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Smoothing spline ANOVA for super-large samples:
scalable computation via rounding parameters

NATHANIEL E. HELWIG* AND PING MA

In the current era of big data, researchers routinely collect
and analyze data of super-large sample sizes. Data-oriented
statistical methods have been developed to extract infor-
mation from super-large data. Smoothing spline ANOVA
(SSANOVA) is a promising approach for extracting informa-
tion from noisy data; however, the heavy computational cost
of SSANOVA hinders its wide application. In this paper,
we propose a new algorithm for fitting SSANOVA models
to super-large sample data. In this algorithm, we introduce
rounding parameters to make the computation scalable. To
demonstrate the benefits of the rounding parameters, we
present a simulation study and a real data example using
electroencephalography data. Our results reveal that (using
the rounding parameters) a researcher can fit nonparametric
regression models to very large samples within a few seconds
using a standard laptop or tablet computer.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G0S,
65D07; secondary 65D10.
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1. INTRODUCTION

In the current era of big data, it is common for researchers
to collect super-large sample data ranging from hundreds
of thousands to hundreds of millions of observations. The
ambitious BRAIN Initiative of NIH is expected to bring a
torrent of data, e.g., 100 terabytes of data per day from a sin-
gle brain lab. These super-large datasets provide a wealth
of information. To effectively extract the information, nu-
merous data-oriented statistical learning methods have been
developed. Among these methods, data-driven nonparamet-
ric regression models [see 20, 21] have achieved remarkable
success in identifying subtle patterns and discovering func-
tional relationships in large noisy data; such models require
few assumptions about the observed data, but produce a
powerful prediction.

For example, smoothing splines [see 21, 22] offer a pow-
erful and flexible framework for nonparametric modeling.
Smoothing spline analysis of variance (SSANOVA) models
[3] further expand the research horizon of the smoothing
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spline; SSANOVAs can model multivariate data and pro-
vide nice interpretability of the modeling and prediction
outcome. Furthermore, assuming that the smoothing pa-
rameters are selected via cross-validation, SSANOVA mod-
els have been shown to have desirable asymptotic proper-
ties [see 3, 12, 22]. The main drawback of the SSANOVA
approach is its computational expense: the computational
complexity of SSANOVA is on the order of O(n?), where n
is sample size.

Over the years, many efforts have been made to de-
sign scalable algorithms for SSANOVA. Generalized addi-
tive models [GAMs; 5, 24] provide scalable computation at
the price of eliminating or reparameterizing all interaction
terms of an SSANOVA model. By collapsing similar sub-
spaces, Helwig and Ma [10] provide an algorithm for model-
ing all interactions with affordable computational complex-
ity. However, even using the most efficient SSANOVA ap-
proximation [11, 13] and algorithm [10], the computational
burden grows linearly with the sample size, which makes the
approach impractical for analyzing super-large datasets.

One possibility is to fit the model to a subset of the
observed data. For example, when analyzing ultra large
datasets, Ma, Mahoney and Yu [14] suggest fitting regression
models to a randomly selected influential sample of the full
dataset. This sort of smart-sampling approach works well,
as long as a representative sample of observations is selected
for analysis; however, the fitted model varies from time to
time as the subsample is randomly taken. Furthermore, de-
termining the appropriate size of the subsample could be
difficult in some situations.

In this paper, we propose a new approach for fit-
ting SSANOVA models to super-large samples. Specifi-
cally, we introduce user-tunable rounding parameters in the
SSANOVA model, which makes it possible to control the
precision of each predictor. As we demonstrate, fitting a
nonparametric regression model to the rounded data can
result in substantial computational savings without intro-
ducing much bias to the resulting estimate. In the follow-
ing sections, we provide a brief introduction to SSANOVA
(Section 2), develop the concept of rounding parameters for
nonparametric regression (Section 3), present finite-sample
and asymptotic results concerning the quality of the rounded
SSANOVA estimator (Section 4), demonstrate the benefits
of the rounding parameters with a simulation study (Sec-
tion 5), and provide an example with real data to reveal the
practical potential of the rounding parameters (Section 6).
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2. SMOOTHING SPLINES

2.1 Overview

A typical (Gaussian) nonparametric regression model has
the form

(1)

where y; € R is the response variable, x; = (2;1,...,Zip)
is the predictor vector, n is the unknown smooth function

yi = n(xi) + e

relating the response and predictors, and e; id N(0,02)
is unknown, normally-distributed measurement error [see
3, 20, 22]. Typically, n is estimated by minimizing the pe-
nalized least-squares functional

(1/n) Y (yi = n(xi)* + M (n)

i=1

(2)

where the nonnegative penalty functional J quantifies the
roughness of 7, and the smoothing parameter A € (0, 0)
balances the trade-off between fitting the data and smooth-
ing n.

