STATISTICS AND ITS INTERFACE Volume 9 (2016) 453-459

A split-and-merge approach for singular value
decomposition of large-scale matrices

FAMING LIANG*, RUNMIN SHI, AND QIANXING MO

We propose a new SVD algorithm based on the split-and-
merge strategy, which possesses an embarrassingly parallel
structure and thus can be efficiently implemented on a dis-
tributed or multicore machine. The new algorithm can also
be implemented in serial for online eigen-analysis. The new
algorithm is particularly suitable for big data problems: Its
embarrassingly parallel structure renders it usable for fea-
ture screening, while this has been beyond the ability of the
existing parallel SVD algorithms.

KEYWORDS AND PHRASES: Feature screening, Parallel com-
putation, Online eigen-learning, Singular value decomposi-
tion.

1. INTRODUCTION

The singular value decomposition (SVD) is a key linear
algebraic operation at the heart of many statistical and data
mining methods. For example, principal component analysis
(PCA), which is a special case of SVD, is a major tool of di-
mension reduction and has played an important role in high
dimensional data analysis. The theoretical property of PCA
for high dimensional problems has attracted much interest
in the recent literature, see e.g., Johnstone (2001), Paul
(2007), and Lee et al. (2010, 2014). In data mining, SVD
has been widely used in clustering, latent semantic analysis,
anomaly detection, collaborative filtering, computer recom-
mendation and more. See Patterson et al. (2006), Deerwester
et al. (1990), Idé and Kashima (2004), Eagle and Pentland
(2009), and Sarwar et al. (2002) for some examples.

Despite its popularity, SVD is often restricted by its high
computational complexity, which makes it impractical for
massive datasets. Yet massive datasets are increasingly com-
mon in practice, many of which require real-time responsive-
ness. To accelerate the computation of SVD, some approx-
imation methods have been proposed. For example, Sarwar
et al. (2002) proposed an incremental SVD algorithm based
on the projection technique, which is not exact as the re-
sulting matrix decomposition is not orthogonal any more.
Recently, some sample-based SVD approximation methods
have also been studied, see e.g., Deshpande and Vempala
(2006) and Holmes et al. (2008).

*Corresponding author.

In this paper, we propose a SVD algorithm based on the
split-and-merge strategy. The new algorithm possesses an
embarrassingly parallel structure and thus can be efficiently
implemented on a distributed or multicore machine. The
new algorithm can also be implemented in serial for online
eigen-analysis. Compared to the standard SVD algorithm,
the new algorithm can lead to significant savings in com-
putational time in either the parallel or serial implementa-
tion. Compared to the existing parallel SVD algorithms, see
e.g. Berry et al. (2005) for an overview, the new algorithm
is easy to implement based on the existing SVD algorithm.
Further, it can be accelerated with the existing parallel SVD
algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed algorithm. Section 3 discusses
two applications of the proposed algorithm, feature screen-
ing and online eigen-learning. Section 4 presents some nu-
merical results. Section 5 concludes the paper with a brief
discussion.

2. A SPLIT-AND-MERGE SVD ALGORITHM

Given an m x n matrix X with rank rx, with m > n, the
singular value decomposition is defined as

(1)

where U and V are both orthogonal matrices with dimen-
sions m x m and n X n, respectively; and D is an m X n
rectangular diagonal matrix with exactly rx non-zero diag-
onal elements. The columns of U and V represent orthogo-
nal eigenvectors of X X7 and XT X, respectively. For con-
venience, we write U = (uq,...,Uy) and V = (vy,...,0p),
where u; is an m-vector and v; is a n-vector. The u; is also
called a left eigen-vector and v; a right eigen-vector.

There are a lot of SVD algorithms and the most com-
monly used one is by Golub and Reinsch (1970). In the rest
of this paper, we will use the Golub-Reinsch SVD algorithm
as the standard algorithm to exhibit the split-and-merge
approach. Note that the detailed algorithm for solving the
SVD problem is not the topic here. We only show that the
split-and-merge strategy can significantly improve the per-
formance of the standard SVD algorithm.

