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Optimal bandwidth selection for semi-recursive

kernel regression estimators

YOUSRI SLAOUI

In this paper we propose an automatic selection of the
bandwidth of the semi-recursive kernel estimators of a re-
gression function defined by the stochastic approximation
algorithm. We showed that, using the selected bandwidth
and some special stepsizes, the proposed semi-recursive es-
timators will be very competitive to the nonrecursive one in
terms of estimation error but much better in terms of com-
putational costs. We corroborated these theoretical results
through simulation study and a real dataset.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G0S,
62L.20; secondary 65D10.

KEYWORDS AND PHRASES: Nonparametric regression,
Stochastic approximation algorithm, Smoothing, Curve fit-
ting.

1. INTRODUCTION

In recent years, there has been a lot of interest in big

data. In such a large sample data context, building a semi-
recursive estimator which does not require to store all the
data in memory and can be updated easily in order to deal
with online data is of great interest.
In the framework of the nonparametric kernel estimators,
the bandwidth selection methods studied in the literature
can be divided into three broad classes: the cross-validation
techniques, the plug-in ideas and the bootstrap. A detailed
comparison of the three practical bandwidth selection can
be found in Delaigle and Gijbels [3]. They concluded that
chosen appropriately, plug-in and bootstrap selectors both
outperform the cross-validation bandwidth, and that nei-
ther of the two can be claimed to be better in all cases. Re-
cently, a plug-in bandwidth selection method for recursive
kernel density estimators defined by stochastic approxima-
tion method have been done by Slaoui [15] and for recursive
kernel distribution estimators have been done by Slaoui [16].
In this paper, we developed a specific plug-in bandwidth se-
lection method of the semi-recursive kernel estimators of
a regression function defined by stochastic approximation
method.

Let (X1,Y1),...,(X,,Y,) be independent, identically
distributed pairs of random variables with joint density func-
tion g (x,y), and let f denote the probability density of X.

In order to construct a stochastic algorithm for the estima-
tion of the regression function a : x — E(Y|X = z)f (z) at
a point z, we define an algorithm of search of the zero of
the function h : y — a(z) — y. Following Robbins-Monro’s
procedure, this algorithm is defined by setting ag(z) € R,
and, for all n > 1,

anp (I) = Gn-1 (‘T) + Bana

where W,,(z) is an “observation” of the function h at the
point a,_1(z), and the stepsize (53,) is a sequence of pos-
itive real numbers that goes to zero. To define W, (x), we
follow the approach of Révész [11, 12], Tsybakov [20] and of
Mokkadem et al. [8, 9] and introduces a kernel K (that is, a
function satisfying [, K(z)dx = 1), and a bandwidth (h,,)
(that is, a sequence of positive real numbers that goes to
zero), and sets W, (z) = h,, 'V, K (h,! (z — X)) —an—1(2).
Then, the estimator a,, to recursively estimate the function
a at the point x can be written as

(1 - Bn) Ap—1 ($)
+Buhy, Yo K (' [z — X))

ap (r) =

(1)

This estimator was proposed by Slaoui [19] to estimate re-
cursively the regression function with a fixed design setting.
The recursive property (1) is particularly useful in large
sample size since a, can be easily updated with each ad-
ditional observation.

Let us underline that, we consider ag(x) = 0 and we let
Qn = H?:l (1 — B;), then it follows from (1) that, one can
estimate a recursively at the point x by

L _ - X
an(z) = Qn};leﬂkhklym(m . ’“).

Moreover, we use the estimator introduced in Mokkadem
et al. [8] to estimate recursively the density f at the point
x

fu(x) = (L=) fa(2)
(2) +ynhy 'K (b [z — X)),
where the stepsize (7,,) is a sequence of positive real numbers
that goes to zero. Let us underline that we consider fy (x) =
0, and we let II,, = H?Zl (1 —7;), then it follows from (2)
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that, one can estimate f recursively at the point x by

h
k=1 k

Then, we consider the semi-recursive estimator for the re-
gression function r at the point x

T'n (*T) = {

Moreover, we show that the optimal bandwidth which mini-
mize the E [, [, (z) —r (2)]? dx of r,, depends on the choice
of the stepsizes (v,) and (f,); we show in particular that
under some conditions of regularity of  and using the step-
sizes (Y, Bn) = (nil, nil), the bandwidth (h,,) must equal

(3)1/5 { e Var [Y?X =] f! (2) dx }1/5
10 J (a® (@) =7 (2) fO (2))° 2 (2) do
X {M}l/s n—1/5
(Jo 22K (2) d2)

The first aim of this paper is to propose an automatic se-
lection of such bandwidth through a plug-in method, and
the second aim is to give the conditions under which the
semi-recursive estimator r, will be approximately similar
to the nonrecursive kernel regression estimators introduced
by Nadaraya [10] and Watson [21], and defined as

an(z)
fn(@)
0

it fo(z) #0,

otherwise.

3)

‘~l~n(m) : ]
) Fo@) =4 fuw @ A0
0 otherwise,
with
_ 1 o - X;
&n(af)—m;YiK( I )
and

fo () = %21((1:;”)(1)

The applications results given in Section 3 corroborate these
theoretical results. The remainder of the paper is organized
as follows. In Section 2, we state our main results. Section 3
is devoted to our application results, first by simulation
(subsection 3.1) and second using a real dataset (subsec-
tion 3.2). We conclude the article in Section 4. Appendix A
gives the proof of our theoretical results.

2. ASSUMPTIONS AND MAIN RESULTS

We define the following class of regularly varying se-
quences.

