Salakhutdinov, R. and Hinton, G. E. (2009). Deep Boltzmann
machines. In AISTATS.

[25] Weston, J., Ratle, F., Mobahi, H. and Collobert, R. (2012).
Deep learning via semi-supervised embedding. In Neural Net-
works: Tricks of the Trade.

[26] Zeiler, M. D. and Fergus, R. (2013). Visualizing and
understanding convolutional neural networks. arXiv preprint
arXiv:1311.2901.

Jifeng Dai
Microsoft Research Asia
Building 2, No. 5 Dan Ling Street
Haidian District
Beijing, 100080
P.R. China
E-mail address: jifdai@microsoft.com

Yang Lu
UCLA Department of Statistics
Los Angeles, CA 90095-1554
USA
E-mail address: yanglv@ucla.edu

Ying Nian Wu
UCLA Department of Statistics
Math Sciences Bldg.
Los Angeles, CA 90095-1554
USA
E-mail address: ywu@stat.ucla.edu

496 J. Dai, Y. Lu, and Y. N. Wu

http://www.ams.org/mathscinet-getitem?mr=0391403
http://www.ams.org/mathscinet-getitem?mr=2600623
http://www.ams.org/mathscinet-getitem?mr=2224485
http://www.ams.org/mathscinet-getitem?mr=2858447
mailto:jifdai@microsoft.com
mailto:yanglv@ucla.edu
mailto:ywu@stat.ucla.edu

	Introduction
	Big data and big model
	Generative modeling

	Past work
	Background
	Filters
	ConvNet: filters on top of filters

	Generative modeling of ConvNet
	Probability distributions on images
	Generative gradient
	Batch training and generative loss layer
	Generative vs discriminative for batch training
	Semi-supervised learning
	Generative visualization

	Experiments
	Generative pre-training
	Semi-supervised learning
	Generative visualization

	Conclusion
	Acknowledgement
	References
	Authors' addresses