One way to quantify the volume of work associated with
a computation is to count flops. A flop is a floating point
add, subtract, multiply, or divide. The number of flops of a

SVD(X)=Ux D x VT,

http://www.intlpress.com/SII/

given algorithm is usually obtained by summing the amount
of arithmetics associated with the most deeply nested state-
ments, and we will denote this sum as the computational
complexity. Referring to Golub and van Loan (2013), the
Golub-Reinsch SVD algorithm of an m x n matrix has a
computational complexity of 4m?n + 8mn? 4+ 9n3 to get
the full components U, D and V. However, in some applica-
tions, only the the first n columns of U are required, denot-
ing the matrix U = [U(,l : n),OmX(m_n)], and the Golub-
Reinsch SVD algorithm has only a computational complex-
ity of 14mn? + 8n3 to get the reduced components U, D
and V.

2.1 The algorithm

To describe the proposed algorithm, we first consider the
scenario where m is much greater than n, but n is not very
large. Note that we can always assume that m is greater than
n; otherwise, for a low computational complexity, SVD can
be done for X”. Under this assumption, we can partition X
by rows into a few submatrices:

vyhere s denotes the number of submatrices. Let X; =
U;D;V;I' denote the SVD of X;.

Define
0 DV
~ U2 D2V'2T
U= , Y =)
US DS VST

LetY = UyDyVyT denote the SVD of Y. For convenience, we
call Y the combined eigen-matrix. Then it is easy to verify
that

X =U0U,D,V,]

which forms a SVD of X. In summary, we have the following
algorithm.

Algorithm 1. (Split-and-Merge SVD: row partitioning

only)

(a) Partition X by rows into X = [XT,..
each X; is of about the same size.

(b) Perform SVD for each X;: X; = U;D; V..

(¢) Perform SVD for the combined eigen-matriz Y =
ViDy,...,ViD,]": Y = U,D, V7,

(d) Output UUy, D, and V, as the three components of
SVD of X.

The algorithm requires that each X; is of about the
same size. This minimizes the waiting time between differ-
ent nodes or cores of the computer and thus optimizes the
performance of the algorithm.

S XIT | where

454 F. Liang, R. Shi, and Q. Mo

2.2 Time complexity analysis

To analyze the time complexity of Algorithm 1, we as-
sume that n = o(m) and each X; has the same rank r, i.e.,
ry =r9 = --- =1, = r. It is worth to mention that, when
forming the combined eigen-matrix Y of the size m xn, each
DiViT contains “* — r zero row-vectors in its bottom. That
is, the matrix Y contains only sr non-zero row vectors. To
see that the time complexity for solving the SVD on Y is
equivalent to solving the same problem on the matrix which
is only made by its sr non-zero row vectors, we let Y = RY
be a rearrangement in rows for Y such that its first sr row
vectors are non-zero and m — sr row zero vectors are in its
bottom. Solve the SVD problem for its top non-zero part

and we can get
U 0
0]mfsr

where the rearrangement in row can be achieved by a deli-
cate data structure and there is no extra work needed to get
the left eigen-vector matrix R diag(U, Iy—sy).

UDvVT D

0

Y =RY =R

VT

2.2.1 Parallel implementation

The time complexity of Algorithm 1 is given by

(2)

Toarallel = [14En2 +8n?| + [4527°Zn + 8srn? + 9n3]
S
+ [srn +m?*(2n — 1)]
= (2m? + 4s%r? + sr)n + (14T + 8sr)n? + 170 — m?,
s

where the first bracket [-] is for the time complexity of
step (b), the second bracket [-] is for the time complex-
ity of SVD(Y) performed in step (c), the term srn in
the third bracket [-] is for the time complexity of form-
ing the combined eigen-matrix Y = [V1D4,..., VD], and
the term m?(2n — 1) is for the time complexity of com-
puting UU, by noting the sparse structure of U. Com-
pared to 4m?n 4+ 8mn? + 9n3, the time complexity of the
standard SVD algorithm, it is easy to see that as long as
In 4 2sr +n < m, ie, r < %2 — I = O(m/s), the
new algorithm will lead to some savings in computational
time. Basically, it says that if D; has a smaller number
of non-zero rows than X;, then the new algorithm will re-
duce the computational time of SVD. We note that this is
always true if m > sn. This analysis suggests we choose
s<m/n.