376 Y. Slaoui

Definition 2.1. Let v € R and (v,),,~, be a nonrandom
positive sequence. We say that (v,) € GS () if

(5) lim n [1 _ U"_—l] — .

n——+00 Un

Condition (5) was introduced by Galambos and Seneta [4]
to define regularly varying sequences (see also Bojanic and
Seneta [2]) and by Mokkadem and Pelletier [7] in the con-
text of stochastic approximation algorithms. Noting that the
acronym GS stand for (Galambos and Seneta). Typical se-
quences in GS () are, for b € R, n7 (log n)’, n" (loglog n)b,
and so on.

In this section, we investigate asymptotic properties of the
proposed estimators (3). The assumptions to which we shall
refer are the following:

(Al) K : R — R is a continuous, bounded function
satisfying [, K (z2)dz = 1, and, [, 2K (z) = 0 and
Jo 72K (2) < 0.

(A9)'7) (5n) € G5 (~B) with § € ]1/2,1].
i7) (hy) € GS (—a) with a € ]0,1].

1) limy, 00 (nBy) € min{2a, (8 — a) /2}, o).

(A3) i) g (s,t) is twice continuously differentiable with re-
spect to s.

ii) For ¢ € {0,1,2}, s — [,199(s,t)dt is a bounded
function continuous at s = x.

For ¢ € [2,3], s = [;|t|" g (s,t)dt is a bounded func-
tion.

iii) For ¢ € {0,1}, [y |t[*

%(I,t)’dt < oo, and § —

Jz tq% (s,t)dt is a bounded function continuous at
s=um.
Assumption (A2) (4i7) on the limit of (nB,) as n goes to
infinity is standard in the framework of stochastic approxi-
mation algorithms. It implies in particular that the limit of

([nﬁn]_l) is finite. For simplicity, we introduce the follow-
ing notations:

(6) ¢ = lim (nf)",

R(K) = /R K2 (2) dz,

w(K) = [FK @,

O(K) = R(K)""us (K)"7,
ho= [ (@) @
b= [a® @@ @@ @
ho= [ (@) @ f @
I, = /R]E[Y2|X:x]f2(x)d:c,



I =

/ r? (2) f? (z)dx
R

where L®) (z) is the second derivative of the function L
at a point z. In this section, we explicit the choice of
(hn,) through a plug-in method, which minimize the Mean
Weighted Integrated Squared Error MWISE of the semi-
recursive estimators (3), in order to provide a comparison
with the nonrecursive estimator (4). Moreover, it was shown
in Mokkadem et al. [8] and considered in Slaoui [14] that to
minimize the Mean Integrated Squared Error MISFE of f,
(MISE|[fn] = E [g[fn(x)— f ()] dz), the stepsize ()
must be chosen in GS (—1) and must satisfy lim,, o ny, =
1. We consider here the case (7,,) = (n™!). Our first result
is the following proposition, which gives the bias and the
variance of r, in the special case of (y,) = (n™!).

Proposition 2.1 (Bias and variance of r,). Let Assump-

tions (A1) — (A3) hold, and suppose that the stepsize (v,) =
—1

n
1. If a €]0,5/5], then

Ery (2)] = r(2)

r(z) f (x)
(1 —2a)

1 ( a® () 3
-~ 2f (=) \(1—2ag)
+o (h2) .

)t ()
(7)
If a €]5/5,1], then

® Bl @)@ =o (V).

2. Ifa € [B/5,1], then

Var [ry, (z)]

2€
1+ a&

_ b E[V?X = z] _(
ho | 2= (B—a)&) f(z)

If a €]0,8/5], then

(10) Varr, (z)]=o (hi) .

9. If limy oo () > max{2a,(a—B)/2},
and (9) hold simultaneously.

then (7)

The bias and the variance of the estimator r, defined
by the stochastic approximation algorithm (3) then heavily
depend on the choice of the stepsizes (y,) and (8,).

Let us first state the following theorem, which gives the
weak convergence rate of the estimator r,, defined in (3) in
the case of (v,) = (7).

Theorem 2.1 (Weak pointwise convergence rate). Let As-
sumptions (A1) — (A3) hold, and suppose that (v,) = (n™!).

1. If there exists ¢ > 0 such that 3, 1h5 — c, then

B (r (2) = 7 (2)) BN (VEBU) () V(@)
where

o L (@) r@) @)

Boe (@) = 2f(x)<(1—2a§) (1-2a) )“Q(K)’

W E[V?X =z
Vaes (2) = {(2—(ﬁ—a)§)f(l‘)

_< 26 ¢ )
1+a¢ 1+4a

2. If nh? — oo, then

7z (@) =7 @) = B¢ (@),

where 3 denotes the convergence in distribution, N the

Gaussian-distribution and - the convergence in probability.

The following corollary gives the weak convergence rate
of 7, in the two special cases; (Yn,Bn) = (n‘l,n_l) and
(V> Bn) = (n71, (1 — a) n™") respectively.

Corollary 2.1 (Weak pointwise convergence rate). Let As-
sumptions (A1) — (A3) hold.

1. If we suppose that the stepsizes (Vn,fn) = (nfl,nfl)
and if there exists ¢ > 0 such that nhi — ¢, then

Vi (ra (@) =7 (@) 3 N (VeBY (@), VY, @)
2. If we suppose that the stepsizes (Vn,fn) =

(n_l,(l—a) n_l), and if there exists ¢ > 0 such
that nh? — c, then

Vit (1 () = 7 ()
1
%N(\/_Ba(l o @,V )).
In order to measure the quality of our semi-recursive es-

timator (3) in the case when the stepsize () is chosen to
minimize the MISFE of f,, we use the following quantity,

E / o () — 1 (@) 3 () da
/R (E(rn (2)) — 7 (2))? f* (2) da
+/RVar (rn (2)) f3 (z)dz

MWISE [r,] =

The following proposition gives the MW ISE of the semi-
recursive estimators defined in (3) in the case when (v,) is
chosen to minimize the MISFE of f,.
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Proposition 2.2
(A1) — (A3) hold, and suppose that (v,) = (n™1).

