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Model diagnostics in reduced-rank estimation

Kun Chen
∗,†

Reduced-rank methods are very popular in high-
dimensional multivariate analysis for conducting simultane-
ous dimension reduction and model estimation. However,
the commonly-used reduced-rank methods are not robust,
as the underlying reduced-rank structure can be easily dis-
torted by only a few data outliers. Anomalies are bound to
exist in big data problems, and in some applications they
themselves could be of the primary interest. While naive
residual analysis is often inadequate for outlier detection due
to potential masking and swamping, robust reduced-rank es-
timation approaches could be computationally demanding.
Under Stein’s unbiased risk estimation framework, we pro-
pose a set of tools, including leverage score and generalized
information score, to perform model diagnostics and out-
lier detection in large-scale reduced-rank estimation. The
leverage scores give an exact decomposition of the so-called
model degrees of freedom to the observation level, which lead
to exact decompositions of many commonly-used informa-
tion criteria; the resulting quantities are thus named infor-
mation scores of the observations. The proposed information
score approach provides a principled way of combining the
residuals and leverage scores for anomaly detection. Simula-
tion studies confirm that the proposed diagnostic tools work
well. A pattern recognition example with hand-writing digi-
tal images and a time series analysis example with monthly
U.S. macroeconomic data further demonstrate the efficacy
of the proposed approaches.

AMS 2000 subject classifications: Primary 62M10;
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1. INTRODUCTION

With n independent observations of response yi ∈ R
q

and predictor xi ∈ R
p, we consider a multivariate regression

model

(1) Y = XC+E,

where Y = [y1, ...,yn]
T ∈ R

n×q is the response matrix, X =
[x1, ...,xn]

T ∈ R
n×p is the predictor matrix, C ∈ R

p×q is an
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unknown coefficient matrix, and E = [e1, ..., en]
T ∈ R

n×q

is an error matrix consisting of independent and identically
distributed (i.i.d.) zero-mean error vectors. Such multivari-
ate learning problems, in which either the model dimensions
(p, q) or the sample size n can be very large, have become
increasingly common, due to the unprecedented data explo-
sion with ever increasing volume and complexity. For exam-
ple, in genetics, it is of great interest to understand how gene
expression profiles are related to DNA copy number varia-
tions [50]. In a study of human lung disease, the goal is to
use detailed segmental lung airway measurements from CT-
scanned images to predict various lung pulmonary function
test results [15, 16]. Many matrix approximation methods
such as principal component analysis (PCA) can be formu-
lated as a special case of Model 1, for which X becomes
Ip, the p-dimensional identity matrix. A typical application
is in image denoising and compression, in which a primary
task is to extract true image signals from corrupted noisy
inputs [4].

To make sense of the dependency between the possi-
bly high-dimensional responses and predictors, it is of-
ten assumed that the coefficient matrix C admits certain
low-dimensional structure, the exploitation of which may
mitigate the curse of dimensionality, enhance model in-
terpretability, and improve model predictive performance.
Along this line, various regularized estimation methods
have been developed. Several ridge regression methods re-
lied on shrinkage estimation to overcome the deficiencies of
multicollinearity [23]. Most sparse multivariate regression
methods focused on predictor selection by exploring certain
sparse patterns in C [38, 40, 37]. While the above multivari-
ate methods are usually readily extended from their uni-
variate counterparts, the reduced-rank estimation method-
ology possesses a genuine multivariate flavor [2, 25, 39].
The seminal reduced-rank regression (RRR) [2] achieved di-
mension reduction by imposing a low-rank constraint on C,
which could dramatically reduce the number of free param-
eters and induce an appealing latent variable interpretation.
Bunea et al. [5] extended RRR to high dimensional settings.
Yuan et al. [53] proposed the convex nuclear-norm penalized
method to achieve simultaneous rank reduction and shrink-
age estimation; see, also, Negahban and Wainwright [36], Lu
et al. [29], Mukherjee and Zhu [34] and Chen et al. [13]. The
reduced-rank representation has been further extended to
enable variable selection [11, 6, 14], and it can be distilled
from many other multivariate tools such as PCA, canonical
correlation analysis, and matrix completion [9, 27]. It is evi-
dent that the reduced-rank methods have greatly facilitated
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scientific investigations in various disciplines, e.g., finance
[39], ecology [12], neuroscience [55], genetics [31], etc.

In a nutshell, reduced-rank estimation has become an in-
dispensable ingredient in modern statistical learning. How-
ever, despite of its effectiveness, reduced-rank estimation can
be very sensitive to the presence of gross outliers and in-
fluential points. In real applications, anomalies are bound
to appear, and they could severely distort or even com-
pletely destroy the underlying reduced-rank structure of in-
terest. As such, the nonrobustness of reduced-rank estima-
tion may greatly jeopardize its applicability in big data ap-
plications. For example, in the aforementioned lung disease
study, reduced-rank estimation can be applied to identify a
few latent pathways as some linear combinations of the lung
airway measurements, to link the airway tree alternation to
certain lung disease status. However, the identified pathways
and airway features could be distorted by a few abnormal
samples that deviate from the assumed model. Ignoring the
heterogeneous effects caused by these samples could lead to
misunderstanding about the actual disease mechanism. Yet
in another type of applications, the primary interest may be
to capture certain unusual signals and rare jumps. For ex-
ample, to detect motion of certain objects using surveillance
video frames, a reduced-rank model component is designed
to extract the common background of the images, and it is
what remains capture the motion of the objects.

Therefore, outlier detection is critical in reduced-rank
analysis. This task, however, is notoriously difficult, due
to both the high-dimensionality of the problem and the
nonlinearity/nonconvexity of the low-rank structure. In the
context of unsupervised learning, extensive research has
been devoted to robust PCA [51, 8]. In supervised learn-
ing, She and Chen [46] proposed robust reduced-rank re-
gression (R4) to conduct joint outlier detection and robust
low-rank regression, and the method was shown to have a
strong connection with M-estimation and possess attractive
finite-sample robustness guarantees. However, there is no
free lunch: in general these robust methods have a much
increased computation cost comparing to the plain RRR,
as the estimators no longer admit explicit form and certain
iterative procedure is required in optimization [7].

An overlooked yet effective approach for robust reduced-
rank modeling is to perform model diagnostics in the regular
reduced-rank estimation, which can be both easy to imple-
ment and computationally efficient. Many existing model
diagnostic tools, such as studentized residual, leverage score
and Cook’s distance [17], were mainly developed for linear
models in low-dimensional setups. Zhu et al. [54] consid-
ered perturbation and scaled Cook’s distance. Several meth-
ods considered extensions of these tools to multivariate re-
gression models [18, 41, 56]. However, to the best of our
knowledge, model diagnostics have not been studied in high-
dimensional reduced-rank estimation.

In this paper, we develop a set of model diagnostic tools
in large-scale reduced-rank regression problems, including

leverage score (LEV), generalized information score (GIS),
and Cook’s distance (CD). In Section 2, we present a gen-
eral class of reduced-rank estimators and reveal its nonro-
bustness against data corruption. The Stein’s unbiased risk
estimation framework [47] is reviewed in Section 3.1, based
on which we derive the leverage scores of the data observa-
tions for reduced-rank estimation in Section 3.2. This task is
nontrivial, as in nonlinear models the leverage scores depend
on both the responses and the predictors and in general do
not admit explicit form. Motivated by Mukherjee et al. [33],
we show that all the ingredients required for computing the
reduced-rank estimator and the leverage scores can be ob-
tained from a single singular value decomposition (SVD),
and the computation is efficient with careful manipulations
of matrix operations. The model residuals and the lever-
age scores deliver important and complementary messages
about how the observed data points fit to the model. In
Section 3.3, we consider how to best use the two measures
together to achieve a unified assessment of each observation.
Intriguingly, the leverage scores of all the observations give
an exact decomposition of the so-called model degrees of
freedom, which then lead to exact decomposition of an un-
biased estimator of the true model prediction error as well
as many information criteria such as AIC [1] and BIC [43].
For a given information criterion, we term the decomposed
quantity for each individual observation as its information
score, which measures the contribution from this observation
to the overall information criterion and hence also indicates
the outlying effect of this observation. As such, the pro-
posed information score approach provides a principled way
of combining model residuals and leverage scores for eval-
uating the observations, and the idea is generally applica-
ble in linear/nonlinear estimation problems. In Section 3.4,
we consider approximating the Cook’s distance in reduced-
rank estimation. Numerical studies presented in Sections 4
and 5 confirm that using the proposed diagnostic measures
is indeed a simple yet effective way for anomaly detection
in large-scale data analysis. Some concluding remarks are
provided in Section 6.

2. REDUCED-RANK ESTIMATION

Consider the multivariate regression model in (1). Let

ŶLS be the ordinary least squares estimator (LS) of the
regression component,

ŶLS = XĈLS = X(XTX)−XTY = W
n×r̄

D
r̄×r̄

V
r̄×q

T,(2)

where (·)− denotes the Moore-Penrose inverse, and WDVT

is the SVD of ŶLS , i.e., W
TW = I, VTV = I, and D =

diag{di, i = 1, ..., r̄} with d1 > · · · > dr̄ > 0. Here ŶLS is
of rank r̄ ≤ min(rx, q), with rx = r(X) being the rank of
the design matrix. Without loss of generality, we assume the
nonzero singular values of ŶLS are distinct, so that the SVD
of ŶLS is unique up to the signs of the singular vectors.
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We consider reduced-rank estimation by minimizing the
following singular-value penalized least squares criterion

1

2
‖Y −XC‖2F +

min(rx,q)∑
k=1

ρ(dk(XC);λωk),(3)

where dk(·) denotes the kth largest singular value of the
enclosed matrix, ρ is certain sparsity-inducing penalty func-
tion, λ ≥ 0 is the penalty level, and ωks are some prespeci-
fied adaptive weights satisfying 0 ≤ ω1 ≤ ω2 · · · ≤ ωmin(rx,q).