Given fixed smoothing parameters and a set of selected
knots {X5}7_;, the n) minimizing Equation (2) can be ap-
proximated using

m

nA(X) = Z dv¢v(x) + Z Chpc(X, >uCh)
v=1

h=1

3)

where {¢,}™; are functions spanning the null space (i.e.,
J(¢y) = 0), pc is the reproducing kernel (RK) of the contrast
space (i.e., J(p.) > 0), and d = {dy}mx1 and ¢ = {cp}yx1
are the unknown function coefficients [see 10, 11, 4]. Note
that po = > 1_, Okpj, where p; denotes the RK of the k-th
orthogonal contrast space, and 6 = (01,...,0,)" are addi-
tional smoothing parameters with 8, € (0, 00).

2.2 Estimation

Inserting the optimal representation in Equation (3) into
the penalized least-squared functional in Equation (2) pro-
duces

(4)

where || - ||# denotes the squared Frobenius norm, y =
{yitnx1, K = {du(xi)}uxm for i € {1,...,n} and v €
{1,...,7’71}7 Jo = 22:1 0,J, with J, = {pZ(Xi,ih)}an
forie{l,...,n}and h e {1,...,q},and Qo = > ;_, 0 Qs
where Qi = {pf(Xg,Xn) }gxq for g,h € {1,...,¢}. Given a
choice of A = (A/01,...,A/0s), the optimal function coeffi-
cients are given by

d\ (KK KJo \' (K
¢) T \JK JyJo+nQe) \3,)7Y

where (-)T denotes the Moore-Penrose pseudoinverse.

(1/n)|ly — Kd — Joc||® + Ac'Qoc

I

()
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The fitted values are given by y = Kd + Jg¢ = Say,
where

K'K K'Jg F K
JoK  JpJo +AnQg Jo
is the smoothing matrix, which depends on A. The
smoothing parameters are typically selected by minimiz-

ing Craven and Wahba’s (1979) generalized cross-validation
(GCV) score:

(1) GCV(A) = {nll(T, — Sx)y[I*}/{ln — tx(Sx)]*}.

The estimates A and @ that minimize the GCV score have
desirable properties [see 2, 3, 4, 12].

(6) Sx=(K Jo) (

3. ROUNDING PARAMETERS

3.1 Overview

When fitting a nonparametric regression model to ultra
large samples, we propose including user-tunable rounding
parameters in the model [see 6, for preliminary work]. As-
suming that all (continuous) predictors have been trans-
formed to the interval [0,1], the rounding parameters r; €
(0,1] are used to create locally-smoothed versions of the
(continuous) predictor variables, such as

(8)

fori € {1,...,n} and j € {1,...,p}, where the rounding
function rd(-) rounds the input value to the nearest integer.
Note that the z;; scores are formed simply by rounding the
original x;; scores to the precision defined by the rounding
parameter for the j-th predictor variable, e.g., if r; = .02,
then each z;; value is rounded to the nearest .02 to form z;;.

Let z; = (2zi1,...,2ip) with z;; defined according to
Equation (8), and let {Z,}}_; denote the rounded knots;
then, the penalized least-squares function in Equation (4)
can be approximated as (1/n) ||y —K,d,—Jjyc, | > +c, Qjc.,
where K, , J3, and Qj are defined according to Equation (4)
with z; replacing x;. Similarly, the optimal basis function co-
efficients corresponding to the rounded data (i.e., d, and ¢,)
can be defined according to Equation (5) with with z; re-
placing x;. Finally, smoothing matrix corresponding to these
coefficients (denoted by Sy ,) can be defined according to
Equation (6) with with z; replacing x;.

One could calculate the fitted values using Sy ,y (and
this is what we recommend for the smoothing parame-
ter estimation), however this could introduce a small bias
to each predicted score. So, when interpreting specific §;
scores, we recommend using the d, and ¢, coefficients and
basis function matrices with unrounded predictor variable
scores

9)

where K and Jg are defined according to Equation (4).

zij = 1d(zij/15)7;

S’* = Ka* + JBé*



3.2 Computational benefits

Let {z;}}—; denote the set of unique observed z; vectors
with u > ¢, and note that w has an upper-bound that is
determined by the rounding parameters and the predictor
variables. For example, suppose that z; = (241, Zi2) with
Zn € [0,1] and Zo € {1,..., f}; then, defining r; = .01, it is
evident that u < 101f, given that z;; can have a maximum
of 101 unique values for the first predictor, and maximum
of f unique values for the second predictor. As a second
example, suppose that z; = (241, Z2) with 21, 20 € [0, 1];
then, defining 71 = r9 = .01, it is evident that v < 1012,
given that z;; can have a maximum of 101 unique values
for each predictor. Similar reasoning can be used to place
an upper bound on u for different combinations of rounding
parameters and predictor variable types.

Note that the inner-portion of Sy , can be written as

KK, Kigy )
10) (Jo)Ks (J5)' T +AnQ5)
KWK, kwi
(Jo) WK, (J5)'WJj + AnQj
where K, = {00(2t) Yusm for t € {1,...,u} and v €

{1,...,m}, Iy = >7_1 0xI} where It = {pi(Z¢,2n) buxq
for t € {1,...,u} and h € {1,...,q}, and W =
diag(ws, ..., w,) with w; denoting the number of z; that are
equal to z; (for ¢ € {1,...,u}). Next, define X = (K., J})
and define the reduced smoothing matrix S;, such as

~ ~ A t

~ ~ K' WK K 'WJ% -
11) Sy=X| 5, = = XU X'
(- S5 ((JzVWK* <J§>/WJ§+Aan>

Note that S% is a u x u matrix, and note that u < n if there
are replicate predictor vectors after the rounding (which is
guaranteed if n is larger than u’s upper bound).

