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High-dimensional covariance estimation under
the presence of outliers
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This paper considers the problem of robust covariance es-
timation in the so-called “large p small n” setting. Its first
contribution is the proposal of a novel (non-robust) high-
dimensional covariance estimation method that is based on
eigenvalue regularization. The method is called Cover, short
for COVariance Eigenvalue-Regularized estimation. It is fast
to execute and enjoys excellent theoretical properties for the
case when p is fixed. As a second contribution, this paper
modifies Cover by incorporating Huber’s loss function into
the estimation procedure. By design, the resulting method
is robust to outliers and is called RCover. The empirical
performances of Cover and RCover are tested and com-
pared with existing methods via a sequence of numerical
experiments. It is shown that, with the presence of outliers,
RCover almost always outperforms other methods tested.

Keywords and phrases: Difference convex programming,
Eigenvalue regularization, ES-Algorithm, Huber function.

1. INTRODUCTION

The estimation of covariance matrices is a fundamental
problem in many multivariate methods. Examples include
discriminant data analysis, longitudinal data analysis, time
series analysis and spatial data analysis, just to name a few.
In addition, with the availability of high volume data in
various application areas such as gene arrays, brain imag-
ing and climate problems, estimating covariance matrices in
the high-dimensional context has attracted a lot of recent
attention from different researchers.

In such high-dimensional settings, various regularized es-
timators are proposed under the assumption that the true
covariance matrix is sparse. Some of these estimators de-
pend on modified Cholesky decompositions (e.g., Rothman
et al., 2010; Wu and Pourahmadi, 2003), some use penalized
likelihoods (e.g., Bickel and Levina, 2008b; Friedman et al.,
2008; Furrer and Bengtsson, 2007; Huang et al., 2006; Lam
and Fan, 2009; Levina et al., 2008), and some are based
on thresholding (e.g., Bickel and Levina, 2008a; Cai and
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Liu, 2011; Rothman et al., 2009; Fan et al., 2013) and pe-
nalized criteria (e.g., Rothman, 2012; Xue et al., 2012; Liu
et al., 2014). For a more comprehensive review, see Fan et al.
(2013) or Liu et al. (2014). While many of these estimators
have been shown to enjoy excellent rates of convergence,
so far little work has been done to the case when the data
may be contaminated by outliers. A notable exception is the
work of Chen et al. (2011), where the Gaussian assumption
is relaxed and the data are modeled using a member from
the class of elliptical distributions. In view of this, a main
goal of this paper is to develop a robust method for high-
dimensional covariance estimation with outliers. It achieves
this goal by first proposing a fast (non-robust) method
Cover, short for COVariance Eigenvalue–Regularized esti-
mation, to perform the estimation when there is no outlier.
Then it applies Huber’s methodology to Cover to obtain a
robust version of the method, termed RCover.

The rest of this paper is organized as follows. In Section 2
the new (non-robust) method Cover for covariance estima-
tion is presented. Note that Cover is based on eigenvalue
regularization and is very fast to compute. Then Section 3
modifies this method to handle outliers. As mentioned be-
fore, the resulting robust method is called RCover. Practical
performances of both proposed methods are evaluated via
simulation experiments in Section 4 and a real data appli-
cation in Section 5. Lastly, concluding remarks are given in
Section 6.

2. COVARIANCE ESTIMATION WITHOUT
OUTLIERS: COVER

Consider a random sample, Y1, . . . ,Yn, generated from
N(0,Σ), where Σ is an unknown p×p positive-definite ma-
trix. Define Y ≡ (Y1, . . . ,Yn)

′. Let S ≡ Y ′Y /n denote the
sample covariance matrix. In this section we first present
our method for estimating Σ when there is no outlier. The
case with outliers will be delayed to Section 3. We allow the
possibility of p ≥ n. In sequel ‖ · ‖1 denotes the L1 norm,
while ‖ · ‖F denotes the Frobenius norm.

2.1 Eigenvalue regularization

Our methodology is based on penalizing the eigenvalues
of the sample covariance S. Suppose that Y is of rank K.
Let ŨD̃Ṽ ′ be the singular value decomposition (SVD) of
Y , where Ũ is an n×K matrix, Ṽ is a p×K matrix, and
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D̃ = diag(d̃1, . . . , d̃K) is a K × K matrix with d̃1 ≥ · · · ≥
d̃K . Then S = Y ′Y /n = Ṽ D̃2Ṽ ′/n, and consequently the
eigenvalues of S are given by

λ̃k =

{
d̃2k/n, k = 1, . . . ,K,

0, k = K + 1, . . . , p.