Minimizing (3) is the same as minimizing ‖ŶLS −B‖2F /2+∑
ρ(dk(B);λωk) subject toB = XC, owing to the Pythago-

ras’ theorem. As shown by She [45] and Chen et al. [13], with
a wide class of ρ, the constraint B = XC can be dropped,
since the solution of B, denoted as Ŷ(λ), still belongs to the
column space of X and is explicitly given by singular value
thresholding. This produces a general class of reduced-rank
estimators:

Ŷ(λ) = XĈ(λ) = WΘσ(D;λ)VT

= (WDVT)VD−1Θσ(D;λ)VT

= ŶLS

r̄∑
k=1

(Θ(dk;λωk)/dk)vkv
T
k

= ŶLS

r̄∑
k=1

s(dk;λωk)vkv
T
k .(4)

The function Θσ(·;λ) denotes an arbitrary singular value
thresholding rule associated with ρ [45]; for the diagonal ma-
trix D, Θσ(D;λ) = diag{Θ(dk;λωk), k = 1, . . . , r̄}, where
Θ(·;λ) is an arbitrary thresholding rule associated with ρ,
defined as some odd monotone unbounded shrinkage func-
tion. See details in She [44], in which a general functional
link between ρ and Θ was established. Here we have also
defined s(dk;λωk) = Θ(dk;λωk)/dk, and consequently they
satisfy 1 ≥ s(d1;λh1) ≥ · · · ≥ s(dr̄;λhr̄) ≥ 0. For simplicity,
we may write s(dk;λωk) = s(dk;λ) = sk when no confusion
arises.

In (3), the singular values of the regression component
XC are penalized rather than those of C. It is mainly due
to this setup, (3) is able to produce the explicit reduced-rank
solution given in (4). This class of estimators shares the same
set of singular vectors with the LS estimator, but their singu-
lar value estimates are some shrunk or thresholded versions
of the estimated singular values from LS. Some commonly-
used penalty forms in (3) include the rank penalty [5] and
the nuclear-norm penalty [53]. Specifically, a rank-penalized
criterion can be expressed as

(5)
1

2
‖Y −XC‖2F +

λ2

2

min(rx,q)∑
k=1

I(dk(XC) �= 0),

where I(·) is the indicator function. Here∑min(rx,q)
k=1 I(dk(XC) �= 0) = r(XC), and penalizing

r(XC) is equivalent to penalizing r(C) [13]. The solution

of (5) is obtained by a singular value hard-thresholding
operation, i.e.,

s(dk;λ) = I(dk > λ), k = 1, ...,min(rx, q).

Equivalently, the set of reduced-rank regression (RRR) es-
timators, obtained by minimizing ‖Y − XC‖2F subject to
r(C) ≤ r, for r = 1, . . . ,min(rx, q), spans the solution
path of (5). The adaptive nuclear-norm penalized criterion
(ANN) is

1

2
‖Y −XC‖2F + λ

min(rx,q)∑
k=1

ωkdk(XC),(6)

where the weights can be chosen as ωk = d−γ
k (ŶLS) =

d−γ
k with γ being a prespecified nonnegative constant.

The estimator is given by an adaptive singular value soft-
thresholding operation, i.e.,

s(dk;λ) = (1− λd−γ−1
k )+, k = 1, ...,min(rx, q),

where x+ = max(0, x) is the nonnegative part of x.
Outliers are bound to occur in practice, especially in big

data applications where the reduced-rank methodology is
supposed to be the most effective. However, reduced-rank
estimation methods can be highly nonrobust. Using the no-
tation of break-down point from robust estimation litera-
ture, the following results state that it takes only a single
outlier to destroy the reduced-rank estimators in (3). More
details on the nonrobustness of reduced-rank estimation can
be found in She and Chen [46].

Proposition 1. [46] Let Ĉ(λ;X,Y) denote the reduced-
rank estimator by solving (3), with finite data (X,Y) and
some tuning parameters λ ≥ 0, 0 ≤ ω1 ≤ . . . ≤ ωmin(rx,q) <
∞. Define its break down point as

τ(Ĉ(λ;X,Y))

=
1

N
min

{
k ∈ {0, 1, . . . , N} :

sup
Ỹ:‖Ỹ−Y‖0≤k

‖XĈ(λ;X, Ỹ)‖F = ∞
}
,

where N = nq, and ‖A‖0 =
∑

i

∑
j I(aij �= 0) for any

matrix A = (aij). Then we have, τ(Ĉ(λ;X,Y)) = 1/N.

3. DIAGNOSTIC TOOLS FOR
REDUCED-RANK ESTIMATION

From Proposition 1, it is pressing to consider outlier de-
tection and robust estimation problems in reduced-rank es-
timation. Our focus in this paper is on developing some sim-
ple yet effective model diagnostic tools, which preferably can
be computed as some byproducts from the estimation pro-
cedure outlined in Section 2. In real applications, robust
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estimation methods [46] and the proposed diagnostic tools
are often complementary to each other, and together they
may better fulfill the needs of handling large data problems.

3.1 Some key concepts from Stein’s
unbiased risk estimation

We begin with a brief description of the Stein’s Unbiased
Risk Estimation (SURE) theory [47, 19], in the general con-
text of multivariate regression. To formulate, assume that
we observe Y ∈ R

n×q and X ∈ R
n×p. Consider the model

Y = μ(X) + E, where μ(X) is the mean function, and the
entries of E, eij , are i.i.d. with mean zero and variance σ2.
For an estimation procedure f , denote its fitted value of Y
as Ŷ = f(X,Y).

Define the standardized apparent error and true predic-
tion error for the (i, j)th observation as

errij = (yij − ŷij)
2/σ2, Errij = E0(y

0
ij − ŷij)

2/σ2,

for i = 1, . . . , n and j = 1, . . . , q, where the expectation E0

is over a new observation y0ij ∼ (μij , σ
2) independent of Y.

It is shown that

E(Errij) = E

{
errij + 2

cov(ŷij , yij)

σ2

}
.(7)

That is, erri has to be adjusted by a covariance term in or-
der to unbiasedly estimate Errij . Assuming normality of eij ,
Stein’s lemma reveals that cov(ŷij , yij) = σ2

E(∂ŷij/∂yij),
provided that ∂ŷij/∂yij exists [47]. This leads to Stein’s un-
biased risk estimate,

γij = Êrrij = errij + 2
∂ŷij
∂yij

,(8)

where we name γij as the SURE information score for the
(i, j)th observation (to be elaborated later).

The SURE information criterion for estimating the total
prediction error is then given by

n∑
i=1

q∑
j=1

γij =
‖Y − Ŷ‖2

σ2
+ 2

n∑
i=1

q∑
j=1

∂ŷij
∂yij

.(9)

The first term is the training error, and it alone in-
evitably underestimates the true prediction error. The sec-
ond term is for bias correction [22], and it is closely re-
lated to model complexity: the harder we fit the data, the
stronger each yij affects its own prediction, thereby increas-
ing the complexity. From (7) and (9), the degrees of free-
dom of an estimation procedure f is defined as df(f) =∑n

i=1

∑q
j=1 cov(ŷij , yij)/σ

2, and an unbiased estimator is

d̂f(f) =

n∑
i=1

q∑
j=1

∂ŷij
∂yij

.(10)

These definitions and concepts hold generally for both linear
and nonlinear models.

3.2 Leverage score

From the SURE theory, the leverage score of an obser-
vation in an estimation procedure is defined as the self-
sensitivity or self-influence of the observation,

lij =
∂ŷij
∂yij

, i = 1, . . . , n, j = 1, . . . , q.

In multivariate problems, it is also of interest to measure the
overall leverage effect of each multivariate observation. We
propose to use the sum of the individual leverage scores of
the q observations constituting a multivariate observation,
i.e.,

li =

q∑
j=1

lij =

q∑
j=1

∂ŷij
∂yij

, i = 1, . . . , n,

as the leverage score for the multivariate observation.
The above definition is a generalization of the familiar

concept of leverage value in classic linear regression models.
For a linear estimation procedure, it holds that Ŷ = HY
with the hat matrix H = (hij)n×n being a function of X
but free of Y. Using the above definition, the scores are in-
deed given by the diagonal elements of H, i.e., lij = hii. As
such, in linear estimation, the leverage scores only charac-
terize the properties of X. However, in nonlinear methods
such as reduced-rank regression, the leverage scores in gen-
eral depend on both Y and X, and they may no longer
admit any explicit form. As a consequence, the computa-
tion of the leverage scores may be much more complicated.
To the best of our knowledge, the usages of the individ-
ual leverage scores in reduced-rank estimation have never
been investigated in the literature. On the other hand, the
leverage score is closely related to the measure of model
complexity, which has been extensively studied. Specifi-
cally, as shown in (10), the sum of the leverage scores
provides an unbiased estimator of the degrees of freedom,
d̂f(Ŷ) =

∑n
i=1

∑q
j=1 lij . Mukherjee et al. [33] studied the

model complexity of reduced-rank estimation, and an exact
unbiased estimator of the degrees of freedom was derived as
a function of the estimated singular values; see, also, Yuan
[52] and Candès et al. [10].