As implied by (2), if the partitioning in Algorithm 1 is
done on columns, then the leading term of Tpqrqie; Will be
4m?sr. Further, if r ~ n/s, then the proposed algorithm will
not create much saving in computation. For this reason, we
consider only the partitioning on rows.

2.2.2 Serial implementation

It is interesting to point out that even in serial imple-
mentations, Algorithm 1 can still benefit from the split-and-

merge strategy. In this case, the time complexity of the new
algorithm is

Teorial = [3(14@112 + 8713)} + [4527“271 + 8srn? + 9n3]
s
+ [srn +m?(2n — 1)]
= (2m? + 45%r® + sr)n + (14m + 8sr)n?
+ (85 +9)n® —m?,

3)

where the first bracket [] accounts for the total time com-
plexity of SVD(X3), ..., SVD(Xj). Since < min{m/s,n}
is always true, we have

Taeriat < —m? +2m?n + (s + 14m)n? + (4s* 4 165 + 9)n®
< 2mPn + 14mn? + (4s® + 175 + 9)n’.

Hence, if the following inequality is true,

(4)

then Tyeriaqr < 4m2n+8mn?+9n3. For example, if m/n = 10,
then (4) can be satisfied for 2 < s < 4; and if m/n = 100,
then (4) can be satisfied for 2 < s < 67. Therefore, with an
appropriate choice of s, the new algorithm provides a free
improvement in computational time (without any require-
ments to the computer hardware) over the standard SVD
algorithm.

2
4s2+17s+6%—2(%) <0,

2.3 SVD for general large-scale matrices

In the scenario that n is large and m is small, we can run
Algorithm 1 on X7 In the scenario that both n and m are
large, we can partition X in both rows and columns into
s X k submatrices; that is,

X1 X X1k
) ¥ Xo1 Xoo Xop
Xsl X52 Xsk

where X;;’s are of about the same size. Then we have the
following algorithm for SVD of general large-scale matrices.

Algorithm 2. (Split-and-Merge SVD)
(a) Partition X in (5). Let X; = (X7,

Tiye
the jth column of the block matrz'm.J

(b) Apply Algorithm 1 to each column X; and get the
SVD X; = UD;VT for j = 1,....k. Let V =
diag(Vi,- -+, Vi) denote a block diagonal matriz.

(¢c) Let Z = (UiDy,...,UxDy) be the combined eigen-
matriz and get the SVD Z = UZDZVZT.

(d) Output U,, D, and V'V, as the three components of
SVD of X.

L XT)T denote

Let n; denote the column number of X;, and let r; denote
the rank of D;. If r; is much smaller than n; for each j, then
the new algorithm can lead to a substantial saving in compu-
tational time compared to the standard SVD algorithm, as

the standard SVD algorithm is time sensitive to the column
number. To see this more clearly, suppose that we can evenly
partition X into s x k submatrices, and each column compo-
nent X; has the samerank ry,ie,r =m=---=7, =7rx
and each sub-component X;; also has the same rank r, i.e.,
rp=rz=-+"=Tspg=T.

Hence, following from (2), the time complexity for step
(b) in the parallel case can be written as

n m n 2
Tutepty = k| (2m? 4+ 45707 4 s1) 7 4+ (147 + 89r) (T)

SOR

2

= (2m? +45*r? 4+ sr)n + (14m + 837")%
s
3
+ 1775 — km?.

Once again, the matrix Z contains only krx significant
non-zero column vectors and the time complexity of solving
the SVD problem is 4m2krx + 8mk?rx? + 9k3rx3. Conse-
quently, we have

Tstep(e) = mkrx + 4m2krx + 8mk*rx? + 9k%rx®.

By adding the time complexity for calculating V'V, one
can finally get

Tiotal = Tstep(b) + Tstep(c) + n’ (2% - 1) :

If we only consider terms of order three, we have T}otq; —
Tstep(c) ~ 2m?n+ %mrﬂ—i—”,j—fkn?’, provided that r is small.
Compared with the time complexity of the standard SVD al-
gorithm, 4m2n+8mn?+9n3, it is easy to see that a small rx
will produce a smaller T;.,() and, consequently, a smaller
Tiotar- To be more precise, if 2krx < n, the leading term of
Tiotar Will be smaller than 4m?n and Algorithm 2 will po-
tentially lead to some saving in computational time. In fact,
as explained in Section 3.1, this is often the case in practical
applications of SVD.