1. If a €]0,8/5], then

1 I Iy
MWISE[r,] = ((1 et T 27

I
I 2a£)> It (K)

2. If a = /5, then

MWISE[r,] =

+o (hy)
3. If a €]8/5,1[, then
- R TR
MWISE[r] = 7= ((2— (B —a)§)

NE ISP

+o (5—:) .

The following corollary indicates that the bandwidth
which minimizes the MW ISFE of r,, depends on the stepsize
(Br) and then the corresponding MW ISE depends also on
the stepsize (8,).

Corollary 2.2. Let Assumptions (A1)—(A3) hold, and sup-
pose that (v,) = (n™'). To minimize the MWISE of ry,
the stepsize (B,) must be chosen in GS (—1), the bandwidth
(hy) must equal

1/5

I 2¢ 1S
T (1+a5 - F) I5

I:
+ (1722(1)2 -2

Il I2
(1—2a¢)? (1—2a)(1—2a€)

<{am }1/5 Al

Then, we have

5 I
MWISE[r] = (m
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(MWISE of r,). Let Assumptions

4/5
() )
1+a¢ 1+4a
L Is
8 ((1 —2a€)? * (1—2a)®

, 1/5
2 /
1 —2a) (12a§)> O (K) 6®

“+o (ﬁﬁm) .

The following corollary shows that, for a special choice
of the stepsize (3,) = (ﬁon’l), which fulfilleds that
lim,, 0o nB, = Bo and that (8,) € GS(—1), the optimal
value for h, depends on [y and then the corresponding
MWISFE depend on .

Corollary 2.3. Let Assumptions (A1)—(A3) hold, and sup-
pose that (v,) = (n™1). To minimize the MWISE of ry,,

the stepsize (By,) must be chosen in GS (—1), lim, o, nB, =
Bo, the bandwidth (hy,) must equal

_2(

1/5
_ (7Bo—1)(Bo—2/5)
(Bo — 2/5) 1/e L 362 (Bot1/5) L5
2 o502 B
hoa g (2ml) h- g () b

(1) [ )

3 (K)
and we then have

MWISE[r,] =

W | Ot

L R (1
215 (8, —2/5)°5 \"
(10— 1) (B0 ~2/5), >4/5
362 (Bo+1/5) °

2
x <11 + 29—5 (L 502/5> I

10 (8—2/5\ .\
e O -4/
3 ( 50 )I2> @(K)n 4/5

+o (n_4/5) .

(12)

Moreover, the minimum of 52 (8o — 2/5)_6/5 is reached at
Bo = 1, then the bandwidth (h,) must equal

Iy —1Is

3\ /5 1/5
(E) (11 + 15— 25)

R(K)}“f’
13 n=5
- am
and we then have

5 1 /5\%°



x (I + I — 215)"/° © (K)n~4/%

(14) +o <n74/5> .
In order to estimate the optimal bandwidth (13), we must
estimate I, I, I3, Iy and I5;. We followed the approach of
Altman and Leger [1] and Slaoui [15, 16], which is called the

plug-in estimate, and we use the following kernel estimators
of Il, IQ, Ig, I4 and I5S

T Q2 < 1 1 31—3
L= =23 Q7 Q" BiBby b
i,j,k=1
%k
X, - X; X, - X
(15) XKy (TJ) K (b—k> VY,
J k
T HnQn = — — —37—
L = — > I Q; B *h;
i,j,k=1
J#k
X, - X X, - X;
o) (S e (B vy
k j
T H2 - 1 3
Iy = - > I s *hy,
i,5,k,l=1
JFkAL
@ (Xi =X\ 2 (Xi = Xg
17 K K, Y;Yy,
4 ’ ( b, ) ’ < b :
~ I, w— __ B
I, = —anl%bkl
ik=1
ik
X, — X
ay w5
b,
T Qn - _ _
I = =53 Qplhuby!
i,k=1
ik

(19)

where K, is a kernel and b,, is the associated bandwidth.
In practice, we take

- Q3— Q1

(20) bn:nﬁmin{s, 1349 }, B8 €10,1]

(see Silverman [13]) where § the sample standard deviation,
and @1, @3 denoting the first and third quartiles, respec-
tively.
We followed the same steps as in Slaoui [15] and we showed
that in order to minimize the MISE of fl respectively of
Iy, I3, I, and I5, the pilot bandwidth (b,) must belong
to GS(—3/14), respectively to GS(—3/14), GS (—3/14),
GS (—2/5) and GS (—2/5).

Finally, the plug-in estimator of the bandwidth (h,,) us-
ing the semi-recursive estimators defined in (3) with the

stepsizes (v, Bn) = (71, n7t).

~ ~ 1/5
<3>l/5 I, — I /
10 L +1;—2L

R(K)}”S oy

21 n ,

&h L
_ 5 1 /5\%° /0 N4/
MWISE[r) = 57 <§> (14715)

~ - _\1/5
x (11 Ty 212) O (K)n~4/5
+o (n_4/5) .