While Mukherjee et al. [33] mainly focused on the model
complexity problem in reduced-rank estimation, here we
have a different focus, i.e., we compute and study the proper-
ties of the leverage scores in reduced-rank estimation, for the
purpose of model diagnostics. More generally, we consider
the computation of ∂ŷi∗j∗/∂yij , for any 1 ≤ i∗, i < n and
1 ≤ j∗, j ≤ q, which characterizes the influence of the (i, j)th
observation on the estimation of the (i∗, j∗)th observation.
That is, we study the possible usages of the divergence ma-
trix ∂vec(Ŷ)/∂vec(Y) ∈ R

nq×nq, where vec(·) denotes the
vectorization operator. Obtaining the entire divergence ma-
trix is often unnecessary in real applications, but some of its
elements are very informative in model diagnostics. In par-
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ticular, the divergence matrix gives the individual leverage
scores as its diagonal elements, and we will see later that it
also provides the ingredients to construct and approximate
other diagnostic measures such as the Cook’s distance [17].

Now consider the derivation of the divergence matrix
∂vec(Ŷ)/∂vec(Y) in reduced-rank estimation. The reduced-

rank estimator Ŷ = Ŷ(λ) and the least squares estimator

ŶLS differ in their estimated singular values, so the former
can be regarded as certain low-rank approximation of the
latter. Direct computation of the divergence matrix involves
taking derivatives of the singular values and singular vectors
with respect to the entries of ŶLS . In high-dimensional sce-
narios, such derivatives may not be well-defined as ŶLS may
not be of full column (row) rank. Following Mukherjee et al.
[33], a reparameterization approach can be used to avoid
this difficulty.

We assume that ŶLS is of rank r̄ = min(rx, q). This
assumption generally holds even when the sample size n
exceeds both p and q. Let XTX = QS2QT be the eigen
decomposition of XTX, i.e., Q ∈ R

p×rx , QTQ = I, and S ∈
R

rx×rx is a diagonal matrix with positive diagonal elements.
Then, the inverse of XTX can be written as (XTX)− =
QS−2QT. Define

A = S−1QTXTY.

It then follows that A ∈ R
rx×q admits an SVD of the

form A = UDVT, where U ∈ R
rx×r̄, UTU = I, and V,

D are defined in (2). The matrix A shares the same set

of singular values and right singular vectors with ŶLS , as

ATA = Ŷ
T

LSŶLS = YTX(XTX)−XTY. Therefore,

Ŷ(λ) = XQS−1A

r̄∑
k=1

s(dk, λ)vkv
T
k

= XQS−1UD̂(λ)VT

= XQS−1Â(λ),(11)

where D̂(λ) = diag{s(dk, λ)dk; k = 1, ..., r̄} and Â(λ) =

UD̂(λ)VT. Using the new expression of Ŷ(λ) in (11) and
following Mukherjee et al. [33], we have the following results
on the explicit form of the divergence matrix.

Theorem 1. Assume r(ŶLS) = r̄ = min(rx, q). Suppose

the singular values of ŶLS are all distinct, i.e., d1 > · · · dr̄ >
0. Then for the reduced-rank estimator Ŷ(λ) in (4), the di-
vergence matrix exists and is given by

∂vec(Ŷ(λ))

∂vec(Y)

= (Iq ⊗XQS−1)

(
∂vec(Â(λ))

∂vec(A)

)
(Iq ⊗ S−1QTXT).

The entries of ∂vec(Â(λ))/∂vec(A) are given by

∂Â(λ)

∂aij
=

∂A

∂aij

r̂∑
k=1

skvkv
T
k +A

r̂∑
k=1

sk
∂vk

∂aij
vT
k

+A

r̂∑
k=1

skvk
∂vT

k

∂aij
+A

r̂∑
k=1

∂sk
∂aij

vkv
T
k

= Z(ij)V(r̂)D(r̂)−1D̂
(r̂)

V(r̂)�

−A

r̂∑
k=1

{
sk(A

TA− d2kI)
−(ATZ(ij)

+ Z(ij)�A)vkv
T
k

}
−A

r̂∑
k=1

{
skvkv

T
k (A

TZ(ij)

+ Z(ij)�A)(ATA− d2kI)
−

}
+A

r̂∑
k=1

{
s′k{

1

2dk
vT
k (A

TZ(ij)

+ Z(ij)�A)vk}vkv
T
k

}
,

where r̂ = r(Ŷ(λ)) = max{k : sk > 0.}, sk = s(dk;λωk),

s′k = ∂sk/∂dk, and Z(ij) = ∂A/∂aij is an rx × q matrix of
zeros with only its (i, j)th entry being one.

Under the assumptions r̄ = r(ŶLS) = min(rx, q) and
d1 > · · · > dr̄ > 0, the construction of the A matrix re-
duces the dimensionality of the problem, and ensures that
the partial derivatives are well-defined. A sketch of proof is
given in the Appendix.

All the elements required for computing the divergence
matrix are obtained from a QR decomposition of the Gram
matrix and the SVD of the LS estimator. Furthermore,
for the computation of the leverage scores, it suffices to
only compute ∂âj/∂aj , with Â = [â1, . . . , âq] and A =
[a1, . . . ,aq].

Corollary 1. Denote A(k) = (ATA − dkI)
−1 for k =

1, . . . , r̂ and A[j] = [a
(1)
j , . . . ,a

(r̂)
j ] for j = 1, . . . , q. Also

denote V = [v1, . . . ,vr̂] = [ṽT
1 , . . . , ṽ

T
q ]

T. Let zj be an q× 1
vector of zeros with only its jth entry being one. Then,

∂ŷj(λ)

∂yj
= XQS−1

(
∂âj(λ)

∂aj

)
S−1QTXT, j = 1, . . . , q,

∂âj(λ)

∂aj
= ṽT

j ṽjI+A

(
r̂∑

k=1

skv
2
jkA

(k) +A[j] diag(ṽj)V
TAT

)

+A

{
r̂∑

k=1

skvka
(k)T

j (vjkA+ zTj ⊗Avk)
T

}

+A

(
r̂∑

k=1

s′kv
2
jk

dk
vkv

T
k

)
AT.

With careful manipulation of the matrix operations, the
computation of the leverage scores is efficient.
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3.3 Generalized information score

The SURE criterion in (9) is commonly used for model
assessment and selection as it reflects the true predictive
performance of an estimation procedure. Our primary in-
terest here, however, is on the individual SURE information
scores γij defined in (8), which provide an exact decompo-
sition of the total true prediction error. Each γij unbiasedly
estimates the true prediction error for y0ij , which can be re-
garded as the contribution of the (i, j)th observation to the
total error. The γij becomes large when the (i, j)th residual
is large and/or the (i, j)th leverage score is large. As such,
the SURE information scores provide an intriguing way to
combine model residuals and leverage scores!

Motivated by the connection between the SURE infor-
mation score and information criterion, we propose a gen-
eralized information score approach for model diagnostics.
Consider an information criterion of the following form

IC(f, w) =

n∑
i=1

q∑
j=1

g(yij ; ŷij) + w

n∑
i=1

q∑
j=1

∂ŷij
∂yij

,

where f denotes an estimation procedure, g is a function
measuring the model estimation error or the lack of fit, and
w controls the penalty on the model complexity. Generally, g
can be chosen as −2 logL(ŷij ; yij) where L is the likelihood
function. We now define the generalized information score
(GIS) for the (i, j)th observation as

γij(w) = g(yij ; ŷij) + w
∂ŷij
∂yij

, i = 1, . . . , n, j = 1, . . . , q,

so that IC(f, w) =
∑n

i=1

∑q
j=1 γij(w). When the data are

contaminated, the outliers may have different influences on
the model estimation. In general, if an outlier dominates the
model estimation, its lack of fit term g(yij ; ŷij) tends to be
small, which may lead to “masking”. However, the leverage
score of this observation may become large due to its domi-
nance. On the other hand, a normal observation may happen
to have relatively large lack of fit term, which may lead to
“swamping”. However, the leverage score of this observation
may tend to be small, as it does not fit the estimated model
well. Therefore, the merit of the proposed information score
is to integrate the lack of fit measure and the leverage mea-
sure in a principled way, to achieve an objective assessment
of the true outlying effect of each observation.