To define our estimate for Σ we need to minimize the
following nonconvex cost function with respect to U , V and
D:

(1)
∥∥ŨD̃2Ṽ ′−UD2V ′∥∥2

F
+τ1

K−1∑
k=1

min

( |d2k − d2k+1|
τ2

, 1

)
.

Here U is an n × K matrix, V is a p × K matrix, and
D = diag(d1, . . . , dK) with d1 ≥ · · · ≥ dK ≥ 0. Also, τ1 ≥ 0
is a tuning parameter controlling the degree of clustering
for the dk’s, and τ2 > 0 is a thresholding parameter beyond
which the difference between two consecutive dk’s will not
be penalized further. Lastly, we require U ′U = V ′V = IK .
Section 2.2 below develops a practical algorithm for mini-
mizing (1). In the rest of this section we denote the joint

minimizers of (1) as Û , V̂ and D̂ = diag(d̂1, . . . , d̂K). No-
tice that the second term in (1), which plays the role of a
penalty, encourages the small dk’s to have the same value.

Our (non-robust) estimate of Σ is defined as follows. Let

J be such that d̂1 ≥ · · · ≥ d̂J−1 > d̂J = · · · = d̂K . We first
estimate the eigenvalues λk’s as

λ̂k =

{
d̂2k/n, k = 1, . . . , J − 1,

(d̂2J + · · ·+ d̂2K)/{n(K − J + 1)}, k = J, . . . , p,

making
∑p

k=1 d̂
2
k/n =

∑p
k=1 λ̂k. Let Q̂ be an orthogonal

matrix whose first K columns are the same as V̂ , and define
Λ̂ = diag(λ̂1, . . . , λ̂p). Then the proposed estimate of Σ is
given by

(2) Σ̂ = Q̂Λ̂Q̂′.

Since the second term of (1) penalizes the dk’s, one can

see that the above estimate Σ̂ is an eigenvalue-regularized
estimate.

The motivation of using (1) is as follows. From Theo-
rem 1 (see below) one can see that (1) encourages each of
the estimated eigenvalues to be pulled towards one of J � p
possible distinct values (J and these distinct values are un-
known and will be estimated). This process can be seen as
a multi-level shrinkage estimation, with each estimate being
shrunk towards a value out of a set of J possible values, as
opposed to being shrunk to zero which most shrinkage meth-
ods do. Since shrinkage is, when applied correctly, known
to provide an excellent bias-variance trade-off, it is reason-
able to expect that (1) will lead to improved estimates for
Σ. This multi-level shrinkage method has been applied suc-
cessfully for regression coefficient regularization in Shen and
Huang (2010) and Shen et al. (2012). Another advantage of

using (1) is that, it leads to a very fast algorithm, as to be
described next.

The tuning parameters τ1 and τ2 can be selected us-
ing M -fold cross-validation (CV). Specifically, the index set
{1, . . . , n} is first partitioned into M parts, A1, . . . , AM , of
roughly the same size. For each m = 1, . . . ,M , let Σ̃(−m)

be a generic estimate of Σ based on the data {Yi : i /∈ Am}.
Then the tuning parameters can be selected by minimizing
either

(3)

M∑
m=1

∥∥∥∥ 1

|Am|
∑
i∈Am

Y ′
i Yi − Σ̃(−m)

∥∥∥∥2
F

,

in terms of the Frobenius loss, or

M∑
m=1

{ ∑
i∈Am

(
log

∣∣Σ̃(−m)
∣∣+ Y ′

i

(
Σ̃(−m)

)−1
Yi

)}
,

in terms of the Kullback-Liebler loss.

2.2 A fast algorithm for minimizing (1)

The joint minimizers of (1), denoted as Û , V̂ and D̂ =

diag(d̂1, . . . , d̂K), generally have no closed form expressions.
This subsection develops a fast algorithm for computing
these minimizers. Without loss of generality, we assume
n ≥ p. Otherwise, we can consider the SVD of Y ′ and obtain
an equivalent problem of (1).

First we show that Û = Ũ and V̂ = Ṽ , where ŨD̃Ṽ ′ is
the SVD of Y . By direct calculations∥∥ŨD̃2Ṽ ′ −UD2V ′∥∥2

F

= tr
{(

ŨD̃2Ṽ ′ −UD2V ′)′(ŨD̃2Ṽ ′ −UD2V ′)}
= tr

(
D̃4

)
+ tr(D4)− 2 tr

{(
ŨD̃2Ṽ ′)′(UD2V ′)

}
≥ tr

(
D̃4

)
+ tr(D4)− 2 tr

(
D̃2D2

)
,

where the last inequality follows from von Neumann’s trace
inequality (von Neumann, 1937). So U = Ũ and V = Ṽ

jointly minimize
∥∥ŨD̃2Ṽ ′ −UD2V ′∥∥2

F
. Now we remain to

derive an algorithm for computing D̂.
Let δ∗ = (δ∗1 , . . . , δ

∗
K)′ ≡ Wδ, where δ = (d21, . . . , d

2
K)′

and

(4) W ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1 · · ·
...