Let us now consider the stepsize (8,) = ((1 —a)n™'), the
case which minimizes the variance of a,, () combined with

the stepsize (7,) = (n™'), the case which minimizes the
MISE of f,, it follows from (12), that
23 \*/°
MWISE|[r,] = 5Y° (14—ﬂ15>
25 5 \'°
L+ I~ ST K)n=4/5
><<1+363 32> @( )n

(22) +o (n*4/5) ,

and from (11), that the plug-in estimator of the bandwidth
(hn) using the semi-recursive estimators defined in (3) is

given by
~ ~ 1/5
5 L + %13*% 2
RN s
(23) { } i)
13 (K)

and it follows from (12), that the plug-in MWISE of
the proposed estimator (3) using the stepsizes (Yn,fn) =
(7', (1 —a)n™t) is given by

o . 923 - 4/5
MWISE[r,] = 5Y° (14—ﬂl5>
1/5
~ 25~ B~
L+=1Is-=I O (K)n /5
><<1+363 32) (K)n
+0(n*4/5).

Let us now provide the case when the stepsize (v,,) is chosen
to minimize the variance of f,. It was shown in Mokkadem
et al. [8] and considered in Slaoui [14] that to minimize the
variance of f,,, the stepsize (v,) must be chosen in GS (—1)
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and must satisfy lim, ., 7y, = 1 —a. We consider here the
case (y,) = ((1 —a)n™'). Our first result is the following
proposition, which gives the bias and the variance of r,, in
the special case of (v,) = ((1 —a)n™t).

Proposition 2.3 (Bias and variance of r,). Let As-
sumptions (Al) — (A3) hold, and suppose that (v,) =
(1=a)n™t).

1. If a €]0,3/5], then

1 a? (z)
e (01 @) B (R)
(24) +o(h2).

If a €]8/5,1], then

@) Bl @] (o) =o (Vouh!).

2. If a € [8/5,1], then

Varlr, (z)] =

(26)

If a €]0, /5], then

(27) Var[ry, (z)] = o (hy).
3. If lim, oo (nBn) > max{2a,(a—B)/2}, then (24)
and (26) hold simultaneously.

The bias and the variance of the estimator r, defined
by the stochastic approximation algorithm (3) then heavily
depend on the choice of the stepsizes (v,) and (5,).

Let us first state the following theorem, which gives the weak
convergence rate of the estimator r, defined in (3).

Theorem 2.2 (Weak pointwise convergence rate). Let As-
sumptions (Al) — (A3) hold, and suppose that (y,) =

(1—a)n™t).

1. If there exists ¢ > 0 such that 8;'h5 — ¢, then

VB (@) = 7 (@) BN (VEBE (2), V5 (@),

where

1 < a® ()
2f (2) \(1 = 2ag)
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@ o E[Y2|X =]
Vaes (@) = {(2—(ﬁ—a)£)f($)
e ael @
(1 )gf(x) }R(K)-

2. If nh? — oo, then

(@) 1 () 5 B (@),

n
The following corollary gives the weak convergence rate
of r,, in the two special cases; (v, 8n) = ((1 —a) n’l,n’l)
and (v, 8n) = (1 —a)n™!, (1 — a) n~!) respectively.
Corollary 2.4 (Weak pointwise convergence rate). Let As-

sumptions (A1) — (A3) hold.

1. If we suppose that the stepsizes (Vn,[Pn) =
((1—a)n_17n_1), and if there exists ¢ > 0 such
that nh? — ¢, then

Why (7o (@) =7 (2)) B N (VeBE (2), V), (@)

2. If we suppose that the stepsizes (Yn,Bn) =
(1=a)n ', (1—a)n™'), and if there exists ¢ > 0
such that nh> — ¢, then

Vv nhy, (Tn (x) —7(x))

BN <\/EB(2)

e @)V @)

The following proposition gives the MW ISFE of r,, in the
case when (7,) is chosen to minimize the variance of f,.

Proposition 2.4 (MWISE of r,). Let Assumptions

(A1) — (A3) hold, and suppose that (v,) = ((1 —a)n™1).
1. If a €]0, /5], then
1 L (1-a)?
MWISE|[r,] = 1 ((1 - 2a§)2 + 1 —3a)2 3
(1-a) 4,2
—2(1 " 3a) (1 — 248) ]2) iy (K)
+o (h2).
2. If a = /5, then
Y’
wwiseinl = 5 (Ggag
- (1 —-a)éls) R(K)
1 L (1—a)
3 ((1 “oue)? T =3



(1-a) 2
R 2a§)12> Pt (K)

o () -
3. If a €]8/5,1[, then
Y (R
MWISE[r,] = hn(@—%ﬁ—aﬁ?

—(1—a)§I5>R(K)+0<§—:>.

The following corollary ensures that the bandwidth which
minimize the MWISE depend on the stepsize (8,) and
then the corresponding MW ISFE depend also on the step-
size (Bn).

Corollary 2.5. Let Assumptions (A1)—(A3) hold, and sup-
pose that (v,) = ((1 —a)n~'). To minimize the MWISE
of rn, the stepsize (8y,) must be chosen in GS (—1), the band-
width (hy,) must equal

1/5
g~ (1-9)s
(1=a)? (1-a)
= 2a£)2 + (1— 3(1)2]3 (1730,)(1720,5)12

Then, we have

4/5
MWISE[r,] = g <(2 — (;4_ a8~ (1-a) §I5>
5L (1-a)
. ((1—2 92 (1 3a)2I3

1/5
(1—-a) 4
_2(1 “ 30 (1 = 26) 12> O (K)pi/»

+o (ﬁﬁ/ 5) .
The following corollary shows that, for a special choice
of the stepsize (8,) = (Bonfl), which fulfilled that

lim, 0o nB, = Po and that (8,) € GS(-1), the opti-
mal value for h, depend on (3 and then the corresponding
MWISE depend on f.