Next, suppose that the (y;,2z;) scores are ordered such
that observations 1,...,w; have predictor scores z;, obser-
vations wy + 1, ..., w; + w2 have predictor scores zy, and so
on. Then Sy, can be written in terms of S¥, such as

(e’lg*)‘\el)lwlliﬂ1 (e’lgj\eu)l 1

- = W1 T~ We,

(12) 8y, = | (2SR (8heu )l L,
(e;giel)lwu 1, (e;g;\eu)lwu 1,

where e; denotes a ux 1 vector with a one in the ¢-th position

and zeros elsewhere, and 1,,, denotes a w; x 1 vector of ones

(for t € {1,...,u}). Furthermore, note that the fitted values

corresponding to Sy, can be written as

(635§e1)1w1 (ells;\eu)lwl

(e5S5e1) 1y, (e555eu) 1w,
(13) S)\,ry = . .

(egLSXel)lwu (egl,g;\eu)lwu

where ¥ = {§:}ux1 with g, = ZL y; and Z; C {1,...,n}
denoting the set of indices such that z; is equal to z;.

Now, let g = e;SXSf denote the fitted value correspond-
ing to z; (for t € {1,...,u}), and note that the numerator
of the GCV score in Equation (7) can be written as

(14)
u n u u
nY D =G =n) yi =) Ggi ) wi(i)?
t=1 7, i=1 t=1 t=1

= n [lly[l* - 25’85y +¥'S3 WS35

In addition, note that the denominator of the GCV score
can be written as [n—tr(Sx ,)]? = [n—tr(WS})]? using the
relation in Equation (12).

The above formulas imply that, after initializing y, ||y||?,
and W, it is only necessary to calculate the reduced smooth-
ing matrix g;\ to evaluate the GCV score. Furthermore, note
that the optimal function coefficients can be estimated from
the reduced smoothing matrix using
(15)

4,\ [ K.WK, K/ WJ; Va4

(é) - ((%)’Wf@ (J5)WI5 +AnQ5> ((j’é)’) Y
which implies that it is never necessary to construct the
full n X n smoothing matrix to estimate n when using the
rounding parameters.

3.3 Choosing rounding parameters

In many situations, a rounding parameter can be de-
termined by the measurement precision of the predictor
variable. For example, suppose we have one predictor zx;
recorded with the precision of two decimals on the interval
[0,1], i.e., z; € {0,0.01,0.02,...,0.99,1} for i € {1,...,n}.
In this case, setting » = 0.01 will produce the exact same
solution as using the unrounded predictors (i.e., z; = 2;V4)
and can immensely reduce the computational burden. Note
that u < 101 even if n is very large, and it is only neces-
sary to evaluate the functions {¢,}7.; and p. for the u < n
unique predictor scores to estimate 7.

Now, for large n, note that a cubic smoothing spline is
approximately a weighted moving average smoother [see 21,
Section 3. In particular, let s, ;,(x) denote the entry in the
i1-th row and ip-th column of Sy, and note that s; ;,(»)
asymptotically depends on a kernel function whose influ-
ence decreases exponentially as |z;, — x;,| increases [see 21,
equations 3.1-3.4]. Also, note that the rounding parame-
ter proposed in this paper widens the peak of the ker-
nel (see Figure 1). For relatively smooth functions (e.g.,
A > 1072), the shape of the asymptotic kernel function
is stable for » < 0.05; however, for more jagged func-
tions (e.g., A < 1077), the rounding parameter will need
to be set smaller (e.g., » = 0.01) for the rounded kernel
function to resemble the true asymptotic kernel (see Fig-
ure 1).
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Figure 1. Asymptotic cubic spline kernel function for z; €

4. QUALITY OF ROUNDED SOLUTION
4.1 A Taylor heuristic

Note that the rounded predictor z;; can be written as
(16) Zij = Tij + T5ij

where v;; = (z;; —;)/r; by definition and |z;; —x;;| < 7;/2
so that |v;;| < 1/2. This implies z; = x; + Rv; where v, =
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rp). Consider the linear

n(z:) = n(xi) + [Vn(xi)] Rvi + of[[Rv]])

where V7 denotes the gradient of 7. If the gradient of n were
known, we could approximate the rounding error using

n

n=t Y In(a) = n(z))* 0ty {[Vn(x) Rvi}?
i=1

i=1
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Figure 2. Top: contrast reproducing kernel p,(x) for linear spline (m = 1), cubic spline (m = 2), and quintic spline (m = 3)
with z = 0.5 as the knot. Bottom: contrast reproducing kernel derivative p/,(x) for m-th order polynomial splines.

(17) n=t YV xa)|P Rl
i=1
< (4n) 71 Y IV
i=1

where r = (rq,...,7p)’; note that the last line is due to the
fact that |v;;| < 1/2.