The proposed approach directly applies to the multivari-
ate reduced-rank estimation, i.e.,

γij(w) =
(yij − ŷij)

2

σ2
+ wlij , i = 1, . . . , n, j = 1, . . . , q,

(12)

in which the leverage scores lij can be obtained from Theo-
rem 1. This decomposition applies to many well-known in-
formation criteria. To list a few, γij(2) gives the AIC score

[1] or the SURE score, and γij(log(nq)) gives the BIC score
[43]. Fan and Tang [20] proposed a generalized information
criterion (GIC) for model selection in high-dimensional pe-
nalized regression; correspondingly, γij(log log(nq) log(pq))
gives the GIC score. We also define the score for any subset
of observations as the sum of the corresponding entrywise
scores,

γA(w) =
∑

(i,j)∈A
γij(w),

where A ⊂ {1, . . . , n} × {1, . . . , q}. In particular, γi(w) =∑q
j=1 γij(w) gives the information score for the ith multi-

variate observation.
Each information score is a weighted sum of the lack of

fit term and the leverage score, and it characterizes the con-
tribution from each single observation to the overall infor-
mation criterion. As such, an observation with an extreme
information score can be viewed as an outlier. In practice,
the error standard deviation σ may be unknown; we have
used the median absolute deviation of the residuals from a
fitted model to construct a robust estimate of σ [42], which
performs well in our numerical studies. It is well-known that
the information criteria mentioned above have different be-
haviors in model selection. For high-dimensional models, the
GIC criterion [20] was shown to enjoy many desirable the-
oretical properties. To fix the idea, we thus mainly focus
on the GIS scores computed from the GIC criterion in the
sequel.

3.4 Cook’s distance

Cook’s distance is a commonly-used diagnostic measure
in regression analysis [17]. For each observation, its Cook’s
distance is computed from examining the impact of delet-
ing the observation on model estimation. An observation
with large residual or high leverage value tends to have
high impact on model estimation, which usually results in
a large Cook’s distance. Therefore, in practice, the obser-
vations with large values of Cook’s distance may require a
close examination and some special treatment.

In reduced-rank estimation, following the same spirit, we
define the Cook’s distance for the (i, j)th observation as

o∗ij =

∑n
t=1

∑q
g=1(ŷtg − ŷ

−(ij)
tg )2

rxMSE
,(13)

where MSE denotes the mean squared error, and ŷ
−(ij)
tg de-

notes the estimator of ytg when the (i, j)th response yij is

removed. That is, Ŷ−(ij) = (ŷ
−(ij)
tg )n×q = XĈ−(ij) is ob-

tained from

min
C

1

2
‖PΩij (Y −XC)‖2F +

min(rx,q)∑
k=1

ρ(dk(XC), λωk),(14)

where Ωij denotes the index set consisting of the indices of
all the entries of Y except for the (i, j)th entry, and PΩij
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denote the orthogonal projection onto the linear space of
matrices supported on Ωij . The problem in (14) is closely
related to the matrix completion problem [9]. It does not
have an explicit solution in general and usually solving it is
much more computationally intensive than solving (3). As
a consequence, the exact calculation of the nq many oijs
would be prohibitively expensive.

We consider a close approximation to (13), without re-
fitting the model by solving (14). Based on the idea of the
first-order Taylor approximation, we show that o∗ij can be
approximated by

oij =

∑n
t=1

∑q
g=1(

∂ŷtg

∂yij
)2

(1− lij)2rxMSE
ê2ij ,(15)

where êij = yij − ŷij is the residual for the (i, j)th obser-
vation from solving (3). The derivation is provided in the
Appendix. In the special case of least squares estimation,
i.e., Ŷ = HY, the above computation becomes exact so
that o∗ij = oij , and since ∂ŷtg/∂yij = 0 when g �= j and
∂ŷtg/∂yij = hti when g = j, the expression of oij reduces to
a familiar form [17]

(
∑n

t=1 h
2
ti)ê

2
ij

(1− hii)2rxMSE
=

hiiê
2
ij

(1− hii)2rxMSE
.

For detecting rowwise outliers, Cook’s distance can be de-
fined for each multivariate observation yi, by aggregating
the entrywise Cook’s distances defined above, i.e., we define

oi =

q∑
j=1

oij , i = 1, . . . , n,(16)

as the Cook’s distance for the ith multivariate observation.
We remark that another way of defining rowwise Cook’s

distance is based on the change due to deleting an entire
multivariate observation,

o∗i =

∑n
t=1 ‖ŷt − ŷ

−(i)
t ‖2

rxMSE
,

where MSE denotes the mean squared error, and ŷ
−(i)
t de-

notes the estimator of yt when the ith response vector
yi is not observed. The computation requires refitting the
reduced-rank model n times, each time with n − 1 multi-
variate observations. Based on vector-wise Taylor approxi-
mation, o∗i can be approximated by∑n

t=1(ŷi −yi)
T(I− ∂ŷi

∂yi
)−

T

(∂ŷt

∂yi
)T(∂ŷt

∂yi
)(I− ∂ŷi

∂yi
)−1(ŷi −yi)

rxMSE
.

However, this definition is harder to compute comparing to
(16) and we also find that it is numerically less stable. We
thus mainly use the simpler definition given in (16) for de-
tecting multivariate outliers.

The Cook’s distance of an observation given in (15) not
only relates to its self-influence or leverage score, but also

relates to how it influences the prediction of other observa-
tions. This is very different from linear models, in which the
Cook’s distance only depends on self-influences. Although
all the needed quantities for computing Cook’s distances
admit explicit forms as presented in Theorem 1, the compu-
tation involves the entire divergence matrix, which can be
much more computationally demanding than the computa-
tion of the leverage scores or the information scores. As such,
the usage of (15) may be limited in large-scale problems, i.e,
when both rx and q are large.

4. SIMULATION

4.1 Setups

We consider a high-dimensional setup, with n = 50,
p = 1000, q = 30, r∗ = 3 and rx = 30. The design ma-
trix X is generated as X = X1X2, where all the entries of
X1 ∈ R

n×rx are i.i.d samples from N(0, 1), and X2 ∈ R
rx×p

is constructed by generating its rx rows as i.i.d. samples
from N(0,Σ), where Σ is the covariance matrix with diago-
nal elements 1 and off-diagonal elements 0.5. The coefficient
matrix C is generated as C = C1C

T
2 , where C1 ∈ R

p×r∗ ,
C2 ∈ R

q×r∗ and all entries in C1 and C2 are i.i.d. samples
from N(0, 1). The rows of the noise matrix E are generated
as i.i.d. samples from N(0, σ2I). The σ2 is set to control the
signal to noise ratio (SNR), defined as dr∗(XC)/‖E‖F , so
that SNR ∈ {0.5, 1, 1.5}. The outlier-free response matrix
Y is then generated as Y = XC+E.

We then create some additive outliers in Y. Without loss
of generality, suppose the first no = 5 rows are the outlier
rows. Specifically, the jth entry in any outlier row of Y is
either added or subtracted 4σ̂2

j , where σ̂2
j is the standard

deviation of the jth row of XC. To make the problem more
challenging, we also replace each of the first nl rows of X
with the same value 10, where nl ∈ {0, 2}, so there may
be some highly influential outliers. As such, the low rank
signal XC is contaminated by both random errors and gross
outliers.

We mainly consider the rank-penalized reduced-rank re-
gression estimator from (5), as a prototype of the general
class of reduced-rank estimators in (4). In practice, the
model rank is usually determined based on either cross val-
idation or some information criterion. However, with the
contaminated data, the estimation of the initial rank can be
unstable. To better understand the behavior of the diagnos-
tic measures under potential rank misspecification, we con-
sider three scenarios, i.e., r̂ = 1, 3, 5. We consider using mean
squared residuals (RES), leverage score (LEV), Cook’s dis-
tance (CD), and GIS score (GIS) for model diagnostics and
outlier detection. Their behaviors in both rowwise outlier
detection and entrywise outlier detection are investigated.
The experiment is replicated 100 times in each model setup
and parameter setting.

To make the comparison fair, each method is used to
identify 16% of data points who yield the largest diagnostic
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Table 1. Simulation: results for rowwise outlier detection, with SNR = 0.5. For each method, 8 multivariate observations with
the largest diagnostic measures are treated as outliers. The best possible FPR is 37.5%

FNR FPR CDR RK PRE FNR FPR CDR RK PRE
Rank #leverage= 0 #leverage= 2

RES 22.2% 51.4% 25.0% 1.00 68.03 46.6% 66.6% 0.0% 1.01 85.09
LEV 15.6% 47.3% 26.0% 1.00 56.69 1.8% 38.6% 75.0% 1.00 27.94

1 CD 0.0% 37.5% 64.0% 1.01 29.65 0.8% 38.0% 67.0% 1.02 28.12
GIS 0.0% 37.5% 82.0% 1.01 29.63 0.0% 37.5% 74.0% 1.01 27.53
ORE 0.0% 0.0% 100.0% 1.02 28.16 0.0% 0.0% 100.0% 1.02 26.21

RES 19.2% 49.5% 7.0% 1.02 55.61 38.2% 61.4% 3.0% 1.18 55.60
LEV 30.4% 56.5% 1.0% 1.01 77.65 25.6% 53.5% 2.0% 1.00 57.88

3 CD 5.8% 41.1% 34.0% 1.02 34.56 15.4% 47.1% 22.0% 1.13 36.18
GIS 0.4% 37.8% 46.0% 1.01 28.53 0.0% 37.5% 66.0% 1.01 28.51
ORE 0.0% 0.0% 100.0% 1.03 26.97 0.0% 0.0% 100.0% 1.01 27.51

RES 22.2% 51.4% 5.0% 1.06 60.05 37.0% 60.6% 3.0% 1.15 57.44
LEV 49.4% 68.4% 0.0% 1.02 119.26 38.8% 61.8% 0.0% 1.02 88.85

5 CD 28.4% 55.3% 5.0% 1.04 73.69 41.6% 63.5% 2.0% 1.10 71.10
GIS 7.2% 42.0% 14.0% 1.03 37.17 10.8% 44.3% 9.0% 1.06 36.96
ORE 0.0% 0.0% 100.0% 1.02 27.42 0.0% 0.0% 100.0% 1.01 28.07

values. That is, we identify 8 multivariate observation rows
using rowwise detection methods and identify 240 data en-
tries using entrywise detection methods. For rowwise outlier
detection, we report the false negative rate (FNR), the false
positive rate (FPR), and the correct detection rate (CDR).
Specifically, FNR is defined as the percentage of unidentified
outliers among all the true outliers, FPR is defined as the
percentage of incorrectly identified observations among all
the detected outliers. We note that the best possible FPR
in our setup is 37.5%, as each method always identifies 16%
of all the observations but at most 62.5% of them are true
outliers. When the 5 data rows with the largest diagnostic
measures are exactly the 5 true outlier rows, we call it a
correct detection; CDR is then defined as the proportion of
time the correct detection occurs among all simulation runs.
For entrywise outlier selection, we only report the FNR rates
for simplicity.