Corollary 2.6. Let Assumptions (Al)—(A3) hold, and sup-
pose that (v,) = ((1 —a)n™'). To minimize the MWISE
of rn, the stepsize (B,) must be chosen in GS(-1),
lim,, 00 nBn = Bo, the bandwidth (h,) must equal

o /s 1/5

< 2/5)1/5 I
2 - 2 _
L +4 (50 2/5) Iy —4 (—Boﬂf“) I

(28)

and we then have

MWISE[TH}:Z;/S 2/5 ( 8 o - 2/515)
<h+4( )
(25 eme
(29) +o<n4“>.

Moreover, the minimum of 52 (8o — 2/5)_6/5 is reached at
Bo = 1, then the bandwidth (h,) must equal

7)

L - 21, 1/5

3\ 1/5 24
((E) <11+ 13—

and we then have

{ﬁﬁ%}uil”ﬂ’

5 1 5\°/° 24 \®
36 12 \'° _
X(Il+2513512> O (K)n=4/°
(30) +o (n_4/5> .

In order to estimate the optimal bandwidth (13), we must
estimate I, Iy, I3, Iy and I5. We use the kernel estima-
tors defined in (15), (16), (17), (18) and (19). We showed
that in order to minimize the MISE of 1, 1 respectively of
Ig, 13, I4 and I5, the pilot bandwidth (b,) must belong
to GS (—3/14), respectively to GS(—3/14), GS (—3/14),

S (—2/5) and GS (—2/5).
Finally, the plug-in estimator of the bandwidth (h,,) using
the semi-recursive estimators defined in (3) with the step-
sizes (Yn, Bn) = (1 —a)n™t,n7t).

(3)1/5 j:l_24:f5 1/5
10 I +3 k——b

RUO\M® 1)
o (RGO, 0e)
3 (K)
— 5 1 /5\%° /~ 24.\*°
o 36~ 12-\Y°
L +=I—- =TI K)n=4/°
X(1+253 52) O (K)
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+o <n74/5) .

Let us now consider the stepsize (8,) = ((1—a)n™'), the
case which minimizes the variance of a,, (x) combined with
the stepsize (y,) = ((1 — a)n™'), the case which minimizes
the variance of f,,, it follows from (29), that

MWISE[r,] = 5Y5(I4 — I;)*® x (I + Is — 2I,)*°
(32) O (K)n °+o (n74/5> ,

and from (28), that the plug-in estimator of the bandwidth
(hy) using the semi-recursive estimators defined in (3) is

given by
~ ~ 1/5
<1>1/5 I, — Iy /
5 I+ 13— 21,
R(K)}”“ .
33 n15
33) lam

and it follows from (29), that the plug-in MWISE of
the proposed estimator (3) using the stepsizes (v, 8n) =

(1=a)n™', (1 —a)n™t), is given by
J— VSNV PN _\1/5
MWISEr,] = 55 (14 - 15) x (11 Yt Ty 212)

OK)n ™ +o <n74/5) .

Now, let us recall that the bias and variance of Nadaraya-
Watson’s estimator 7,, are given by

5 (4 @) —r (@) £ (@)
< (@) B (K) 0 (A2)

E[r, (z)] —r(z) =

and

Varlr, ()] = %V@r VX =2 f () R(K)

ol L
Onhn'

% (I — I) R(K)

1
+1 (I + I3 — 2I) by i3 (K)

1
hy +— | .
+o ( n T ” hn)
Then, to minimize the MW ISE of 7,,, the bandwidth (h,,)
must equal to

(34) (([ ffgfsﬂ)l/s L }1/5 /> |
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It follows that,

MWISE[F,] =

and we have

5

MWISE[F,) = 3 (li— Y2 (I + Is — 21,)'°

(35) x0 (K)n=%% 4o (n*4/5> .
To estimate the optimal bandwidth (34), we must estimate

I, I, I3, Iy and I5. We use the following kernel estimator
of Il, 127 Ig, I4 and 155

= 1 @ (Xi = X5\ o (Xi— Xk
L= > K, ( ; K, ; Y; Y,
nz’jﬁigl n n
J
~ I &~ o (Xi— X5\ e (Xi— Xk
b= img 2K < b, ) b i,
™ gk=1 " "
ik

SN
I

n2b,, .

where K is a kernel and b,, is the associated bandwidth
given in (20).

We showed that in order to minimize the MISE of fl re-
spectively of Is, I3, I, and I5, the pilot bandwidth (b,)
must belong to GS (—3/14), respectively to GS (—3/14),
GS (—-3/14), GS (—2/5) and GS (—2/5).

Then the plug-in estimator of the bandwidth (h,,) using the
nonrecursive estimator (4), is given by

-~ o~ 1/5
I — I R(K)
%) <I~1+T3—2I~2> i

and the plug-in of the MW ISFE of the nonrecursive estima-
tor (4), is given by

MWTISE [7,]
_ Z (7 - f5)4/5 (Fi+Ts- 272)1/5@(K)n—4/5
+o (n_4/5) .

Finally, it follows from (14), (22), (30), (32) and (35), that:

The MW ISE of the proposed estimator (3) with the choice
of the stepsizes (v, 8,) = (™!, n ') is 1.06 larger than
the nonrecursive estimator (4).



The MW ISE of the proposed estimator (3 ) 3) with the choice
of the stepsizes (yn,8,) = (1 —a)n™', (1 —a)n™') is
1.1 larger than the nonrecursive estimator (4).