For example, using an m-th order polynomial smoothing
spline with x; € [0, 1] [see 2, 3] we have

m—1 4q
=Y doko(x) + Y cnp, (x)
h=1

v=0
where k,(-) are scaled Bernoulli polynomials, {Z,}]_, C
{z;}, are the selected knots, and

P () = ko (@) (Fn) + (= 1) Hham (Jo — E3)

is the reproducing kernel of the contrast space. Using the
properties of Bernoulli polynomials we have

m— q
Z ko 1 ) +Zchp/ih($)
v=1 h=1

877,\

ni(z) =

where

Pii-h () = km—1(2)km (Tn) + (_1)m715hk2m—1(x — In)

with s, =1 if © > %5, and s, = —1 otherwise [see 2, 3].
Consequently, for polynomial splines we can approximate
the rounding error using

n=t Y In(wi) — (=)~ 0Tty (o) o (@)
i=1 i=1

r?(4n) 7! | Xb]*

where X = [K,j] ‘with K = {kyv(2i) }nxm—1 for v €
{0,...,m =2} and J = {pf (zi)}nxq for h € {1,...,q},
and b = (di,...,dm—1,¢1,...,¢4). Note that the contrast

space reproducing kernel pg, (x) is rather smooth for the
classic cubic smoothing spline, and the magnitude of the
derivatives are rather small (see Figure 2). This implies that
setting r € {0.01,0.02,0.05} will not introduce much round-
ing error to the contrast kernel evaluation when using cubic
smoothing splines on z; € [0, 1].

The rounding error depends on the norm [ Xbl|, so the
relative impact of a particular choice of rounding parame-
ters will depend on the (unknown) function coefficients b.
For practical use, we can approximate the rounding error
relative to the norm of the coefficients, such as

n||lou2Z =~ n||b||2z”“ Il
<r’(4
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where A} is the largest eigenvalue of X’'X; note that we
have || Xb||? < [IX|?||b]|?> and || X]||> = A} by definition.
For practical computation, it is possible to estimate Aj/n
by taking a random sample of n < n observations, and
then approximate the relative rounding error as r2(74) ' \f.
Clearly this sort of approach can be extended to assess
the relative rounding error for tensor product smoothing
splines, but the gradient formulas become a bit more com-
plicated.

4.2 Finite sample performance

To quantify the finite-sample error introduced by round-
ing, define the loss function
L) = 23 (a0 — s 2)
(]_8) n r 7 ,r\41q
=n""|(Sx = San)yll?

where Sy and Sy, are the smoothing matrices correspond-
ing to the unrounded and rounded predictors (i.e., x; and
z;, respectively). Denote the risk function as

(19)
R(r) = E[L(r)]

=n""|(Sx = Sa)nl* + n'o%tr{(Sx — Sa,)?}

where n = {1(x;)}nx1 contains the realizations of the (un-
known) true function 7. Note that the first term of R(r)
corresponds to the (squared) bias difference between 7j, and
fa,r, and the second term is related to (but not equal to)
the variance difference. Also note that we can write

(20) R(r) < 0[S — S |2lIll? + 1~ UQZM

< Ay (7 nll* + %)
where A1, > -+ > )\, are the eigenvalues of (Sx — Sx ).
The risk R(r) depends on the squared norm of the un-
known function 7, so the practical relevance of a particular
value of R(r), e.g., R(r) = 0.1, differs depending on the sit-
uation, i.e., unknown true function. To overcome this prac-
tical issue, we can examine the risk relative to the squared
norm of the unknown function, such as

U(r) = R(r)|ln~
(21) 1 2011—2
<0 A, (14 no?n] )
where no?||n||=2 = o2/(|n||?>/n) relates to the mnoise-to-

signal ratio, i.e., inverse of signal-to-noise ratio (SNR). Fur-
thermore, for a fixed SNR and a large enough n, the second
term in the upper-bound of the relative risk is negligible,
and we have that U(r) < n='A1,.. Consequently, it is only
necessary to know the largest eigenvalue of Sy —Sj , to un-
derstand the expected performance of a given set of round-
ing parameters for a large sample size n.
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In practice, calculating Sy —Sx , and Ay, for various val-
ues of r is a computational challenge for large n. For prac-
tical computation, we recommend examining R(r) and/or
U(r) using a random sample of 2 < n observations. Using
this approach, the unknown parameters (i.e., n and o2) can
be estimated using the results of the unrounded solution. For
example, the SNR can be estimated as (||#||?/71)/6% where
7) and 62 are the estimated function and error variance us-
ing the n observations with unrounded predictors. Or, if the
approximate SNR is known, Equation (21) can be used to
place an upper-bound on the relative risk U(r).

We demonstrate this approach in Figures 3—4, which plot
functions with various degrees of smoothness (Figure 3) and
the median estimated rounding risk R(r) across five samples
of . = 500 observations (Figure 4). Note that Figure 4 illus-
trates that the expected difference between the unrounded
and rounded solutions increases as the error variance in-
creases. Furthermore, note that Figure 4 affirms that for
x € [0,1] setting » = 0.01 can be expected to introduce
minimal rounding error for a variety of functions and SNRs.
Finally, Figure 4 reveals that setting r € {0.01,0.02,0.05}
will not introduce much rounding error whenever the under-
lying function 7 is relatively smooth. For example, for the
functions 141 and np1, we should expect a negligible differ-
ence between the unrounded and rounded solutions using
r = 0.05 for a variety of different SNRs.