3. TWO APPLICATIONS OF THE
PROPOSED ALGORITHM

In this section, we discuss two applications of the
proposed algorithm, feature screening and online eigen-
learning.

3.1 Feature screening

In practice, instead of the exact SVD, one often seeks for
an approximation of X such that

(6)

where X denotes the approximation, ||A|r denotes the
Frobenius norm of a matrix A, and ¢ > 0 is called the
approximation error. It follows from (1) that for some
o<r<r,

IX — X% < el X1,

A split-and-merge approach for SVD of large-scale matrices 455

s T

X = ZZdluz’UT,

i=1 i=1

(7)
satisfies (6) if

(8) Z d? < eidf.
i=1

i=741

That is, X can be obtained via (7) by choosing the first 7
eigenvalues such that (8) is satisfied.

For the block matrix X = (X1,..., X}) and the approxi-
mator X = (X1, ..., Xg), if | X; — Xi||% < €]| X;||% is satisfied
foralli=1,...,k, then we have

k
1Ko Xe) = (R K3 = 01 - Kl
=1
©))
< IXZ = el X

i=1

If we call each pair of the eigenvectors, (u;, v;), a feature
of X, then (9) provides a theoretical foundation for fea-
ture screening. The noise features, i.e., those corresponding
to small eigenvalues, can be screened out from each subset
data X;. With feature screening, 7;, the number of selected
features from X;, can be much smaller than n;, and thus the
combined eigen-matrix Z in Algorithm 2 can have a much
smaller column number than n. As a result, this reduces
the time complexity of SVD. We note that for the spiked
eigenvalue model (Johnstone, 2001), where a small number
of population eigenvalues are substantially larger than the
rest, the computational time of SVD can be substantially
reduced by feature screening.

3.2 Online eigen-learning

One important application of the proposed algorithm
is online eigen-analysis. Suppose that the data come in a
stream, that is, the total number of observations m is fixed
but the number of variables n increase. Let X7.; denote the
data collected up to time ¢, and let X;1 denote the data col-
lected at time t+ 1. Let X7.; = UMDMVIE denote the SVD
of Xi.¢. Then the SVD of X7.441 can be obtained recursively
in the following algorithm.

Algorithm 3. (Online Eigen-Learning)

(a) Find the SVD X411 = Upp1 Dy Vi, and let V =
diag(V1.4, Vit1) be a diagonal block matriz.

(b) Let W = (U1.4D1.4,Usr1Div1) and find the SVD W =
UwDW V.

(¢) Output U411 = Uy, Digy1 = Dy and Vigyr = VV,
as the three components of SVD of X1.441.

For this algorithm, the feature screening can also be ap-
plied in step (b) to reduce the column number of W. This
algorithm can have many applications for stream type data,
e.g., the spatio-temporal weather data studied in Onorati

456 F. Liang, R. Shi, and Q. Mo

et al. (2013), the computer system data studied in Idé and
Kashima (2004), and the mobile communication data stud-
ied in Akoglu and Faloutsos (2010). For these studies, the
online eigen-learning algorithm can improve the computa-
tional efficiency of the involved eigen-analysis substantially.

4. NUMERICAL EXPERIMENTS

4.1 A simulated example

We generated a dataset from a population with three
groups. The dataset consists of m = 100 samples and
n = 500,000 variables. Among the 100 samples, 50 are from
group 1, 30 are from group 2, and 20 are from group 3.
The samples in each group were simulated by first creat-
ing its mean vector py (g = 1,2,3), for which each ele-
ment was drawn randomly with replacement from the set
{-0.3,0,0.3}, and then drawing independently from the
multivariate Gaussian distribution MVN (g, 41,,), where I,
denotes an n xn identity matrix. A similar example has been
used in Lee et al. (2010) for demonstrating the behavior of
principal component (PC) score under the high dimensional
setting.