0 0 1
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

K×K

.

Setting U = Ũ and V = Ṽ , we have∥∥ŨD̃2Ṽ ′ − ŨD2Ṽ ′∥∥2
F
=

∥∥ŨD̃2Ṽ ′ − Ũdiag(δ)Ṽ ′∥∥2
F

462 H.-C. Huang and T. C. M. Lee



=
∥∥D̃2 − diag(δ)

∥∥2
F

= ‖δ̃ −W−1δ∗‖2.

where δ̃ = (d̃21, . . . , d̃
2
K)′. Then (1) can be rewritten as:

(5) Γ(δ∗) = ‖δ̃ −W−1δ∗‖2 + τ1
τ2

K−1∑
k=1

min(|δ∗k|, τ2),

and our goal now is to minimize (5) with respect to δ∗. This
is a nonconvex optimization which can be solved using dif-
ference convex (DC) programming (An and Tao, 1997) via a
sequence of convex approximations. Basically, the idea is to
decompose the nonconvex cost function (5) into a difference
of two convex functions Γ(δ∗) = Γ1(δ

∗)− Γ2(δ
∗), where

Γ1(δ
∗) = ‖δ̃ −W−1δ∗‖2F +

τ1
τ2

K−1∑
k=1

|δ∗k| and(6)

Γ2(δ
∗) =

τ1
τ2

K−1∑
k=1

max(|δ∗k| − τ2, 0).

Starting with an initial estimate, δ̂∗(0), one successively ob-
tains an improved estimate δ̂∗(m) of (5) with min(|δ∗k| −
τ2, 0) in (6) replaced by its affine minorization (|δ∗k| −
τ2)I

(∣∣δ̂∗(m−1)
k

∣∣ > τ2
)
, resulting in an upper convex approxi-

mation:

Γ(m)(δ∗) = Γ1(δ
∗)− τ1

τ2

K−1∑
k=1

(|δ∗k| − τ2)I
(∣∣δ̂∗(m−1)

k

∣∣ ≥ τ2
)(7)

= ‖δ̃ −W−1δ∗‖2 + τ1
τ2

K−1∑
k=1

|δ∗k|I
(∣∣δ̂∗(m−1)

k

∣∣ < τ2
)

+ τ1

K−1∑
k=1

I
(
|δ̂∗(m−1)

k | ≥ τ2
)
,

for m ∈ N ≡ {1, 2, . . . }, where the last term of (7) does not
depend on δ∗. This DC algorithm has an attractive property
that Γ

(
δ̂∗(m+1)

)
≤ Γ

(
δ̂∗(m)

)
for m ∈ {0, 1, . . . }. In fact, it

converges in a finite number of steps, say M steps, where
δ̂∗(M) = δ̂∗(M+1), which happens when

(8)

K−1∑
k=1

I
(∣∣δ̂∗(M−1)

k

∣∣ ≥ τ2
)
I
(∣∣δ̂∗(M)

k

∣∣ ≥ τ2
)
= K − 1.

We denote the converged solution of δ∗ by δ̂∗ = δ̂∗(M). The
final solution of δ is then given by δ̂ = W−1δ̂∗, from which
D̂ can be easily constructed.

To solve (7), we apply the coordinate descent method.
Let ωk be the kth column vector of W−1. The updating

formulae for δ̂∗(m) =
(
δ̂
∗(m)
1 , . . . , δ̂

∗(m)
K

)′
are given by the

following, which have simple closed form expressions:

δ̂
∗(m)
k =

1

2‖ωk‖2
max

{
2(δ̃ − δ̃

(m−1)
−k )′ωk(9)

Algorithm 1 The Cover Algorithm

Description: Given data Y , compute the Cover estimate Σ̂ for
the covariance matrix Σ of Y .

1: Compute the SVD Ũ D̃Ṽ ′ of Y .
2: Set Û = Ũ and V̂ = Ṽ .
3: Obtain an initial estimate δ̂∗(0) for δ̂∗ and set m = 1; see

Remark below.
4: Iterate (9) for a given m until convergence. Denote the con-

verged solution as δ̂∗(m).
5: If δ̂∗(m) �= δ̂∗(m−1), go to Step 4 with m replaced by m+ 1,

otherwise denote the converged solution as δ̂∗.
6: Calculate D̂ as δ̂ = W −1δ̂∗, with W defined in (4).
7: With Û , V̂ and D̂, compute the Cover estimate for Σ us-

ing (2).