4.3 Asymptotic bias and variance

To establish the asymptotic properties of the proposed es-
timate, we employ an equivalent kernel approach developed
in [15]. The key idea is that a smoothing spline estimate can
be written as kernel estimate

1 n
= - Zw(xwx)yz
n i=1

where the kernel function w(z;, x) can be well approximated
by a Green’s function. Then the asymptotic properties of
7x can be established via the analytical properties of the
Green’s function.

Following [15], we establish the asymptotic properties of
our rounding estimate for the one dimensional case. In ad-
dition, we assume that we use a full basis where all distinct
rounded data are used as knots, i.e., ¢ = u. Then our esti-
mate 7, , is the minimizer of

n(z))? + )\/ (n(m))?

Let F,, denote the empirical distribution function for
the rounded predictor z;, i = 1,...,n, let F be the limiting
distribution of the original predictor  with a continuous
and strictly positive density function f on [0,1] and let

7F|a

(22)

n

(1/n) Z

i=1

(23)

DTL,’I": sup |Fn,r
z€]0,1]

and p = A'/?™_ Then we have the following theorem.



Na1(x) Naz2(x)
S
o | 2
o -
o ] o ]
o o
o ]
T e |
T T T T T T ! T T T T T T
0.0 0.4 0.8 0.0 0.4 0.8
X X
T]B1(X1, Xz) Tlaz(X1, Xz)
Q
o
o o
x x <
o
<
o

Nas(x) Naa(Xx)

Figure 3. Functions with various degrees of smoothness. na,(x) = x — 0.5 + sin(2knz) for z € [0,1] and
[

Npk(x1,T2) = x1 + T2 — 1 + [sin(2k7x1) + cos(2kmaz) + 2sin(2n(xy — x2))]/4 for x1, 24 €

Na1(x) Naz(x)
w | — o2=025 w | — o2=025
S - - s2=050 S 4 = - 6°=050
S | o®=1.00 S | o®=1.00
S . < .
~ < =~ <
X o o X o A
o o
8 i e S 1 -
S T T T T T S T T T T T
0.01 0.03 0.05 0.01 0.03 0.05
r r
Ne1(X1, X2) Ne2(X1, X2)
o o
[se} [se}
o 5 S 5
S | — =025 S | — =025
1 - - 6*=050 1 - - 6*=050
— o 6®=1.00 —_ e 6®=1.00
S 5 4 > S 4
X S| X S|
o ] . ol e
S | S | = =
g T T T T T g T T T T T
0.01 0.03 0.05 0.01 0.03 0.05
r r

e S
o o
o 7 o 7
o | o |
T T
T T T T T T T T T T T T
0.0 0.4 0.8 0.0 0.4 0.8
X X
Na3(X1, X2) Naa(X1, X2)
[ 2
3 - 3 ¥
N N
X o« X o«
o o -
Qe Qe
o o
0.0 0.4 0.8 0.0 0.4 0.8
X4 X4
1.
Naz(x) Naa(Xx)
o | — o2=025 w | — o2=025
S - - - 6?*=050 S 4 = - 6?=050
S | o®=1.00 S |- o®=1.00
S . < .
~ < ~ <
X o 4 X o A
o o
Q 1 el o l .. ===
S o 8 -
o T T T T T o T T T T T
0.01 0.03 0.05 0.01 0.03 0.05
r r
Ne3(X1, X2) Naa(X1, X2)
o o
[s2] [s2]
S 2 S 2
S | — o%=02s S | — o%=02s
1 - - 6*=050 1 - - 6*=050
. m_“-cz=100 . m_“-cz=1.00
S 5 4 > S 4
<m S | <m S |
= =
[= 2 S e = = o . g - =
o o
o T T T T T o T T T T T
0.01 0.03 0.05 0.01 0.03 0.05
r r

Figure 4. Median estimated risk R(r) = 2~"[|(Sx — Sa»))l|2 + 7~ '62tr{(Sx — Sx.»)?} for various functions, rounding
parameters, and error variances using five random samples of i = 500 observations.

Theorem 4.1. Assume that )y is a smoothing spline es-
timate of (23) with m = 1 and z; are not equally spaced.
Suppose that n € C3[0,1] and satisfies the Holder condition
In®(z) =@ ()| < M|z — 2'|P for some B > 0 and some
M < oo. Assume that f has a uniformly continuous deriva-
tive and Dy, — 0 as n — 0o. Choose 0 < A < 1 and let
A — 0 and A,, = 0 as n — oco. Then

Bl ()] = n(e) = =725 (@) + o(3) + O(25),
« o o? f(il?) 1 Dn,r
Varli - (z)) = S @ (=) 2 4 020(7),

uniformly for X € [A,,Ay] and © € [A1 — A] as

n — 0Q.

Smoothing spline ANOVA for super-large samples 439



The theorem is a direct result of Theorem 2.2 of [15]. For
m > 1, a slightly more complicated version of our theorem
can be shown using Theorem 2 of [23].