For this dataset, since n is much greater than m, we actu-
ally worked on X7 for finding the decomposition. We imple-
mented Algorithm 1 in both parallel and serial. The parallel
means that step (b) is run in parallel, and the serial means
step (b) is run in serial. The parallel version was imple-
mented on a multicore computer (high-end Dell Precision
T7610 workstation, 2.7 GHz processor) by calling the pack-
age parallel in R. The serial version was implemented on the
same computer in R, but with only a single core being used.
For comparison, we also applied the standard SVD in R to
the dataset. In the standard SVD, only a single core was
used. Table 1 shows the elapsed time used by the three al-
gorithms. As expected, the proposed algorithm can be much
faster than the standard SVD algorithm in its parallel im-
plementation, and it is also faster than the standard SVD
algorithm in its serial implementation due to the benefit
of the split-and-merge strategy. It is remarkable that when
s = 20, the serial implementation can be 20% faster than
the standard SVD algorithm.

4.2 SVD for recommender systems

The recommender system is a crucial tool in E-commerce
on the web, which applies data analysis techniques to help
customers find which products they would like to purchase.
The past research, see e.g., Berry et al. (1995), Gupta and
Goldberg (1999), and Sarwar et al. (2000), suggested that
the SVD-based approach can produce good predictive accu-
racy. Let X denote a productxcustomer matrix, where the
number of customers is often very large. The SVD-based
approach is to find a low rank matrix X = U,Dy, V' that is
the closest approximation to X, where k denotes the rank
of the approximation matrix. Deerwester et al. (1990) and
Berry et al. (1995) pointed out that the low rank approxi-

Table 1. Elapsed time used by the standard, parallel and serial algorithms for decomposition of the simulated dataset: s
denotes the number of submatrices in the partition, and is also the number of cores used in the parallel implementation. The
mean and standard deviation (SD) of the elapsed time (in seconds on a high-end Dell Precision T7610 workstation, 2.7 GHz

processor) are calculated by averaging over five independent runs on the same dataset

Algorithm Standard parallel

Serial

s 1 5 10 20

40 5 10 20 40

Mean(s)
SD

10.58
0.02

2.94
0.03

2.14
0.005

2.05
0.005

1.42 10.01 8.92 8.02 8.89
0.02 0.01 0.01 0.11 0.27

mation is better than the original data due to the filtering
out of the small singular values that introduce “noise” in
the product-customer relationship. As demonstrated in Sar-
war et al. (2000), the SVD-based approach produced results
that are better than a traditional collaborative filtering al-
gorithm most of the time when applied to a Movie dataset.

However, as pointed out by Sarwar et al. (2002), the SVD-
based approach suffer one serious limitation that makes
them less suitable for large-scale data; the matrix decompo-
sition step is computationally very expensive and is a major
stumbling block towards achieving high scalability. To over-
come this bottleneck, some approximate SVD algorithms,
e.g., incremental SVD algorithm, have been used.

To demonstrate the advantage of the proposed algorithm,
we applied the proposed algorithm to a MovieLens dataset
with 10,677 movies and 71,567 customers. The dataset is
downloaded at http://grouplens.org/datasets/movielens//.
Figure 1 shows the eigenvalues of a sub-dataset with 894
customers. It indicates that the data contains only a very
few significant features. Therefore, we applied the feature
screening method described in Section 3.1 to this dataset.
In our implementation of the feature screening method, the
split-and-merge SVD algorithm was run in four steps as fol-
lows.

e Step 1: Partition the productxcustomers matrix by
columns into 80 submatrices. Run SVD in parallel for
each submatrix and approximate each submatrix us-
ing a low rank matrix with the approximation error
€1 = 0.2. This step leads to a combined eigen-matrix
of size 10,677 x 15,089. On average, 188.6 features were
selected for each submatrix.

e Step 2: Partition the eigen-matrix obtained in step 1
by columns into 40 submatrices. Run SVD in parallel
for each submatrix and approximate each submatrix
using a low rank matrix with the approximation error
€2 = 0.2. This step leads to a combined eigen-matrix of
size 10,677 x 5,470.

e Step 3: Partition the eigen-matrix obtained in step 2
by columns into 20 submatrices. Run SVD in parallel
for each submatrix and approximate each submatrix
using a low rank matrix with the approximation error
€3 = 0.2. This step leads to a combined eigen-matrix of
size 10,677 x 1,595.

e Step 4: Run SVD for the eigen-matrix obtained in step
3 and obtain a low rank approximator of X.