Remark: in Step 3 a good initial estimate δ̂∗(0) can be chosen
to be the estimate obtained from the nearby tuning parameter
values, and δ̂∗ = (0, tr(S)/p)′ when both τ1/τ2 and τ2 are large
enough.

−τ1
τ2

I
(∣∣δ̂∗(m−1)

k

∣∣ < τ2
)
, 0

}
; k = 1, . . . ,K − 1,

δ̂
∗(m)
K =

1

‖ωK‖2 max{(δ̃ − δ̃
(m−1)
−K )′ωK , 0},

where δ̃
(m−1)
−k =

∑
j:j �=k δ̂

∗(m−1)
j ωj for k = 1, . . . ,K.

The major steps are summarized in Algorithm 1. We note
that this algorithm is extremely fast, as it only requires to
perform one SVD (in Step 1), and the iterations in Step 4
have closed form expressions. Note also that this algorithm
is guaranteed to converge, because the DC algorithm con-
verges in a finite number of steps with δ̂∗(M) = δ̂∗(M+1)

(i.e., (8) is satisfied), and the coordinate descent iterations

of (9) is known to converge to the Lasso solution δ̂∗(m) of
(6). Nevertheless, there is no guarantee that the converged
value is a global minimum; i.e., this algorithm may converge
to a local minimizer of (5).

2.3 Theoretical properties

Suppose that p is fixed and Σ have J distinct eigenvalues
ζ1 > · · · > ζJ with multiplicities m1, . . . ,mJ . That is, m1

eigenvalues of Σ share the same value ζ1, m2 eigenvalues of
Σ share the same value ζ2, and so on. Then by Anderson
(1963) or Muirhead (1982, Theorem 9.3.1), the maximum
likelihood (ML) estimate of ζj is

(10) ζ̂
(ml)
j =

1

mj

∑
k∈Ωj

λ̃k; j = 1, . . . , J,

where Ωj = {k ∈ N : m1 + · · · + mj−1 < k ≤ m1 + · · · +
mj}. Let λ1 ≥ · · · ≥ λp be the eigenvalues of Σ and write
λ = (λ1, . . . , λp)

′. If we know which eigenvalues are equal
in advance, then the ML estimate of λ under the above
assumption is
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λ̂(ml) =
(
ζ̂
(ml)
1 , . . . , ζ̂

(ml)
1︸ ︷︷ ︸

m1

, ζ̂
(ml)
2 , . . . , ζ̂

(ml)
2︸ ︷︷ ︸

m2

, . . . , ζ̂
(ml)
J , . . . , ζ̂

(ml)
J︸ ︷︷ ︸

mJ

)

and the ML estimate of nWλ is δ̂∗(ml) = nWλ̂(ml). The
following theorem shows that our estimate λ̂ = (λ̂1, . . . , λ̂p)

′

achieves the oracle property as if the clusters of eigenvalues
are known in advance.

Theorem 1. Consider the cost function (1). Assume that
p is fixed and there are J unknown distinct eigenvalues
with unknown multiplicities, m1, . . . ,mJ . In addition, as-
sume that with probability tending to 1, there is only one
local minimizer of (5) as n → ∞. Let γ = min{(ζ2 −
ζ1), . . . , (ζJ −ζJ−1)}, and further suppose that γ > τ2/n > 0
and τ1/τ2 > 0. Then

P
(
λ̂ = λ̂(ml)

)
→ 1 as n → ∞.

Proof. Let ωk be the k-th column of W−1, for k = 1, . . . , p.
Then δ∗ is a local minimizer of (5) if

(11) ω′
k

(
δ̃ −W−1δ∗

)
+

τ1
τ2

sk = 0; k = 1, . . . , p,

where sk ∈ [−1, 1] if |δ∗k| = 0, sk = sign(δ∗k) if 0 < |δ∗k| < τ2,

and sk = 0 if |δ∗k| > τ2. Clearly, the proposed estimate δ̂∗

obtained iteratively from (7) satisfies (11) after convergence.

It remains to show that λ̂∗(ml) satisfies (11). From (10),

we obtain that δ̂∗(ml) =
(
δ̂
∗(ml)
1 , . . . , δ̂

∗(ml)
p

)′
= nWλ̂(ml)

minimizes ‖δ̃ −W−1δ∗‖2 over all δ∗ ∈ D, where

D =
{
(0, . . . , 0︸ ︷︷ ︸

m1−1

, a1, 0, . . . , 0︸ ︷︷ ︸
m2−1

, a2, . . . , 0, . . . , 0︸ ︷︷ ︸
mJ−1−1

, aJ−1,

0, . . . , 0, aJ)
′ : a1, . . . , aJ ∈ R

}
.