We can’t compare the MW ISE of the proposed estima-
tor (3) with the choice of the stepsizes (yn,fn) =
(nil, (1-a) n’l) (respectively, the MWISE of the
proposed estimator (3) with the choice of the stepsizes
(Y, Bn) = (1 —a)n~',n71)) neither to the MWISE
of the others proposed estimators nor to the MWISE
of the nonrecursive estimator (4).

3. APPLICATIONS

The aim of our applications is to compare the perfor-
mance of the semi-recursive estimators defined in (3) with
that of the nonrecursive Nadaraya-Watson’s estimator de-
fined in (4).

When applying r,, one need to choose three quantities:

e The function K, we choose the Normal kernel.

e The stepsizes (vn,08n) equal respectively to
(n’l, nil), (nil, (1-a) nil),
(1=a)n™',n7) or (1-a)n™,(1—a)n™t).
These four choices are referred to as Recursive
1, 2, 3 and 4 respectively.

e The bandwidth (h,,) is chosen to be equal re-
spectively to (21) for (Recursive 1), (23) for
(Recursive 2), (33) for (Recursive 3) and (31)
for (Recursive 4).

When applying 7, one need to choose two quantities:

e The function K, as in the semi-recursive frame-
work, we use the Normal kernel.

e The bandwidth (h,,) is chosen to be equal to (36).

3.1 Simulations

Throughout this subsection, we consider the regression
model

Y=r(X)+e,

where X is N (0, 1)-distributed and € is N (0, o)-distributed,
with o is chosen in the interval [0.1,2].

In order to investigate the comparison between the pro-
posed estimators, we consider two regression functions: co-
sine function r (x) = cos (z) (see Table 1) and the following
function 7 (z) = (1 + exp (z)) " (see Table 2). For each fixed
o € [0.1,2], the number of simulations is 500. We denote by
T} the true regression function, and by r; the considered re-

gression estimators, and then we compute the Mean Squared
Error (MSE =n"1%", (r; — r)?).

8.1.0.1. Computational cost The advantage of recursive
estimators on their nonrecursive version is that their up-
date, from a sample of size n to one of size n + 1, require
less computations. Performing all the proposed methods, we
report the total CPU time values for each considered regres-

sion function and for each fixed o and for each sample size
in Tables 1 and 2. For the two tables we give the CPU time
in seconds.

3.2 Real dataset

The CO2 dataset was available in the R package
Stat2Data and contained 237 observations on the following
two variables; Day and CO2, for more details see the sta-
tion information system (GAWSIS). Scientists at a research
station in Brotjacklriegel, Germany recorded CO2 levels, in
parts per million, in the atmosphere for each day from the
start of April through November in 2001.

Figure 1 and Tables 1 and 2 indicate that

e The Recursive 1 is very close to the nonrecursive es-
timator (4).

e The two estimators Recursive 2 and Recursive 3 can
be better than the others estimators in many situations.

e The CPU time are always faster using the proposed semi-
recursive estimators and the reduction of CPU time goes
from a minimum of 22.3% to a maximum of 60% com-
pared to the nonrecursive estimator.

4. CONCLUSION

This paper proposes an automatic selection of the band-
width of the semi-recursive kernel estimators of a regres-
sion function defined by the stochastic approximation al-
gorithm (3). The proposed estimators asymptotically fol-
low normal distribution. The estimators are compared to
the nonrecursive Nadaraya-Watson’s regression estimator.
We showed that, using some selected bandwidth and some
particularly stepsizes, the proposed semi-recursive estima-
tors will be very competitive to the nonrecursive one. The
simulation study confirms the nice features of our proposed
semi-recursive estimators and statisfactory improvement in
the CPU time in comparison to the nonrecursive estimator.

In conclusion, the proposed method allowed us to obtain
quite similar results as the nonrecursive estimator proposed
by Nadaraya [10] and Watson [21]. Moreover, we plan to
make extensions of our method in the future and to con-
sider the case of the averaged Révész’s regression estimators
(see Mokkadem et al. [9] and Slaoui [17, 18]) and the case
of time series as in Hart and Vieu [5] in a recursive way
(see Huang et al. [6]).

APPENDIX A. PROOFS

Throughout this section we use the following notation:

=H(1—ﬁj),

W, (z) = he 1K(l X)

n
H 1=v), G =11Q,"%

(37)
(38) Z()_leK("” X)
Let us first state the following technical lemma.
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Table 1. Quantitative comparison between the nonrecursive estimator (4) and four recursive estimators; recursive 1 correspond
to the estimator (3) with the choice (v, 8,) = (™', n™1), recursive 2 correspond to the estimator (3) with the choice
(Y, Bn) = (n™1, (1 —a)n™1), recursive 3 correspond to the estimator (3) with the choice (v, 3,) = ((1 —a)n™',n"") and
recursive 4 correspond to the estimator (3) with the choice (7, 8,) = ((1 —a)n™', (1 —a)n™'). Here we consider the
regression function r (z) = cos (z), X ~ N (0,1) and ¢ ~ N (0,0) with o = 0.1 in the first block, c = 0.5 in the second
block and o = 1 in the last block, we consider three sample sizes n = 100, n = 200 and n = 500, the number of simulations is
500, and we compute the Mean squared error (M SE) and the CPU time in seconds