Once the outliers are identified, a common practice is to
discard the outliers and use the rest of the data to refit the
model. In case of entrywise outliers, reduced-rank estimation
becomes a matrix completion problem, which no longer ad-
mits explicit solution. As fitting robust reduced rank models
is not the focus of this paper, we refer interested readers to
Candès et al. [8] and She and Chen [46]. On the other hand,
in case of rowwise outliers, the estimation method remains
the same. Therefore, for rowwise detection, we report the
average prediction error (PRED) and rank estimate (RK)
from the refitted model, with the detected outliers being
discarded and the rank being selected by GIC. We also re-
port the performance of an oracle estimator (ORE), which
is based on discarding only the true outliers.

4.2 Results

Tables 1–3 and Figures 1–2 show the results for rowwise
outlier detection. Consider first the impact of rank specifica-

tion. In the presence of gross outliers, as the specified rank
gets larger, the task of outlier detection becomes harder in
general. This is because the outliers are more likely to be
falsely accommodated in a model of higher rank.

The naive approach of outlier detection, i.e., using the
residuals, performs poorly in all scenarios. This is mainly
due to the masking effect: some of the gross outliers may
dominate the reduced-rank estimation, so their residuals can
be quite small. LEV is designed to capture such masking ef-
fects, and it behaves better than RES when the specified
rank is low, but its performance becomes much worse when
the rank is overspecified. These results clearly demonstrate
that there is a tradeoff between the residuals and the lever-
age scores: when an outlier dominates the estimation, it may
have a relatively small residual but a large leverage score; on
the other hand, if its outlying effect is not accounted, the
outlier may lead to a relatively large residual but a small
leverage score. Therefore, it is critical to combine both RES
or LEV for outlier detection.

Indeed, both CID and GIS perform much better than
RES and LEV across all scenarios. When the specified rank
is low, they both archive very low false negative rates and
prediction error rates, comparable to those of the oracle es-
timator. Overall, GIS is more robust than CID against rank
specification and the presence of high-leverage outliers. In
Figures 1 and 2, the boxplots of the diagnostic measures for
the five outliers and another five randomly selected obser-
vations are shown. The outliers have much larger leverage
scores and residuals than the good observations in general.
However, the distributions of the RES or LEV scores of the
outliers have some visible overlap with those of the good
observations. In contrast, the distributions of CD or GIS
scores of the outliers are much more separable from those
of the good observations. We have also experimented with
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Table 2. Simulation: results for rowwise outlier detection, with SNR = 1

FNR FPR CDR RK PRE FNR FPR CDR RK PRE
Rank #leverage= 0 #leverage= 2

RES 21.8% 51.1% 16.0% 1.08 68.30 42.8% 64.3% 0.0% 1.16 71.99
LEV 9.8% 43.6% 32.0% 1.15 31.49 1.0% 38.1% 71.0% 1.17 22.82

1 CD 0.0% 37.5% 69.0% 1.18 22.68 2.8% 39.3% 64.0% 1.17 25.04
GIS 0.2% 37.6% 70.0% 1.20 22.98 0.6% 37.9% 55.0% 1.18 24.55
ORE 0.0% 0.0% 100.0% 1.30 20.71 0.0% 0.0% 100.0% 1.24 20.60

RES 21.2% 50.8% 8.0% 1.20 58.16 35.8% 59.9% 2.0% 1.51 40.66
LEV 32.2% 57.6% 2.0% 1.01 71.47 23.2% 52.0% 1.0% 1.06 52.96

3 CD 8.0% 42.5% 28.0% 1.26 33.80 17.0% 48.1% 20.0% 1.36 29.31
GIS 1.2% 38.3% 40.0% 1.22 22.78 1.8% 38.6% 48.0% 1.26 22.99
ORE 0.0% 0.0% 100.0% 1.41 18.50 0.0% 0.0% 100.0% 1.36 19.91

RES 20.0% 50.0% 3.0% 1.15 49.91 34.6% 59.1% 1.0% 1.43 43.22
LEV 47.6% 67.3% 0.0% 1.02 115.33 39.8% 62.4% 0.0% 1.06 97.87

5 CD 19.6% 49.8% 6.0% 1.15 52.80 34.8% 59.3% 6.0% 1.44 48.56
GIS 4.8% 40.5% 16.0% 1.21 27.43 15.6% 47.3% 19.0% 1.34 30.47
ORE 0.0% 0.0% 100.0% 1.41 19.74 0.0% 0.0% 100.0% 1.32 20.52

Table 3. Simulation: results for rowwise outlier detection, with SNR = 1.5

FNR FPR CDR RK PRE FNR FPR CDR RK PRE
Rank #leverage= 0 #leverage= 2

RES 23.2% 52.0% 20.0% 1.73 61.87 45.2% 65.8% 1.0% 1.78 68.79
LEV 11.0% 44.4% 33.0% 2.18 22.90 2.6% 39.1% 68.0% 2.72 5.87

1 CD 0.2% 37.6% 72.0% 2.96 1.78 4.2% 40.1% 50.0% 3.02 2.74
GIS 0.2% 37.6% 70.0% 2.92 2.01 0.8% 38.0% 40.0% 2.98 1.14
ORE 0.0% 0.0% 100.0% 3.00 0.56 0.0% 0.0% 100.0% 3.00 0.50

RES 20.2% 50.1% 8.0% 1.85 45.91 36.0% 60.0% 2.0% 2.35 27.73
LEV 27.8% 54.9% 0.0% 1.40 61.95 21.8% 51.1% 3.0% 1.49 44.00

3 CD 5.6% 41.0% 26.0% 2.45 17.01 18.8% 49.3% 14.0% 2.74 15.33
GIS 0.6% 37.9% 30.0% 2.93 3.88 1.4% 38.4% 33.0% 2.88 2.65
ORE 0.0% 0.0% 100.0% 3.00 0.53 0.0% 0.0% 100.0% 3.00 0.51

RES 17.4% 48.4% 9.0% 1.81 40.90 33.0% 58.1% 4.0% 2.58 24.79
LEV 49.0% 68.1% 0.0% 1.08 122.61 37.4% 60.9% 0.0% 1.16 75.46

5 CD 13.6% 46.0% 7.0% 2.07 34.76 31.8% 57.4% 7.0% 2.55 27.56
GIS 5.4% 40.9% 21.0% 2.48 13.88 14.2% 46.4% 11.0% 2.90 6.92
ORE 0.0% 0.0% 100.0% 3.00 0.54 0.0% 0.0% 100.0% 3.00 0.48

discarding 20% or 24% observations, and the conclusions are
similar, and hence these results are omitted.

Table 4 reports the results from conducting entrywise
outlier detection using the same simulation setups. Over-
all, the false negative rates computed from entrywise obser-
vations are much higher than those computed from rowwise
observations. One plausible reason is that the outlying effect
of each entry is much weaker comparing to that of an en-
tire outlying row. Besides, there could be a large variability
among the entrywise observations, leading to a large vari-
ability among their diagnostic measures. Nevertheless, the
entrywise LEV scores are still informative, and both CD
and GIS consistently outperform RES, especially when the
model rank is not overspecified. We note that the presence
of gross outliers usually makes the estimated rank smaller;
in our example, when GIC is used to select the rank with the
contaminated data, the estimated rank is almost always 1.

In summary, RES and LEV both provide important in-
formation on the observations, but in general neither of
them alone yields satisfactory performance in outlier detec-
tion. CD and GIS provide two principled ways of jointly
using the residuals and the leverage scores, and the latter
is more robust against model under-fitting or over-fitting.
The proposed model diagnostic tools indeed provide a con-
venient way for anomaly detection in reduced-rank estima-
tion.

5. APPLICATIONS

5.1 Handwritten digits data

We consider an example in pattern recognition. The data
are images of handwritten digits from the MNIST database
[28]. There are over 60,000 samples of handwritten digits
from approximately 250 writers. The digits have been size-
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Figure 1. Simulation: boxplots of the rowwise diagnostic measures, with SNR = 1, r̂ = 1, and no high-leverage point. Each
subfigure consists of ten boxplots for the 5 outliers and the other 5 randomly selected good observations.