Hence ω′
k

(
δ̃ − W−1δ̂∗(ml)

)
= 0 for those k such that∣∣δ̂∗(ml)

k

∣∣ > 0. In addition, since (λ̃1, . . . , λ̃p)
′ → λ as n → ∞,

we have ω′
k

(
δ̃ − W−1δ̂∗(ml)

)
→ 0 for k = 1, . . . , p, and

P
(∣∣δ̂∗(ml)

k

∣∣ > τ2
)
→ 1 for those k such that |δ∗k| > 0. Thus

δ̂∗(ml) satisfies (11). This completes the proof.

3. COVARIANCE ESTIMATION WITH
OUTLIERS: RCOVER

This section extends the above methodology to situations
where outliers are present. The corresponding estimate for
Σ is still given by the expression (2), except now that Û , V̂

and D̂ are defined differently.

3.1 A robust criterion

To be precise, Û , V̂ and D̂ are defined as the joint min-
imizers of the following cost function:

(12) ρ
(
ŨD̃2Ṽ ′−UD2V ′)+τ1

K−1∑
k=1

min

( |d2k − d2k+1|
τ2

, 1

)
,

where the L2 based norm
∥∥ · ‖2F in (1) is replaced by

ρ(M) =

n∑
i=1

p∑
k=1

{
m2

ikI(|mik| ≤ ck)

+ ck(2|mik| − ck)I(|mik| > ck)
}
.

Here mik is the (i, k)th entry of the matrix M , and ck > 0
for k = 1, . . . , p are pre-chosen cut-off constants. The func-
tion ρ(·) can be seen as a matrix version of the Huber func-
tion, which is widely used to downweigh the effects of out-
liers (e.g., Huber, 1981). Notice that when c1 = · · · = cp =
+∞, the cost function (12) reduces to (1).

With a slight abuse of notation, we denote by Û , V̂ and
D̂ = diag(d̂1, . . . , d̂K) as, respectively, the robust estimates
of U , V and D obtained by minimizing (12). With these
the robust estimate for Σ can be calculated using (2).

3.2 A fast algorithm for minimizing (12)

The nonlinear nature of ρ(·) makes the minimization
of (12) a non-trivial task. In the context of robust nonpara-
metric regression, Oh et al. (2007) develop a so-called ES-
algorithm to handle similar minimization problems. Follow-
ing the idea of this ES-algorithm, we propose the following
algorithm for our robust covariance estimation problem.

Suppose we are given initial estimates Û (0), V̂ (0) and
D̂(0) of U , V and D, respectively. Then for m = 0, 1, . . .,
iterate the following steps until convergence.

1. Calculate Ŷ (m) = Û (m)D̂(m)V̂ ′(m).
2. Evaluate Ỹ (m) = Ŷ (m) + 1

2η{Y − Ŷ (m)}, where η(·) is
the (elementwise) derivative of ρ(·).

3. Compute the SVD of Ỹ (m) = Ũ (m)D̃(m)Ṽ ′(m).
4. Obtain the next iterative estimates Û (m+1), V̂ (m+1)

and D̂(m+1) by minimizing

‖Ũ (m)
(
D̃(m)

)2
Ṽ ′(m) −UD2V ′‖2F

+ τ1

K−1∑
k=1

min

( |d2k − d2k+1|
τ2

, 1

)
,

which can be done efficiently by Algorithm 1.

This RCover algorithm essentially replaces the nonlinear
minimization induced by ρ(·) in (12) by a sequence of L2-
type minimizations listed in Step 4 above. As the iteration
continues the effect of outliers is gradually downweighed
through the application of η(·) in Step 2.