Nadaraya Recursive 1 Recursive 2 Recursive 3 Recursive 4
n = 100 oc=0.1
MSE 0.000812 0.000748 0.000764 0.000567 0.000667
CPU 238 184 170 154 164
n = 200
MSE 0.000507 0.000483 0.000508 0.000366 0.000443
CPU 835 514 509 464 470
n = 500
MSE 0.000284 0.000279 0.000294 0.000217 0.000260
CPU 3679 2185 1973 1966 1865
n = 100 oc=0.5
MSE 0.004486 0.004447 0.004286 0.003729 0.004184
CPU 231 143 135 137 129
n = 200
MSE 0.002331 0.002337 0.002142 0.001929 0.002141
CPU 885 568 549 485 457
n = 500
MSE 0.001372 0.001411 0.001265 0.001174 0.001291
CPU 3498 2049 1943 2242 2045
n = 100 c=1
MSE 0.013960 0.021204 0.020982 0.021476 0.021832
CPU 246 166 136 146 137
n = 200
MSE 0.006016 0.010935 0.008714 0.012524 0.011657
CPU 831 580 519 541 505
n = 500
MSE 0.001916 0.001816 0.002268 0.003018 0.001972
CPU 3801 2193 2043 2024 1875

Lemma A.l. Let (v,) € GS(v*), (Bn) € GS(—5), and
m > 0 such that m —v*€ > 0 where £ is defined in (6). We
have

ﬁk: 1

vy m—v*E

n
3 m —m
Jm 0, Qn > Q;

k=1

(39)

such that

(o)

Moreover, for all positive sequence
limy, 400 ap =0, and all 0 € R,

lz Q"
k=1

Lemma A.1 is widely applied throughout the proofs. Let
us underline that it is its application, which requires As-
sumption (A2)(i4¢) on the limit of (ny,) as n goes to infin-
ity.

Our proofs are organized as follows. Propositions 2.1 and
2.2 in Sections A.1 and A.2 respectively, Theorem 2.1 in

&ak—i—é =0.

(40) o

lim v, Q"
n——+oo nQn
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Section A.3. Propositions 2.3 and 2.4 in Sections A.4 and
A5 respectively, Theorem 2.2 in Section A.6.

A.1 Proof of Proposition 2.1
Let us first note that, for « such that f,, (x) # 0, we have

. f ()
(41) r@) =r(@) = Bule) 4
with
Bo(a) = o (an(z) - a(x)
n f(x) n
77’(%) x)— f(x
(42) o @) = 1 @),

It follows from (41), that the asymptotic behaviour of
rn (x) — r (z) can be deduced from the one of B, (x). More-
over, the following Lemma follows from the Proposition 1
of Mokkadem et al. [8].



Table 2. Quantitative comparison between the nonrecursive estimator (4) and four recursive estimators; recursive 1 correspond
to the estimator (3) with the choice (Y, 8,) = (n~',n™1), recursive 2 correspond to the estimator (3) with the choice
(Y, Bn) = (n™1, (1 —a)n™"), recursive 3 correspond to the estimator (3) with the choice (v, 3,) = (1 —a)n™',n"") and
recursive 4 correspond to the estimator (3) with the choice (7, 8,) = ((1 —a)n™', (1 — a)n~'). Here we consider the
regression function r () = (14 exp (z)) ™", X ~ N (0,1) and ¢ ~ N (0,0) with o = 0.1 in the first block, o = 0.5 in the
second block and o = 2 in the last block, we consider three sample sizes n = 100, n = 200 and n = 500, the number of
simulations is 500, and we compute the Mean squared error (M SE) and the CPU time in seconds

Nadaraya Recursive 1 Recursive 2 Recursive 3 Recursive 4
n =100 o=0.1
MSE 1.31e7% 1.15¢7% 6.22e¢7%° 1.71e % 1.03e %4
CPU 249 184 135 146 146
n =200
MSE 4.38¢7% 3.87¢7 % 1.50e%° 8.03¢7%° 3.63e~%
CPU 909 524 475 601 458
n = 500
MSE 5.70e7%¢ 5.02¢ ¢ 3.20e7%6 2.32¢7% 4.29¢06
CPU 3708 1803 1672 1855 1483
n = 100 o=20.5
MSE 0.000351 0.000325 0.000252 0.000350 0.000296
CPU 256 144 132 134 125
n = 200
MSE 0.000189 0.000171 0.000154 0.000163 0.000151
CPU 873 524 483 576 451
n = 500
MSE 2.30e7% 2.25¢79° 2.42¢79 3.351e 9 2.06e°°
CPU 4389 2113 1987 1999 1973
n = 100 oc=2
MSE 0.003447 0.003294 0.003155 0.003132 0.003137
CPU 294 155 173 143 148
n =200
MSE 0.000160 0.000152 0.000162 0.000111 0.000189
CPU 917 503 581 515 477
n = 500
MSE 6.56e%° 7.03¢7% 5.01e 0% 6.70e~%° 5.39¢~%
CPU 3643 2105 1951 1947 1877
Lemma A.2 (Bias and variance of f,,). Let Assumptions If a €]0,1/5], then

(A1) — (A3) and suppose that the stepsize (y,) = (n™1).

ar )| = 0 4 .
1. If a €]0,1/5), then (46) Var [fa (2)] = o (hy,)

Following similar steps as the proof of the Proposition 1

Elf, (x)] - f(z) = ﬁf@) () h? i (K) of Mokkadem et al. [8], we show that
2 Lemma A.3 (Bias and variance of a,,). Let Assumptions
(43) +o (hn) - (A1) — (A3) hold. g
If a €]1/5,1], then 1. If a €]0,5/5], then
(44)  Elfa(@)] - (@) =o(VnThal). Elan (z)] —a(e) — 2(1_41%)& () W2z (K)
2. Ifa € [1/5,1], then (47) +o (h2).
Varlful@)] = i a%f(x)R(K) Ifa €]6/5,1], then
(45) o ( }1L ) _ (48)  Elan (z)]—a(z) =0 (\/mhnl) .
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Figure 1. The daily carbon dioxide measurements data with automatic bandwidth selection using the nonrecursive Nadaraya's

estimator (4) and two semi-recursive estimators (3) (Recursive 1 and Recursive 4).