Figure 2. Simulation: boxplots of the rowwise diagnostic measures, with SNR = 1, r̂ = 1, and 2 high-leverage points. Each
subfigure consists of ten boxplots for the 5 outliers and the other 5 randomly selected good observations.

normalized and centered in a fixed-size image. Each sample

contains 28 × 28 numerical grey levels computed from its

black and white original image, which is then vectorized to

form a data vector of length q = 282 = 784.

There are, in total, 6,742 samples of digit one and 5,949

samples of digit nine. We randomly select 200 samples of

digit one and 10 samples of digit 9, and represent the result-

ing data as a matrix Y of dimension n = 210 and q = 784.

478 K. Chen



Table 4. Simulation: false negative rates in entrywise outlier detection

RES LEV CD GIS RES LEV CD GIS
SNR Rank #leverage= 0 #leverge= 2

1 73.6% 53.0% 61.1% 58.9% 81.1% 44.3% 62.0% 56.8%
0.5 3 70.7% 67.2% 65.5% 61.9% 76.1% 59.3% 67.5% 58.7%

5 67.2% 72.2% 63.4% 61.5% 72.6% 63.6% 67.2% 63.2%

1 72.8% 52.2% 61.2% 60.4% 79.8% 43.4% 61.7% 57.2%
1 3 65.5% 65.5% 61.4% 58.6% 71.5% 59.3% 64.2% 56.8%

5 62.9% 70.3% 59.8% 58.6% 68.0% 63.8% 63.9% 62.6%

1 71.3% 52.5% 60.4% 60.4% 79.5% 44.0% 62.0% 58.4%
1.5 3 64.6% 64.8% 60.1% 57.8% 71.3% 59.4% 65.2% 59.5%

5 60.0% 71.8% 57.7% 56.2% 67.7% 62.0% 63.6% 62.4%

Figure 3. Handwritten digits data: a typical set of images of digit 1 and digit 9, randomly selected from the MNIST dataset.

As such, Y is expected to be well approximated by a low-
rank matrix up to a few rowwise outliers. It is then interest-
ing to conduct a low-rank matrix approximation analysis of
Y, and examine whether the 10 images of digit nine can be
identified using the developed model diagnostic tools. Here
this matrix approximation problem is a special case of the
reduced-rank regression problem, corresponding to n = p
and X = Ip.

We consider three methods for outlier detection, i.e.,
RES, LEV and GIS. (CD is not included as its performance
is similar to that of GIS but its computation is not as scal-
able). Each method is used to identify 15 samples which
give the largest diagnostic values. We then count how many
images of digit 9 are undetected, and compute the false neg-
ative rate (FNR) as the percentage of missed ones out of the
10 images of digit 9. This random data generation process
and the subsequent reduced-rank estimation procedure are
repeated 300 times.

Figure 3 shows a typical set of images of digit 1 and digit
9, randomly selected from the MNIST samples. In general,
the two types of patterns are quite distinctive, so the images
of digit 9 can be considered as severe outliers. On the other
hand, there is a large variability among the hand-writing

patterns. In the MNIST dataset, there exists patterns of
either 1 or 9 that are abnormal, which can potentially blur
the distinction between the two digits.

The average FNR rates are 19.1%, 27.9% and 13.3%, for
using RES, LEV and GIS. The results are consistent with
the findings from the simulation study. Although using the
leverage scores alone does not lead to good outlier detection
performance, the scores indeed provide valuable informa-
tion complementary to that provided by the residuals. By
combining the information from both the residuals and the
leverage scores, GIS has the best detection performance of
all three methods. In Figure 4, we also show a set of images
of digit 9 that are not selected as outliers and a set of images
of digit 1 that are selected as outliers. It is clear that these
hand-writing patterns are different from the typical patterns
of the digits. Interestingly, the selected patterns of digit 1
tend to have extra strokes, and the unselected patterns of
digit 9 tend to be very “skinny”.

5.2 U.S. macroeconomic data

We consider a U.S. macroeconomic dataset consisting of
monthly observations on 132 U.S. macroeconomic variables
between 1959 and 2003 [48]. These time series cover 14 dif-
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Figure 4. Handwritten digits data: a set of images of digit 9 that are not selected as outliers and a set of images of digit 1
that are selected as outliers.

ferent categories of economic measurements, such as real
output and income, employment and hours, consumption,
real inventories, stock prices, exchange rates, interest rates,
etc. In our analysis, five time series with missing values are
removed, and the rest series are transformed individually by
taking logarithms and/or differencing, resulting in q = 127
time series that are approximately stationary.

Following Stock and Watson [48], we consider a vector
autoregressive model (VAR) of order h = 6 to analyze the
data, so that the macroeconomic conditions at each month
are modeled by what happened in the past six months. A
VAR model can be expressed as a multivariate regression
form Y = XC + E, in which Y consists of the observed
multivariate time series, and X consists of the lagged time
series up to lag h. Accordingly, a common way of conduct-
ing VAR model estimation is via the least squares method,
possibly coupled with certain regularization in dealing with
high dimensionality [21, 30, 24]. In particular, upon assum-
ingC is of low rank, the model becomes a reduced-rank VAR
model [39, 26], which is widely used in analyzing multivari-
ate time series data. Here in our analysis, we use the RRR
method and the model rank is chosen as r = 3. Since the
model dimensions p = 762, q = 127 are relatively large com-
paring to the sample size n = 533, applying reduced-rank
estimation dramatically reduces the VAR model complex-
ity.

Generally, the usage of the reduced-rank VAR model
analysis is to capture the main patterns and common fac-
tors that drive the macroeconomic developments in U.S.
over time. However, the U.S. economy encountered several
large disturbances between 1953 and 2003, during which the
economic activities may no longer follow their general be-
havior; see, e.g., the report on U.S. Business Cycle Expan-
sions and Contractions, published by the National Bureau
of Economic Research [35]. These disturbances may distort

the estimation of the general macroeconomic behavior in the
VAR analysis. It is thus interesting to see whether perform-
ing model diagnostics of the fitted VAR model can reveal
these periods of economic disturbances.

We plot the series of GIS scores, the LEV scores and the
RES values from the fitted VAR model in Figure 5. The
points above the dashed line in each panel are the 5% most
extreme values of the corresponding diagnostic measure.
The regions of dark points indicate four historical major eco-
nomic recessions occurred during the period, as documented
by the National Bureau of Economic Research (NBER). By
NBER, “a recession is a significant decline in economic ac-
tivity spread across the economy, lasting more than a few
months, normally visible in real GDP, real income, employ-
ment, industrial production, and wholesale-retail sales.” The
first one was from early 1960 to February 1961, occurred af-
ter the Federal Reserve began raising interest rates in 1959.
The second was from November 1973 to March 1975, which
was caused by quadrupled oil prices and dramatically in-
creased government spending due to the VietnamWar. Both
the 1973 oil crisis and the 1973–1974 stock market crash hap-
pened during this recession. The third recession was in early
1980s, happened after the 1979 energy crisis caused by the
sharply increased oil price due to Iranian Revolution. The
decade of 1990 was one of the longest periods of growth in
U.S. history, but this long growth was brought to the end
by the collapse of the “dot-com bubble” and the September
11th terrorism attacks, causing the fourth recession from
March 2001 to the end of 2001.

As seen from Figure 5, all the four recessions are clearly
visible from the GIS series. Although the start of the first
recession was recorded as April 1960 by NBER, all three
series show that there were already some anomalies in late
1959. This may be explained by the fact that the main cause
of this recession was the raising interest rates by the Fed-
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Figure 5. U.S. macroeconomic data: series of GIS, LEV and RES from the fitted VAR model, from the top to the bottom
panel. The points above the dashed line in each panel are the 5% most extreme values of the corresponding diagnostic

measure. The regions of dark triangular points indicate four major economic recessions occurred during the period 1959–2003.

eral Reserve in 1959. In contrast to the GIS series, neither
the LEV series nor the RES series alone can adequately re-
veal all the recessions. In particular, the second recession is
barely seen from the RES series, while the fourth recession
is barely seen from the LEV series. These interesting pat-
terns show that the 1973–1975 recession has dominated the
VAR estimation, resulting in small residuals and large lever-
age scores; the early 2000 recession does not fit the VAR
model well, resulting in large residuals and small leverage
scores. We have also tested models with different ranks, i.e.,
r = 1 and r = 5, corresponding to either under-fitting or
over-fitting. While LEV and RES show a clear trade-off in
different models, the four recession periods are consistently
revealed by GIS. This example again demonstrates the im-
portance and effectiveness of utilizing the residuals and the
leverage scores in anomaly detection.

6. DISCUSSION

We propose a set of model diagnostic tools for the non-
linear and nonrobust high-dimensional reduced-rank esti-
mation methods. The explicit form of the leverage score
is derived based on the SURE framework and its impor-
tance in outlier detection is demonstrated. In particular,
the proposed generalized information score approach pro-
vides a principled way for incorporating the residuals and
the leverage scores for anomaly detection. The approach is

applicable in many other high-dimensional estimation prob-
lems, whenever the leverage scores can be readily obtained.
For example, the leverage scores of a lasso estimator can be
obtained as the diagonal elements of the projection matrix
constructed from only the selected predictors [57, 49].