The tuning parameters τ1 and τ2 can be selected by M -
fold CV as similar to (3). Rather than applying (3), we con-
sider a robust version given by

(13)

M∑
m=1

ρ∗
(

1

|Am|
∑
i∈Am

Y ′
i Yi − Σ̂(−m)

τ1,τ2

)
,

where Σ̂
(−m)
τ1,τ2 is the RCover estimate based on the data {Yi :

i /∈ Am},
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Table 1. Simulation results using the spectral loss in Example 1 based on 200 replications. Numbers in parentheses are
standard errors

n r ML GLasso PDSCE Cover RCover

50 0% 5.35 (0.00) 2.60 (0.41) 3.87 (0.00) 1.99 (0.00) 1.99 (0.00)
50 5% 58.43 (0.03) 31.24 (4.73) 52.16 (0.04) 1.67 (0.00) 1.63 (0.00)
50 10% 70.31 (0.03) 28.13 (5.02) 63.65 (0.04) 3.22 (0.00) 1.44 (0.00)
200 0% 2.27 (0.00) 1.12 (0.12) 1.19 (0.00) 1.45 (0.00) 1.48 (0.00)
200 5% 20.45 (0.01) 7.08 (1.04) 16.72 (0.01) 2.04 (0.00) 1.55 (0.00)
200 10% 25.23 (0.01) 8.34 (0.99) 20.16 (0.01) 3.16 (0.00) 2.32 (0.00)
500 0% 1.35 (0.00) 0.71 (0.05) 0.76 (0.00) 1.05 (0.00) 1.06 (0.00)
500 5% 10.91 (0.00) 4.06 (0.36) 7.97 (0.00) 2.71 (0.00) 2.58 (0.00)
500 10% 14.27 (0.00) 5.49 (0.34) 10.30 (0.00) 3.63 (0.00) 3.26 (0.00)

ρ∗(M) =

p∑
j=1

p∑
k=1

{
m2

jkI(|mjk| ≤ cjk)

+ cjk(2|mjk| − cjk)I(|mjk| > cjk)
}
,

mjk is the (j, k)th entry of the matrix M , and cjk > 0 for
1 ≤ j, k ≤ p are pre-chosen cut-off constants.

4. SIMULATION EXPERIMENTS

Different numerical experiments were conducted to evalu-
ate the practical performances of the proposed methods. Let
σij be the (i, j)th entry of Σ. We generate data Y1, . . . ,Yn

from N(0,Σ), and consider five examples for Σ:

1. σij = 0.5|i−j|; i, j = 1, . . . , p, where Σ−1 is sparse and
the eigenvalues of Σ are not clustered at some values.

2. θij = 0.5|i−j|; i, j = 1, . . . , p, where Σ is sparse and the
eigenvalues of Σ are not clustered at some values.

3. Σ = Ip.
4. Σ = Λ = diag(9, . . . , 9︸ ︷︷ ︸

4

, 5, . . . , 5︸ ︷︷ ︸
4

, 3, . . . , 3︸ ︷︷ ︸
4

, 1, . . . , 1︸ ︷︷ ︸
p−12

).

5. Σ = V ΛV ′, where Λ is given above, and V is a ran-
domly generated diagonal matrix.

For each example, we replace 100r% of Y1, . . . ,Yn by out-
liers generated from N(0,Σ+ v2I), where v2 = 25 tr(Σ)/p.
We consider p = 100, and nine different combinations of
n ∈ {50, 200, 500} and r ∈ {0, 0.05, 0.1}. The following five
methods are considered:

1. ML: the maximum likelihood,
2. GLasso: the graphical Lasso of Friedman et al. (2008),
3. PDSCE: the positive definite sparse covariance estima-

tors of Rothman (2012),
4. Cover: the COVariance Eigenvalue–Regularized esti-

mate proposed in Section 2, and
5. RCover: the robust version of Cover developed in Sec-

tion 3.

Three loss functions are used to evaluate the quality of any
covariance estimate. They are the spectral loss, defined as
the square root of the maximum eigenvalue of

(
Σ̃−Σ

)′(
Σ̃−

Σ
)
, the squared Frobenius loss

∥∥Σ̃ −Σ
∥∥2
F
, and the matrix

�1 loss maxj=1,...,p

∑p
i=1 |σ̃ij − σij |, where Σ̃ =

(
σ̃ij

)
is a

generic estimate of Σ.

In each simulated example, we consider 7 tuning param-
eters of τ2 ∈ {1, 2, 4, 8, 16, 32,∞} in combination with 200
tuning parameters of τ1/τ2 equally spaced in the log scale
for the proposed methods (Cover and RCover). Similarly,
we consider 200 tuning parameters equally spaced in the
log scale for GLasso. Both Glasso and PDSCE are imple-
mented using the R package “glasso” and “PDSCE”, re-
spectively, where the tuning parameter of PDSCE is se-
lected according to the package’s default setup. The tun-
ing parameters of GLasso and Cover are selected by 5-fold
CV of (3). For RCover, we select cj = 1.345 σ̂jj , where
σ̂jj = median

{
|Yij − med{Y1j , . . . , Ynj}| : i = 1, . . . , n

}
,

and Yij is the jth element of Yi, and the tuning param-
eters of RCover are selected by 5-fold CV of (13) with
cjk = σ̂jj σ̂kk.