1
0.20
1

0.15
1

eigenvalue
0.10
L

Il
eigen-proportion

0.05
|

° °
°

50000 100000 150000 200000 250000 300000 350000

°

o

— —

T T T ; , T T T T ,

0 200 400 600 800 0 200 400 600 800
Index Index

0

1
0.00

1

Figure 1. Left: eigenvalues of a sub-dataset with 894
customers. Right: eigen-proportions corresponds to the
eigenvalues shown in the left plot, where the eigen-proportion
is defined as d?/Y"'_, d?, and d; is the ith singular value of
the sub-dataset.

The algorithm cost 193.7 seconds (elapsed time) on the
Dell Precision T7610 workstation. The resulting matrix ap-
proximator has an approximation error € = 0.49. As shown
in Figure 1, this approximation accuracy is still acceptable.
Note that if we run Algorithm 1 directly with the approx-
imation error € = 0.49, it will lead to a combined eigen-
matrix of size over 10,677x3,000, and the standard SVD
algorithm for such a matrix is still quite time consuming.
For comparison, we have also run the standard SVD algo-
rithm for the original data on the same computer. It cost
4,779.8 seconds (elapsed time), about 24.7 times longer than
the proposed algorithm.

5. DISCUSSION

In this paper, we have proposed a split-and-merge ap-
proach for singular value decomposition for large scale ma-
trices. The proposed approach can be implemented in both
distributed and serial machines. In either case, it can lead
to significant savings in computational time. We have also
discussed two applications of the proposed approach, feature
screening and online eigen-analysis. We expect that the pro-
posed approach can be applied for big data problems more
often.

For feature screening, one important problem is signal de-
tection, i.e., identifying the features (u;,v;)’s that represent

A split-and-merge approach for SVD of large-scale matrices 457

http://grouplens.org/datasets/movielens/

true signals. Signal detection is a long-standing problem in
principal component analysis, and the most of existing ap-
proaches are based on eigen-proportions. Recently, for the
case that X is a random matrix with each element normally
distributed, Nadakuditi and Edelman (2008) proposed a hy-
pothesis testing approach based on the results on the asymp-
totic distribution of eigenvalues. Liang (2007) proposed an
approach based on a test for the pattern of eigenvectors. A
further research in this direction is of interest.

In principal component analysis, it is often of interest
to predict principal component scores for new observations
from training samples. For a matrix X of variablexsample,
the principal component scores are defined as the projection
XTU, where U is the u-eigenvector of X. Lee et al. (2010)
demonstrated that naive approaches to principal compo-
nent score prediction could be substantially biased toward
0 in the analysis of large matrices for which the number
of variables was much larger than the number of samples.
The online eigen-learning algorithm provides a natural way
to address the bias problem: We suggest to replace the u-
eigenvector of the training data by that of the full data (in-
cluding training and testing) in calculating the predicted
principal component scores. The online eigen-learning algo-
rithm is very efficient for updating the u-eigenvector based
on the test data. Moreover, it follows from Theorem 2 of Lee
et al. (2014) that the principal component scores obtained
in this way are consistent.

We note that parallel SVD algorithms have been de-
veloped in the literature, see e.g., Berry et al. (2005) for
an overview. The major difference between the split-and-
merge SVD algorithm and the existing parallel SVD algo-
rithms is that the former possesses an embarrassingly par-
allel structure, which makes it particularly suitable for ex-
tremely large-scale matrices. As discussed in Section 3.1,
the different submatrices X;’s can even be stored in differ-
ent computers, and feature screening can be done for each
submatrix separately. In addition, the split-and-merge SVD
algorithm is implementable in serial, which makes it par-
ticularly suitable for an online analysis of stream data. The
existing parallel SVD algorithms do not possess such attrac-
tive features.