There are many directions for future research. It is press-
ing to thoroughly study the theoretical properties of the
proposed leverage scores and the generalized information
scores. An important problem is to study how to choose a
proper weight to combine the sum of squared residuals and
the leverage scores for ensuring the outlier detection con-
sistency. This problem is closely related to the problem of
choosing an appropriate penalty rate on model complexity
in an information criterion in order to achieve consistent
model selection [20]. Studying the probability distributions
of the diagnostic measures may also be fruitful, which can
provide formal guidelines and cutoff points for declaring out-
liers. The proposed diagnostic tools, including the leverage
score and the Cook’s distance, only provide one particu-
lar way to extend these classic quantities/concepts to han-
dle high-dimensional multivariate problems; it is interest-
ing to investigate other alternative extensions that may be
more suitable in multivariate problems. In real applications,
the model diagnostic approach and the joint estimation ap-
proach can be utilized together in many ways. For example,
the proposed approaches can be used to screen out apparent
outliers, and the leverage scores or information scores can
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be used to construct certain adaptive weights to facilitate
robust estimation [46].
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APPENDIX

Sketch of proof of Theorem 1

We acknowledge that the main steps for establishing the
results in Theorem 1 are fromMukherjee et al. [33], although
the focus there was on getting a simple expression of the sum
of the leverage scores.

From A = S−1QTXTY and Ŷ(λ) = XQS−1A(λ),

∂vec(Ŷ(λ))

∂vec(Y)
= (Iq ⊗XQS−1)

(
∂vec(Â(λ))

∂vec(Y)

)

= (Iq ⊗XQS−1)

(
∂vec(Â(λ))

∂vec(A)

) (
∂vec(A)

∂vec(Y)

)

= (Iq ⊗XQS−1)

(
∂vec(Â(λ))

∂vecA)

)
× (Iq ⊗ S−1QTXT).

From Theorem 1 of Mukherjee et al. [33],

∂vk

∂aij
=− (ATA− d2kI)

−(ATZ(ij) + Z(ij)TA)vk,

∂dk
∂aij

=
1

2dk
vT
k (A

TZ(ij) + Z(ij)TA)vk.

Since Â(λ) = A
∑r̂

k=1 skvkv
T
k , the results in Theorem 1 can

then be obtained by applying the chain rule,

∂Â(λ)

∂aij
=

∂A

∂aij

r̂∑
k=1

skvkv
T
k +A

r̂∑
k=1

sk
∂vk

∂aij
vT
k

+A

r̂∑
k=1

skvk
∂vT

k

∂aij
+A

r̂∑
k=1

∂sk
∂aij

vkv
T
k .

Derivation of the approximated Cook’s
distance

We write the reduced-rank estimator from solving (3) as

Ŷ(yij ; i = 1, . . . , n, j = 1, . . . , q), to emphasize that it is a
function of Y. It follows that

Ŷ−(ij) = XĈ−(ij) = Ŷ(y11, . . . , ŷ
−(ij)
ij , . . . , ynq).

That is, if ŷ
−(ij)
ij were known, Ŷ−(ij) can be obtained by

solving (3) with yij replaced by ŷ
−(ij)
ij . This observation re-

lates ŷ
−(i,j)
tg to ŷtg, for any t = 1, . . . , n and g = 1, . . . , q.

Based on Taylor expansion,

ŷ
−(ij)
tg ≈ ŷtg +

∂ŷtg
∂yij

(ŷ
−(ij)
ij − yij),

and it follows that

(ŷ
−(ij)
tg − ŷtg)

2 ≈
(
∂ŷtg
∂yij

)2

(ŷ
−(ij)
ij − yij)

2.(17)

On the other hand,

ŷ
−(ij)
ij ≈ ŷij +

∂ŷij
∂yij

(ŷ
−(ij)
ij − yij) = ŷij + lij(ŷ

−(ij)
ij − yij),

which implies that

y
−(ij)
ij − yij ≈

1

1− lij
(ŷij − yij).(18)

Combining (17) and (18), we see that o∗ij can be approxi-
mated by (15).

Similarly, for approximating the rowwise Cook’s distance
in (13), the result follows from

(ŷ
−(i)
t − ŷt)

T(ŷ
−(i)
t − ŷt)

≈(ŷ
−(i)
i − yi)

T

(
∂ŷt

∂yi

)T(
∂ŷt

∂yi

)
(ŷ

−(i)
i − yi),

and

ŷ
−(i)
i − yi ≈

(
I− ∂ŷi

∂yi

)−1

(ŷi − yi).

Received 2 April 2015

REFERENCES

[1] Akaike, H. (1974) A new look at the statistical model identifi-
cation. IEEE Transactions on Automatic Control, 19, 716–723.
MR0423716

[2] Anderson, T. W. (1951) Estimating linear restrictions on regres-
sion coefficients for multivariate normal distributions. Annals of
Mathematical Statistics, 22, 327–351. MR0042664

[3] Brown, P. J. and Zidek, J. V. (1982) Multivariate regression
shrinkage estimators with unknown covariance matrix. Scandina-
vian Journal of Statistics, 9, 209–215. MR0695283

[4] Buades, A., Coll, B. and Morel, J. M. (2005) A review of
image denoising algorithms, with a new one. Multiscale Modeling
& Simulation, 4, 490–530. MR2162865

[5] Bunea, F., She, Y. and Wegkamp, M. (2011) Optimal selection
of reduced rank estimators of high-dimensional matrices. Annals
of Statistics, 39, 1282–1309. MR2816355

[6] Bunea, F., She, Y. and Wegkamp, M. (2012) Joint variable and
rank selection for parsimonious estimation of high dimensional
matrices. Annals of Statistics, 40, 2359–2388. MR3097606

[7] Cai, J.-F., Candès, E. J. and Shen, Z. (2010) A singular value
thresholding algorithm for matrix completion. SIAM Journal on
Optimization, 20, 1956–1982. MR2600248

[8] Candès, E. J., Li, X., Ma, Y. and Wright, J. (2011) Robust
principal component analysis? Journal of the ACM, 58, 1–37.
MR2811000

482 K. Chen

http://www.ams.org/mathscinet-getitem?mr=0423716
http://www.ams.org/mathscinet-getitem?mr=0042664
http://www.ams.org/mathscinet-getitem?mr=0695283
http://www.ams.org/mathscinet-getitem?mr=2162865
http://www.ams.org/mathscinet-getitem?mr=2816355
http://www.ams.org/mathscinet-getitem?mr=3097606
http://www.ams.org/mathscinet-getitem?mr=2600248
http://www.ams.org/mathscinet-getitem?mr=2811000


[9] Candès, E. J. and Recht, B. (2009) Exact matrix completion
via convex optimization. Found. Comput. Math., 9, 717–772.
MR2565240

[10] Candès, E. J., Sing-Long, C. and Trzasko, J. D. (2013) Un-
biased risk estimates for singular value thresholding and spectral
estimators. IEEE Transactions on Signal Processing, 61, 4643–
4657. MR3105401

[11] Chen, K., Chan, K.-S. and Stenseth, N. C. (2012) Reduced
rank stochastic regression with a sparse singular value decom-
position. Journal of the Royal Statistical Society: Series B, 74,
203–221. MR2899860

[12] Chen, K., Chan, K.-S. and Stenseth, N. C. (2014) Source-
sink reconstruction through regularized multicomponent regres-
sion analysis–with application to assessing whether north sea
cod larvae contributed to local fjord cod in skagerrak. Jour-
nal of the American Statistical Association, 109, 560–573.
MR3223733

[13] Chen, K., Dong, H. and Chan, K.-S. (2013) Reduced rank re-
gression via adaptive nuclear norm penalization. Biometrika, 100,
901–920. MR3142340

[14] Chen, L. and Huang, J. Z. (2012) Sparse reduced-rank regres-
sion for simultaneous dimension reduction and variable selection.
Journal of the American Statistical Association, 107, 1533–1545.
MR3036414

[15] Choi, S., Hoffman, E. A., Wenzel, S. E., Tawhai, M. H., Yin,

Y., Castro, M. and Lin, C.-L. (2013) Registration-based assess-
ment of regional lung function via volumetric ct images of nor-
mal subjects vs. severe asthmatics. Journal of Applied Physiology,
115, 730–742.

[16] Choi, S., Hoffmann, E. A., Wenzel, S. E., Castro, M., Fain,

S. B., Jarjour, N. N., Schiebler, M. L., Chen, K. and Lin, C.-

L. (2015) Quantitative assessment of multiscale structural and
functional alterations in asthmatic populations. Journal of Ap-
plied Physiology, 118, 1286–1298.

[17] Cook, R. D. (1977) Detection of influential observation in linear
regression. Technometrics, 19, 15–18. MR0436478

[18] Diaz-Garcia, J. A. and Gonzalez-Farias, G. (2004) A note on
the Cook’s distance. Journal of Statistical Planning and Infer-
ence, 120, 119–136. MR2026486

[19] Efron, B. (2004) The estimation of prediction error: Covariance
penalties and cross-validation. Journal of the American Statistical
Association, 99, 619–642. MR2090899

[20] Fan, Y. and Tang, C. Y. (2013) Tuning parameter selection in
high dimensional penalized likelihood. Journal of the Royal Sta-
tistical Society: Series B, 75, 531–552. MR3065478

[21] Hamilton, J. (1994) Time series analysis, vol. 2. Cambridge Univ
Press. MR1278033

[22] Hastie, T. J., Tibshirani, R. J. and Friedman, J. H. (2008)
The elements of statistical learning: Data mining, inference, and
prediction. New York: Springer. MR2722294

[23] Hoerl, A. E. and Kennard, R. W. (2000) Ridge regression:
Biased estimation for nonorthogonal problems. Technometrics,
42.