As the method of Chen et al. (2011) pre-sets the trace of
their covariance estimate to be p, it performs very well for
Example 3 when the trace is exactly p, but poorly for Exam-
ple 4 when the trace of the covariance matrix is away from
p. Therefore this method is not included in the simulation
as it would make the comparison less meaningful.

The results for the spectral loss based on 200 simula-
tion replicates are shown in Tables 1 to 5. The lowest value
for each combination of experimental settings is boldfaced.
From these tables, one can see that, when there is no outlier,
GLasso, PDSCE or Cover produces the best results depend-
ing on the situations, and RCover is not far behind. How-
ever, when outliers are present, the performances of GLasso
and PDSCE deteriorate substantially, while RCover shows
resistance to the outlier effect and gives overall the best re-
sults. Results for the squared Frobenius loss and the matrix
�1 loss are similar and hence are omitted.

5. AN APPLICATION TO SPEECH SIGNAL
CLASSIFICATION

We apply the proposed Cover method to a Parkinson’s
disease dataset to discriminate between healthy people and
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Table 2. Similar to Table 1 but for Example 2

n r ML GLasso PDSCE Cover RCover

50 0% 8.22 (0.00) 3.19 (0.48) 5.99 (0.00) 1.36 (0.00) 1.37 (0.00)
50 5% 96.77 (0.05) 50.38 (7.97) 85.94 (0.07) 2.98 (0.00) 1.57 (0.00)
50 10% 116.43 (0.05) 45.72 (7.87) 105.38 (0.07) 5.47 (0.00) 2.25 (0.00)
200 0% 3.39 (0.00) 1.53 (0.17) 1.71 (0.00) 1.56 (0.00) 1.35 (0.00)
200 5% 33.95 (0.01) 11.10 (1.64) 27.80 (0.01) 3.40 (0.00) 2.31 (0.00)
200 10% 41.95 (0.01) 13.54 (1.53) 33.48 (0.01) 5.45 (0.00) 3.76 (0.00)
500 0% 1.99 (0.00) 1.12 (0.10) 0.72 (0.00) 1.36 (0.00) 1.32 (0.00)
500 5% 18.18 (0.01) 6.21 (0.53) 13.21 (0.00) 3.91 (0.00) 3.26 (0.00)
500 10% 23.60 (0.01) 9.01 (0.53) 16.98 (0.00) 5.79 (0.00) 5.38 (0.00)

Table 3. Similar to Table 1 but for Example 3

n r ML GLasso PDSCE Cover RCover

50 0% 4.56 (0.00) 1.10 (0.16) 3.34 (0.00) 0.02 (0.00) 0.06 (0.00)
50 5% 58.36 (0.03) 29.83 (4.69) 52.22 (0.04) 1.00 (0.00) 0.36 (0.00)
50 10% 69.85 (0.03) 27.15 (4.68) 63.05 (0.04) 2.56 (0.00) 0.65 (0.00)
200 0% 1.83 (0.00) 0.50 (0.05) 0.54 (0.00) 0.02 (0.00) 0.01 (0.00)
200 5% 20.49 (0.01) 6.36 (0.92) 16.73 (0.01) 1.25 (0.00) 0.49 (0.00)
200 10% 25.17 (0.01) 8.13 (0.97) 20.03 (0.01) 2.49 (0.00) 1.42 (0.00)
500 0% 1.05 (0.00) 0.37 (0.03) 0.26 (0.00) 0.02 (0.00) 0.02 (0.00)
500 5% 10.96 (0.00) 3.44 (0.29) 7.94 (0.00) 1.44 (0.00) 1.13 (0.00)
500 10% 14.23 (0.00) 5.21 (0.36) 10.21 (0.00) 2.67 (0.00) 2.43 (0.00)

Table 4. Similar to Table 1 but for Example 4

n r ML GLasso PDSCE Cover RCover

50 0% 8.33 (0.01) 4.99 (1.33) 2.63 (0.00) 6.48 (0.00) 6.56 (0.00)
50 5% 84.06 (0.05) 44.33 (7.05) 74.62 (0.06) 15.13 (0.00) 6.36 (0.00)
50 10% 100.68 (0.05) 39.67 (6.78) 90.31 (0.05) 4.03 (0.00) 5.60 (0.00)
200 0% 3.75 (0.00) 2.15 (0.60) 1.21 (0.00) 2.93 (0.00) 5.09 (0.01)
200 5% 29.54 (0.01) 9.65 (1.43) 23.67 (0.01) 4.85 (0.00) 5.22 (0.00)
200 10% 36.25 (0.01) 11.92 (1.42) 28.77 (0.01) 4.05 (0.00) 3.99 (0.00)
500 0% 2.23 (0.00) 1.15 (0.30) 0.75 (0.00) 2.01 (0.00) 1.90 (0.00)
500 5% 15.78 (0.00) 5.11 (0.47) 10.96 (0.01) 3.91 (0.00) 3.93 (0.00)
500 10% 20.51 (0.00) 7.58 (0.52) 14.10 (0.01) 5.15 (0.00) 5.26 (0.00)