The theorem states that both the bias and variance of
our estimate 7)) , depend on D, ,, which is required to be
sufficiently small relative to p as n — oo. Consequently, the
theorem reveals that the rounding parameter r will have to
be set smaller when

(a) the true function 7 is rougher,

(b) the spline order m is larger,

(c) the predictor distribution f is rougher,
(d) the sample size n is larger.

These conclusions derive directly from the requirement that
D, , be sufficiently small relative to p as n — oo.

5. SIMULATION STUDY

5.1 Design and analyses

We conducted a simulation study to demonstrate the ben-
efits of the rounding parameters. As a part of the simulation,
we manipulated two conditions: (a) the function smooth-
ness (8 levels: see Figure 3), and (b) the number of ob-
servations (3 levels: n = 1000k for k € {100,200,500}).
Note that the functions are defined such that J(n4;) <
J(UAk) and J(nBJ) < J(an) for Jj < k € {17233a4}a
so the function smoothness is systematically manipulated.
We generated y; by (a) independently sampling the predic-
tor(s) from a uniform distribution, (b) independently sam-
pling e; from a standard normal distribution, and (c) defin-
ing the observed response as y; = n(x;) + e; for i €
{1,...,n}.

Then, we fit a nonparametric regression model using six
different methods: Method 1 is an SSANOVA using un-
rounded data [see 10], Method 2 is an SSANOVA with
r = .01, Method 3 is an SSANOVA with r = .02, Method 4
is an SSANOVA with r = .05, Method 5 is standard GAM
implemented through Wood’s (2015) gam.R function, and
Method 6 is batch-processed GAM implemented through
Wood’s (2015) bam.R function. Methods 1-4 are imple-
mented through Helwig’s (2015a) bigspline.R function (for
nak) and bigssa.R function (for npy).

For the na) functions we used ¢ = 21 knots to fit the
model, and for 7np, functions we used ¢ = 100 knots.
For Methods 1-4, we used a bin-sampling approach to
select knots spread throughout the covariate domain [9];
for Methods 5 and 6, we used the default gam.R and
bam.R knot-selection algorithm [see 25]. For each method,
we used cubic splines and selected the smoothing pa-
rameters that minimized the GCV score. Given the opti-
mal smoothing parameters, we calculated the fitted values,
and then defined the true mean-squared-error (MSE) as
(1/n) >0 (n(x;) — 9:)°. Finally, we used 100 replications
of the above procedure within each cell of the simulation
design.
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5.2 Results

The true MSE for each combination of simulation condi-
tions is plotted in Figure 5. First, note that for each method,
the true MSE decreased as n increased, which was expected.
Next, note that all of the methods recovered n quite well
(i.e., all MSEs smaller than 0.01). Comparing Methods 1-4,
it is evident that setting r € {.01,.02} introduced minimal
bias to the resulting solution. In contrast, setting » = .05
produced a more noticeable bias, particularly when analyz-
ing the more jagged nax and npi functions, i.e., those with
larger k. However, the bias introduced with r = .05 was
small relative to the norm of 7, so there is little practical
difference between the solutions with » € {.01,.02,.05}. Ex-
amining the true MSEs of Methods 5 and 6, it is apparent
that the standard GAM performed almost identical to the
batch-processed GAM throughout the simulation.

Comparing the true MSEs of Methods 1-4 to those of
Methods 5 and 6, it apparent that the SSANOVAs per-
formed similar to the GAMs in every simulation condition.
In the one-dimensional case (145 functions), the GAMs have
slightly smaller true MSEs for k € {3,4}, but the difference
is trivial compared to the norm of the 74 functions. In
the two-dimensional case (npj functions), the SSANOVAs
have slightly smaller true MSEs for k& € {3,4}. Differences
between the SSANOVA and GAM solutions are most pro-
nounced when analyzing the np4 function; in this case, the
median true MSE of the GAM solutions is over 10 times
larger than the corresponding median of the SSANOVA so-
lutions with » € {N A, 0.01,0.02}. However, the difference is
still quite small compared to the norm of the ng4 function.

The median analysis runtimes (in seconds) for each simu-
lation condition are displayed in Tables 1 and 2. First, note
that for each method, the runtime increased as n increased,
which was expected. Next, note that the runtimes for Meth-
ods 1, 5, and 6 were substantially larger than the corre-
sponding runtimes of Methods 2—4. When analyzing the 74,
functions, the median runtimes for Methods 2—-4 were less
than one-tenth of a second for all examined n, and were any-
where from 40-60 times faster than the median runtimes for
Methods 5 and 6. When analyzing the npj functions, the
median runtimes for Methods 3—4 were less than one second
for all examined n, and were anywhere from 10-20 times
faster than the median runtimes for Methods 5 and 6.