[24] Hsu, N.-J., Hung, H.-L. and Chang, Y.-M. (2008) Subset se-
lection for vector autoregressive processes using lasso. Computa-
tional Statistics & Data Analysis, 52, 3645–3657. MR2427370

[25] Izenman, A. J. (1975) Reduced-rank regression for the multivari-
ate linear model. Journal of Multivariate Analysis, 5, 248–264.
MR0373179

[26] Izenman, A. J. (2008) Mordern multivariate statistical tech-
niques. Springer. MR2445017

[27] Koltchinskii, V., Lounici, K. and Tsybakov, A. (2011) Nuclear
norm penalization and optimal rates for noisy low rank matrix
completion. Annals of Statistics, 39, 2302–2329. MR2906869

[28] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (2001)
Gradient-based learning applied to document recognition. In In-
telligent Signal Processing (eds. Haykin, S. and Kosko, B.), 306–
351. IEEE Press.

[29] Lu, Z., Monteiro, R. D. C. and Yuan, M. (2012) Convex op-
timization methods for dimension reduction and coefficient esti-

mation in multivariate linear regression. Math. Program., 131,
163–194. MR2886145

[30] Lütkepohl, H. (2006) New introduction to multiple time series
analysis. New York: Springer.

[31] Ma, X., Xiao, L. and Wong, W. H. (2014) Learning regulatory
programs by threshold svd regression. Proceedings of the National
Academy of Sciences, 111, 15675–15680.

[32] McDonald, G. C. and Galarneau, D. I. (1975) A Monte Carlo
evaluation of some ridge-type estimators. Journal of the American
Statistical Association, 70, 407–416.

[33] Mukherjee, A., Chen, K., Wang, N. and Zhu, J. (2015) On
the degrees of freedom of reduced-rank estimators in multivariate
regression. Biometrika, 102, 457–477. MR3371016

[34] Mukherjee, A. and Zhu, J. (2011) Reduced rank ridge regression
and its kernel extensions. Statistical Analysis and Data Mining,
4, 612–622. MR2862506

[35] NBER (2009) US Business Cycle Expansions and Contractions.
National Bureau of Economic Research.

[36] Negahban, S. and Wainwright, M. J. (2011) Estimation of
(near) low-rank matrices with noise and high-dimensional scal-
ing. Annals of Statistics, 39, 1069–1097. MR2816348

[37] Obozinski, G., Wainwright, M. J. and Jordan, M. I. (2011)
Support union recovery in high-dimensional multivariate regres-
sion. Annals of Statistics, 39, 1–47. MR2797839

[38] Peng, J., Zhu, J., Bergamaschi, A., Han, W., Noh, D.-Y.,

Pollack, J. R. and Wang, P. (2010) Regularized multivariate
regression for identifying master predictors with application to
integrative genomics study of breast cancer. Ann. Appl. Stat., 4,
53–77. MR2758084

[39] Reinsel, G. C. and Velu, P. (1998) Multivariate reduced-
rank regression: Theory and applications. New York: Springer.
MR1719704

[40] Rothman, A. J., Levina, E. and Zhu, J. (2010) Sparse multi-
variate regression with covariance estimation. Journal of Compu-
tational and Graphical Statistics, 19, 947–962. MR2791263

[41] Rousseeuw, P. J., Aelst, S. V., Driessen, K. V., Professor,

P. J. R. I., Van, S. and Belgium, A. F. (2000) Robust multi-
variate regression. Technometrics, 46, 293–305. MR2082499

[42] Rousseeuw, P. J. and Croux, C. (1993) Alternatives to the me-
dian absolute deviation. Journal of the American Statistical As-
sociation, 88. MR1245360

[43] Schwarz, G. (1978) Estimating the dimension of a model. Annals
of Statistics, 6, 461–464. MR0468014

[44] She, Y. (2009) Thresholding-based iterative selection procedures
for model selection and shrinkage. Electron. J. Statist., 3, 384–
415. MR2501318

[45] She, Y. (2013) Reduced rank vector generalized linear models
for feature extraction. Statistics and Its Interface, 6, 197–209.
MR3066685

[46] She, Y. and Chen, K. (2015) Robust reduced rank regression.
arXiv e-prints arXiv:1509.03938.

[47] Stein, C. M. (1981) Estimation of the mean of a multivariate
normal distribution. Annals of Statistics, 9. MR0630098

[48] Stock, J. H. and Watson, M. W. (2005) Implications of dynamic
factor models for var analysis. Working Paper 11467, National
Bureau of Economic Research.

[49] Tibshirani, R. J. and Taylor, J. (2012) Degrees of freedom in
lasso problems. Ann. Statist., 40, 1198–1232. MR2985948

[50] Witten, D. M., Tibshirani, R. J. and Hastie, T. J. (2009) A
penalized matrix decomposition, with applications to sparse prin-
cipal components and canonical correlation analysis. Biostatistics,
10, 515–534.

[51] Wright, J., Ganesh, A., Rao, S., Peng, Y. and Ma, Y. (2009)
Robust principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization. In Advances in Neu-
ral Information Processing Systems 22 (eds. Bengio, Y., Schuur-
mans, D., Lafferty, J., Williams, C. K. I. and Culotta, A.), 2080–
2088.

[52] Yuan, M. (2011) Degrees of freedom in low rank matrix estima-
tion. Unpublished Manuscript.

Model diagnostics in reduced-rank estimation 483

http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=3105401
http://www.ams.org/mathscinet-getitem?mr=2899860
http://www.ams.org/mathscinet-getitem?mr=3223733
http://www.ams.org/mathscinet-getitem?mr=3142340
http://www.ams.org/mathscinet-getitem?mr=3036414
http://www.ams.org/mathscinet-getitem?mr=0436478
http://www.ams.org/mathscinet-getitem?mr=2026486
http://www.ams.org/mathscinet-getitem?mr=2090899
http://www.ams.org/mathscinet-getitem?mr=3065478
http://www.ams.org/mathscinet-getitem?mr=1278033
http://www.ams.org/mathscinet-getitem?mr=2722294
http://www.ams.org/mathscinet-getitem?mr=2427370
http://www.ams.org/mathscinet-getitem?mr=0373179
http://www.ams.org/mathscinet-getitem?mr=2445017
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=2886145
http://www.ams.org/mathscinet-getitem?mr=3371016
http://www.ams.org/mathscinet-getitem?mr=2862506
http://www.ams.org/mathscinet-getitem?mr=2816348
http://www.ams.org/mathscinet-getitem?mr=2797839
http://www.ams.org/mathscinet-getitem?mr=2758084
http://www.ams.org/mathscinet-getitem?mr=1719704
http://www.ams.org/mathscinet-getitem?mr=2791263
http://www.ams.org/mathscinet-getitem?mr=2082499
http://www.ams.org/mathscinet-getitem?mr=1245360
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=2501318
http://www.ams.org/mathscinet-getitem?mr=3066685
http://www.ams.org/mathscinet-getitem?mr=0630098
http://www.ams.org/mathscinet-getitem?mr=2985948


[53] Yuan, M., Ekici, A., Lu, Z. and Monteiro, R. (2007) Dimen-
sion reduction and coefficient estimation in multivariate linear
regression. Journal of the Royal Statistical Society: Series B, 69,
329–346. MR2323756

[54] Zhu, H., Ibrahim, J. G. and Cho, H. (2012) Perturbation
and scaled cook’s distance. Annals of Statistics, 40, 785–811.
MR2933666

[55] Zhu, H., Khondker, Z., Lu, Z. and Ibrahim, J. G. (2014)
Bayesian generalized low rank regression models for neuroimag-
ing phenotypes and genetic markers. Journal of the American
Statistical Association, 109, 977–990. MR3265670

[56] Zhu, L., Zhu, R. and Song, S. (2008) Diagnostic checking for
multivariate regression models. Journal of Multivariate Analysis,
99, 1841–1859. MR2466539

[57] Zou, H., Hastie, T. J. and Tibshirani, R. J. (2007) On the
degree of freedom of the lasso. Annals of Statistics, 35, 2173–
2192. MR2363967

Kun Chen
Department of Statistics
University of Connecticut
215 Glenbrook Rd. U-4120
Storrs, CT 06269-4120
USA
E-mail address: kun.chen@uconn.edu

484 K. Chen

http://www.ams.org/mathscinet-getitem?mr=2323756
http://www.ams.org/mathscinet-getitem?mr=2933666
http://www.ams.org/mathscinet-getitem?mr=3265670
http://www.ams.org/mathscinet-getitem?mr=2466539
http://www.ams.org/mathscinet-getitem?mr=2363967
mailto:kun.chen@uconn.edu

	Introduction
	Reduced-rank estimation
	Diagnostic tools for reduced-rank estimation
	Some key concepts from Stein's unbiased risk estimation
	Leverage score
	Generalized information score
	Cook's distance

	Simulation
	Setups
	Results

	Applications
	Handwritten digits data
	U.S. macroeconomic data

	Discussion
	Acknowledgments
	Appendix
	References
	Author's addresses