Table 5. Similar to Table 1 but for Example 5

n r ML GLasso PDSCE Cover RCover

50 0% 8.30 (0.01) 6.24 (0.63) 5.70 (0.00) 6.49 (0.00) 4.82 (0.00)
50 5% 84.90 (0.05) 44.51 (6.99) 76.74 (0.06) 5.10 (0.00) 6.35 (0.00)
50 10% 101.35 (0.04) 40.22 (6.92) 92.12 (0.05) 4.06 (0.00) 5.69 (0.00)
200 0% 3.69 (0.00) 5.13 (0.64) 6.57 (0.00) 3.01 (0.00) 3.44 (0.00)
200 5% 29.54 (0.01) 9.96 (1.45) 23.73 (0.01) 4.83 (0.00) 5.23 (0.00)
200 10% 36.35 (0.01) 11.95 (1.35) 28.96 (0.01) 4.05 (0.00) 3.90 (0.01)
500 0% 2.24 (0.00) 4.10 (0.33) 6.66 (0.00) 1.98 (0.00) 1.87 (0.00)
500 5% 15.86 (0.00) 5.24 (0.52) 10.98 (0.01) 3.90 (0.00) 3.90 (0.00)
500 10% 20.65 (0.01) 7.70 (0.52) 14.10 (0.01) 5.18 (0.00) 5.49 (0.01)

those with the disease. The dataset collected in a case-
control study is available from the UC Irvine Machine Learn-
ing Repository. There are 195 speech signals recorded from
31 individuals, among which 147 signals are from people
with Parkinson’s disease (i.e., the case group), and the re-

maining 48 signals are from healthy people (i.e., the control
group). There are 22 variables extracted from each signal.
While some of the 195 speech signals are originated from
the same individuals, they are treated as independent in
our analysis.

466 H.-C. Huang and T. C. M. Lee



Following Rothman (2012), we randomly partitioned this
dataset into a training set of size 65 with 49 cases and a
testing set of size 130 with 98 cases. We then estimated the
covariance matrices corresponding to case and control based
on the training data, and evaluated the performance of the
covariance matrix estimates in terms of misclassification rate
using quadratic discriminant analysis. The quadratic dis-
criminant rule is given by

argmax
j∈{0,1}

{
− 1

2
log

∣∣Σ̂j

∣∣− 1

2

(
Y

(test)
i − μ̂j

)′
× Σ̂−1

j

(
Y

(test)
i − μ̂j

)
+ log(π̂j)

}
; i = 1, . . . , 130,

where j = 0, 1 refer to the control group and the case group
respectively, log(π̂0) = 16/65, log(π̂1) = 49/65, and μ̂j and

Σ̂j are, respectively, the sample mean and the covariance
matrix estimate based on the training data for group j.

Lastly, Y
(test)
i is the i-th observation in the testing set.

The tuning parameters of τ1 and τ2 were selected using 5-
fold likelihood cross-validation among 7 tuning parameters
of τ2 ∈ {1, 2, 4, 8, 16, 32,∞} and 200 tuning parameters of
τ1/τ2 equally spaced in the log scale. The resulting misclas-
sification rate based on 500 random partitions into training
and testing sets is 0.202, with standard error 0.002. This
is significantly smaller than 0.218 obtained from the sparse
covariance matrix method of Rothman (2012), showing the
effectiveness of the proposed methodology.

6. CONCLUDING REMARKS

In this paper two covariance estimation methods, Cover
and RCover, are developed. The former is an eigenvalue-
regularized method for which the corresponding estimator
is defined as the minimizer of a penalized least-squares crite-
rion. This Cover estimator is extremely fast to compute, pos-
sesses good theoretical support, and performs well in sim-
ulations. However, as with many other least-squares based
estimators, it could produce poor estimates when outliers
are present. To address this issue, RCover modifies Cover’s
penalized least-squares criterion with Huber’s loss function,
and invokes the idea of the ES-algorithm (Oh et al., 2007)
to develop a practical algorithm to solve the corresponding
optimization problem. The RCover estimator performs very
well in simulations, especially when the data are contami-
nated by outliers.
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