Finally, we note that a split-and-merge strategy-based
SVD algorithm has also been developed in the literature,
see Tzeng (2013) for the detail of the algorithm. The ma-
jor differences between Tzeng’s algorithm and our algorithm
are that the former works through a PCA procedure and its
effectiveness depends on many factors, such as the estimated
rank of the matrix and the manner of data splitting. When
the estimated rank is smaller than the true rank of the ma-
trix, Tzeng’s algorithm can only produce an approximate
SVD. If the data is not split appropriately, e.g., the subset
data is not drawn randomly from the whole dataset or its
size is too small, the resulting SVD is also approximate, see
Tzeng et al. (2008) for an illustrative example. In addition,
the efficiency of Tzeng’s algorithm depends on the rank of

458 F. Liang, R. Shi, and Q. Mo

the matrix. If the rank r ~ min(y/m, /n), then Tzeng’s al-
gorithm will have almost the same computational complex-
ity as the original SVD algorithm. Compared to Tzeng’s
algorithm, our algorithm is accurate; it always produces an
exact SVD regardless the rank of the matrix and the man-
ner of data splitting. Also, the efficiency of our algorithm is
less dependent on the true rank of the matrix. As implied
by (2) and (3), our algorithm can be more efficient than the
original SVD algorithm for a wide range of choices of data
splitting. On the computational complexity side, Tzeng’s al-
gorithm can be better than ours only when r < min(m,n).
In this case, it can gain some computational efficiency via
the PCA procedure which works on a covariance matrix of
size O(r) for each subset data.

ACKNOWLEDGEMENTS

The authors thank the editor, associate editor and two
referees for their comments which have led to significant
improvement of this paper. Liang’s research was partially
supported by the National Science Foundation grants DMS-
15052926 and DMS-15060903.

Received 20 November 2014

REFERENCES

AkocLu, L., and FaLoutsos, C. (2010). Event detection in time se-
ries of mobile communication graphs. In Proceedings of the Army
Science Conference, pp. 18-25.

BERRY, M. W., Dumals, S. T., and O’BraIN, G. W. (1995). Using
linear algebra for intelligent information retrieval. SIAM Review,
37, 573-595. MR1368388

BERRY, M. W., MEZHER, D., PHILIPPE, B., and SAMEH, A. (2005). Par-
allel algorithms for the singular value decomposition. In Handbook
of Parallel Computing and Statistics (eds. E. J. Kontoghiorghes),
Chapman & Hall/CRC Press, London, pp. 117-161. MR2282977

DEERWESTER, S., DuMaAls, S. T., FUrRNAS, G. W., LANDAUER, T. K.,
and HARSHMAN, R. (1990). Indexing by latent semantic analysis.
Journal of the American Society for Information Science, 41, 391—
407.

DESHPANDE, A., and VEMPALA, S. (2006). Adaptive sampling and fast
low-rank matrix approximation. In Approzimation, Randomization
and Combinatorial Optimization (eds. J. Diaz, K. Jansen, J. D. P.
Rolim, and U. Zwick), Lecture Notes in Comput. Sci. 4110, Springer,
Berlin, pp. 292-303. MR2305018

EAGLE, N., and PENTLAND, A. S. (2009). Eigenbehaviors: Identifying
structure in routine. Behavioral Ecology and Sociobiology, 63, 1057—
1066.

GoLuB, G. H., and REINscH, C. (1970). Singular value decomposition
and least square solution. Numer. Math., 14, 403—420. MR 1553974

GoLuB, G. H., and VAN LoaN C. F. (2013). Matriz Computations
(Fourth Edition). The Johns Hopkins University Press, Baltimore.
MR3024913

GuprTA, D., and GOLDBERG, K. (1999). Jester 2.0: A Linear time col-
laborative filtering algorithm applied to jokes. In Proc. of the ACM
SIGIR, pp. 291-292.

HorMEs, M. P., Gray, A. G., and IsBELL, C. L. (2008). Quic-SVD:
Fast SVD using cosine trees. In Advances in Neural Information
Processing Systems 21, pp. 673—680.