2. Ifa € [B/5,1], then

E[Y?|X =z f (2) Ba
C-G-08 h N

()

Var[a, (z)] = o (hy) .

Var [a, (z))

(49)

If a €]0,8/5], then
(50)

Then, (7) follows from (43), (47) and (41) and (8) follows
from (44), (48) and (41).
Now, it follows from (42) that

Var By (7))
— ; ar|a, (x r2 x ar x
- @ {Var[a, (2)] + r* (z) Var [f, (z)]
—2r (x) Cov (an (x) , fn (z))} .

In view of (A43), and with the choice of the stepsize (v,) =
(n‘l) and using Lemma A.1, classical computations gives

§ b
e @ F @) R(K)

+o (5—:) .

(51)

Cov (an (x), fr (2))
(52)
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Then, the combination of (41), (51), (45), (49) and (52),
gives (9), and the combination of (41), (51), (46), (50)
and (52), gives (10).

A.2 Proof of Proposition 2.2

Following similar steps as the proof of the Proposition 2
of Mokkadem et al. [8], we proof the Proposition 2.2.

A.3 Proof of Theorem 2.1
Let us at first assume that, if a > 3/5, then

(53) /B2 (1 (@)~ B ra (1)) B (0.V,,).

In the case when a > 3/5, Part 1 of Theorem 2.1 follows
from the combination of (8) and (53). In the case when a =
B/5, Parts 1 and 2 of Theorem 2.1 follow from the combina-
tion of (7) and (53). In the case a < 8/5, (10) implies that

hy? (rn () — E (ry (2))) 0,

and the application of (7) gives Part 2 of Theorem 2.1.
We now prove (53). In view of (42), we have

(B (2)]

Qn Y (Ty (z) = E[Ty (),

=1

B, (33) -

E
1
(54) i

o



with
Ty, ()
= Q' (BrZk (x) = 7 () (G, Wi () -

In the case when (7,) = (n™!), we have ¢, = (nQn) " et
Q,;lyk = Qy, then

Qi B (x) —

(55)

Ty (1’) = ! Wi (x) .

r(z) (nQn)~
Set
(56) Yi(z) =

Ty () = E(Ti (x)) -

Moreover, we have

i Z Var (Y (z))
k=1
= S Qe Var (Z (x)
k=1
Z Var Wk

ZQk BrCov (Zk (), Wi (2)) .

k=

) (nQn)
=2r (x) (nQn)~

Moreover, in view of (A3), classical computations give

Var (Zy (z)) = hk[ [V?|X = 1]
<f (@) R(K)+o(1)],
Var (Wi (z)) = hi [F () R(K) +0(1)],
Cov (Zi (x), Wi (2)) = hik[ (#) f () R(K) +0(1)]

The application of Lemma A.1 ensures that

2 = ZQk 5’“ E [Y?X = 2] f(x) R(K) +o0(1)]
ok Y Z 1 (@) RUK) +o0 (1)
RS Q’;;ﬁ‘“ [ (2) £ (2) R () + 0(1)]
_ f;(%)fz [V(w+ (1)}

On the other hand, we have, for all p > 0,

E(I1@P*] = o<hi>
k

and, since lim, o (nB,) > (6 —a) /2, there exists p >
0 such that lim, e (RBn) > %(B—a). Applying
Lemma A.1, we get

7]

S E [ @] = (ZQJ PBYVE [|Ty (« >|2+p}>
k=1
2 P 2+p

51+p
— oLt
(Qi*ph,ﬁﬂ’) ’
and we thus obtain

ZE [ (@ 0 ([Bah)"*) =

The convergence in (53) then follows from the application
of Lyapounov’s Theorem.

A.4 Proof of Proposition 2.3

o(1).

2+p}

The following Lemma follows from the Proposition 1
of Mokkadem et al. [8].

Lemma A.4 (Bias and variance of f,). Let Assump-
tions (A1) — (A3) and suppose that the stepsize (vyn) =

([1 —aj nil).

1. If a €]0,1/5], then

1—a
2(1—3q)
+o (hi)

Elfo@)] = f(x) = £ (@) B (K)
(57)
If a €]1/5,1], then

E[fu (@) = f (&) =0 (V')

2. If a € [1/5,1], then

(58)

1—a

(59) Var[fn (x)] =

nhy,
If a €]0,1/5], then

Var [f, (z)] = o (k).

Then, (24) follows from (57), (47) and (41
lows from (58), (48) and (41).
Moreover, in view of (A3), and using the choice of the step-
size (y,) = ([1 —aJn™') and using Lemma A.1, classical
computations gives

(60)

) and (25) fol-

(-0t

Bn
+o0 (hn .
Then, the combination of (41), (51), (45),
)

gives (26), and the combination of (41
and (61), gives (27).

Cov (an (z), fn (x)) = (z) f () R(K)
(61)

(49) and (61),
(51), (60), (50)
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A.5 Proof of Proposition 2.4

Following similar steps as the proof of the Proposition 2
of Mokkadem et al. [8], we proof the Propostion 2.4.

A.6 Proof of Theorem 2.2

Following similar steps as the proof of the Theo-
rem 2.1 and using the fact that in the case when (v,) =
([1 - a‘] nil)a we have Q;;lCangl’Yk = (1 - a‘) hk/(nthn)a
and then it follows from (55), that

1—a)h
Tow) = @z () —r () LD o),
we prove Theorem 2.2.
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