6. REAL DATA EXAMPLE

6.1 Data and analyses

To demonstrate the practical benefits of the rounding pa-
rameters when working with real data, we use electroen-
cephalography (EEG) data obtained from Bache and Lich-
man [1]. Note that EEG data consist of electrical activi-
ties that are recorded from various electrodes on the scalp,
and EEG patterns are used to infer information about men-
tal processing. The EEG data used in this example were
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Figure 5. Simulation true MSEs on log-10 scale. Within each sample size, the six boxes correspond to Methods 1-6. Method 1
is SSANOVA with no rounding, Method 2 is SSANOVA with r = .01, Method 3 is SSANOVA with r = .02, Method 4 is

SSANOVA with r = .05, Method 5 is gam.R, and Method 6 is bam.R.

Table 1. Median runtimes (seconds) for nay functions

NA1 A2 1A3 A4
100 200 500 | 100 200 500 | 100 200 500 | 100 200 500
Method 1 (r=NA) | 0.35 0.64 131|037 0.64 128 | 0.30 0.64 1.31| 036 0.64 1.31
Method 2 (r =0.01) | 0.02 0.03 0.07 | 0.02 0.03 0.07 | 0.02 0.03 0.07 | 0.02 0.03 0.07
Method 3 (r =0.02) | 0.02 0.03 0.06 | 0.02 0.03 0.06 | 0.01 0.03 0.06 | 0.01 0.03 0.06
Method 4 (r =0.05) | 0.01 0.03 0.06 | 0.02 0.02 0.06 | 0.01 0.02 0.06 | 0.01 0.02 0.06
Method 5 (GAM) 144 224 405|140 211 4.03 | 147 212 4.06 | 1.40 2.11 4.06
Method 6 (BAM) 1.35 202 4.26 | 1.37 2.05 430 | 1.32 205 4.28 | 138 205 4.29
Table 2. Median runtimes (seconds) for ngy, functions
NB1 nB2 B3 NB4
100 200 500 | 100 200 500 | 100 200 500 | 100 200 500
Method 1 (r = NA) | 3.80 6.60 14.84 | 3.80 6.60 14.82 | 3.81 6.61 14.85 | 3.81 6.60 14.85
Method 2 (r =0.01) | 0.85 0.80 1.35 | 0.85 0.80 1.34 | 0.85 0.80 1.35 | 0.85 0.80 1.35
Method 3 (r =0.02) | 0.34 0.51 0.99 | 0.34 0.51 099 | 0.34 0.51 0.99 | 0.34 0.51 0.99
Method 4 (r = 0.05) | 0.28 0.43 0.90 | 0.28 0.43 0.90 | 0.28 0.43 0.90 | 0.28 0.43 0.90
Method 5 (GAM) 448 9.16 2231 | 445 9.12 2229 | 445 9.16 2238 | 450 9.20 22.43
Method 6 (BAM) 475 7.81 1855 | 473 7.78 1855 | 4.74 780 18.61 | 4.77 7.85 18.65

recorded from both control and alcoholic subjects partici-
pating in an experiment at the Henri Begleiter Neurody-
namic Lab at SUNY Brooklyn. The data were recorded dur-
ing a standard visual stimulus event-related potential (ERP)
experiment using a 61-channel EEG cap (see Figure 6). The
data were recorded at a frequency of 256 Hz for one second
following the presentation of the visual stimulus.

For the example, we analyzed data from the Pz electrode
of 120 subjects (44 controls and 76 alcoholics), and we used
10 replications of the ERP experiment for each subject.!
This resulted in n = 307,200 data points (120 subjects x

INote that data from subjects co2a0000425 and c02c0000391 were
excluded from the analysis due to small amounts of data, and we used
the first 10 replications for each subject.
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Figure 6. Depiction of the 61-channel EEG cap with the Pz
electrode highlighted. Created using the eegcap function in
the eegkit package [8].

256 time points X 10 replications). We analyzed the data
using a two-way SSANOVA on the domain [0, 1] x {1, 2},
where the first predictor is the time effect and the second
predictor is the group effect (control vs. alcoholic); see the
Appendix for an explanation of how the rounding parame-
ter can be applied when working with continuous and nom-
inal predictors. We used a cubic spline for the time effect, a
nominal spline for the group effect, and ¢ = 50 bin-sampled
knots. Finally, we fit the model both with the unrounded
data and with the time covariate rounded to the nearest .01
second (i.e., = .01 on the interval [0,1]); note that setting
r = .01 for the time covariate results in v = 202 unique co-
variate vectors, which is substantially less than the original
n = 307200 data points.

6.2 Results

The predicted ERPs for the unrounded and rounded data
are plotted in Figure 7. Note that there are no practical dif-
ferences between the two solutions (c.f. Figure 7a,b). Fur-
thermore, note that both solutions produced a GCV score of
GCV=85.96 and variance-accounted-for value of R? = 0.03,
suggesting that the rounded solution fits the data as well
as the unrounded solution. It is also worth noting that the
unrounded solution took over five times longer to fit com-
pared to the rounded solution; furthermore, the unrounded
solution required a substantial amount of RAM to fit the
model, whereas the rounded solution is easily fittable on a
standard laptop or tablet.