InE, T., and KASHIMA, H. (2004). Eigenspace-based anomaly detection
in computer systems. In Proceedings of the 10th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining,
ACM Press, pp. 440-409.

http://www.ams.org/mathscinet-getitem?mr=1368388
http://www.ams.org/mathscinet-getitem?mr=2282977
http://www.ams.org/mathscinet-getitem?mr=2305018
http://www.ams.org/mathscinet-getitem?mr=1553974
http://www.ams.org/mathscinet-getitem?mr=3024913

JOHNSTONE, I. M. (2001). On the distribution of the largest eigen-
value in principal component analysis. Ann. Statist., 29, 295-327.
MR1863961

LEE, S., Zou, F., and WRIGHT, F. (2010). Convergence an prediction
of principal component scores in high-dimensional settings. Ann.
Statist., 38, 3605-3629. MR2766862

LEE, S., Zou, F., and WRIGHT, F. (2014). Convergence of sample
eigenvalues, eigenvectors, and principal component scores for ultra-
high dimensional data. Biometrika, 101, 484-490. MR3215362

LiaNG, F. (2007). Use of SVD-based probit transformation in clus-
tering gene expression profiles. Computational Statistics € Data
Analysis, 51, 6355-6366. MR2408599

NaADAJUDITI, R. R., and EDELMAN, A. (2008). Sample eigenvalue based
detection of high-dimensional signals in white noise using relatively
few samples. IEEE Trans. on Signal Processing, 56, 2625-2638.
MR1500236

ONORATI, R., SampsoN, P., and GurTOorP, P. (2013). A spatio-
temporal model based on the SVD to analyze daily average temper-
ature across the sicily region. Journal of Environmental Statistics,
5, 1-19.

PATTERSON, N., PRICE, A. L., and REICH, D. (2006). Population struc-
ture and eigenanalysis. PLoS Genetics, 2, €¢190.

PauL, D. (2007). Asymptotics of sample eigenstructure for a large di-
mensional spiked covariance model. Statist. Sinica, 17, 1617-1642.
MR2399865

SARWAR, B. M., Karypis, G., KONsTAN, J. A., and RiEDL, J. T.
(2000). Application of dimensionality reduction in recommender
system—a case study. In ACM Web-Mining for E-Commerce Work-
shop, ACM Press.

SARWAR, B. M., KAryris, G., KoNsTAN, J. A., and RIEDL, J. T.
(2002). Incremental singular value decomposition algorithms for

highly scalable recommender systems. In Proceedings of the 5th In-
ternational Conference in Computers and Information Technology,
ACM Press, pp. 27-28.

TzENG, J. (2013). Split-and-combine singular value decomposition for
large-scale matrix. Journal of Applied Mathematics, 2013, article
ID 683053. MR3033589

TzeNG, J., Lu, H. H.-S., and L1, W.-H. (2008). Multidimensional scal-
ing for large genomic data sets. BMC Bioinformatics, 9, 179.

Faming Liang

Department of Biostatistics
University of Florida

Gainesville, FL 32611

USA

E-mail address: faliang@ufl.edu

Runmin Shi

Department of Statistics
University of Florida
Gainesville, FL 32611
USA

Qianxing Mo

Department of Medicine and Dan L. Duncan Cancer Center
Baylor College of Medicine

Houston, TX 77030

USA

A split-and-merge approach for SVD of large-scale matrices 459

http://www.ams.org/mathscinet-getitem?mr=1863961
http://www.ams.org/mathscinet-getitem?mr=2766862
http://www.ams.org/mathscinet-getitem?mr=3215362
http://www.ams.org/mathscinet-getitem?mr=2408599
http://www.ams.org/mathscinet-getitem?mr=1500236
http://www.ams.org/mathscinet-getitem?mr=2399865
http://www.ams.org/mathscinet-getitem?mr=3033589
mailto:faliang@ufl.edu

	Introduction
	A split-and-merge SVD algorithm
	The algorithm
	Time complexity analysis
	Parallel implementation
	Serial implementation

	SVD for general large-scale matrices

	Two applications of the proposed algorithm
	Feature screening
	Online eigen-learning

	Numerical experiments
	A simulated example
	SVD for recommender systems

	Discussion
	Acknowledgements
	References
	Authors' addresses