Comparing the estimated ERPs of the controls and alco-
holics, there are obvious differences (see Figure 7). In partic-
ular, the alcoholic subjects are missing the P300 component
of the ERP waveform (i.e., large positive peak occurring
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about 300 ms after the stimulus). Note that the P300 compo-
nent is thought to relate to a subject’s internalization and /or
categorization of stimuli, so these results suggest that alco-
holic subjects have different information processing patterns
for standard visual stimuli. This finding is consistent with
previous findings regarding EEG patterns of alcoholic sub-
jects [see 16, 19], and some research suggests that this sort
of EEG pattern may predispose individuals to alcoholism
[see 17, 18].

7. DISCUSSION

This paper proposes the use of rounding parameters to
overcome the computational burden of fitting nonparamet-
ric regression models to super-large samples of data. By
rounding each predictor to a given precision (e.g., 0.01), it is
possible to estimate 7 using the u < n unique rounded pre-
dictor variables. We have provided a simple Taylor heuristic
that justifies the use of a small rounding parameter (e.g.,
r = .01) when using cubic smoothing splines for x € [0, 1].
Furthermore, we have provided methods for assessing the
finite sample and asymptotic performance of the rounded
SSANOVA estimator in various situations.

The simulation study and EEG example clearly demon-
strate the benefits of the proposed rounding parameters.
When fitting nonparametric regression models with large
n, the simulation results reveal that setting r; < .05 can re-
sult in substantial computational savings without introduc-
ing much bias to the solution. Furthermore, the EEG data
example reveals that there are no practical differences be-
tween the unrounded and rounded solutions (using r = .01)
when analyzing real data. Thus, the rounding parameters
offer a fast and stable method for fitting nonparametric re-
gression models to very large samples.

In addition to providing a fast method for smoothing
large datasets, the rounding parameters are also quite mem-
ory efficient. Because the rounding approach only uses the
unique rounded-covariate values, it is never necessary to con-
struct the full n x ¢ model design matrix (or the n x n
smoothing matrix). So, using the rounding parameters, it
is possible to fit nonparametric regression models to very
large samples using a standard laptop or tablet, e.g., all of
the rounded SSANOVA models in this paper are easily fit-
table on a laptop with 4 GB of RAM. As a result, typical
researchers now have the ability to discover functional rela-
tionships in super-large data sets without needing access to
supercomputers or computing clusters.

As a final point, it should be noted that in some cases
(e.g., large p) the number of unique rounded-covariate values
may be very large. In such cases, forming the u x ¢ model
design matrix may require a substantial amount of memory
(because u is so large). However, as is noted in Helwig [6]
and Helwig and Ma [10], fitting an SSANOVA model only
depends on various crossproduct vectors and matrices. So,
if u is too large to form the full u x ¢ model design matrix,
then the needed crossproduct statistics can be formed in a
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Figure 7. Predicted ERPs using the unrounded data (a) and rounded data (b). Shaded regions give a 99% Bayesian
confidence interval around 7). Created using the eegtime function in the eegkit R package [8].

batch-processing manner similar to the approach used by
Wood’s (2015) bam.R function.

APPENDIX: ROUNDING ALGORITHM

In this section, we provide algorithms for rounding
SSANOVA predictors and obtaining the sufficient statistics
for the SSANOVA estimation. The first algorithm assumes
that all of the covariates are continuous; extensions for nom-
inal covariates will be discussed after the presentation of the
initial algorithm.

First, let r; € (0,1] denote the rounding parameter for
the j-th predictor, let X; denote the n x 1 vector containing
the j-th predictor’s scores, and let x(;); denote the i-th order
statistic of the j-th predictor. Next, initialize g = {1}, x1
and h = 1, and then calculate

for j e {1,...,p}
L g g+ h[rd{(1/r;)(X; — 2);)/(@(n); — 1);)}]
2. h<rd(1+1/rj)h

end

where the rounding function rd{-} rounds the input to
the nearest integer. After running the for loop, we have
gi € {1,...,u}, where g; denotes the i-th element of g, and
u is the total possible number of unique covariate vectors;
thus, the vector g indexes the multi-dimensional rounded-
covariate score for each observation.

The above result implies that the unique rounded-
covariate scores (i.e., Z;) can be obtained by sorting the
predictors according to the g; values, and then sampling
one observation’s covariate vector from each unique g; value.
Similarly, once the data is sorted according to the g; values,
the sum of the response at each unique covariate (i.e., §;)
and the number of observations at each unique covariate
(i.e., wy) can be easily calculated. Lastly, after calculating

llyl], the SSANOVA model can be fit using the sufficient
statistics from the rounded solution, i.e., z;, 3, and wy.

As we previously mentioned, the above algorithm can be
modified to include nominal covariates as well. When work-
ing with nominal covariates, the algorithm assumes that all
nominal covariates are of the form z;; € {1,..., f;} where
f; is the number of factor levels of the j-th covariate. As-
suming that z;; € {1,..., f;}, both steps of the rounding
algorithm need to be slightly modified:

for j e {1,...,p}
If x;; is continuous
L g« g+ h[rd{(1/r))(X; — 21);)/(@m); — 21);)}]
2. h<+rd(1+1/rj)h
Else if ;; is nominal
1. g g+h(x;—1)
2. h+ f;h

end

Using this simple modification, the rounding algorithm can
be efficiently applied to any combination of continuous and
nominal covariates.
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