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Comparing the second-order properties of spatial

point processes

A7zAM SAADATIOUY AND ALI REZA TAHERIYOUN*

Comparing the structural interactions of points in two
independent stationary point patterns is as important as
comparing the first-order properties or briefly their corre-
sponding intensities. In the present study, three methods
based on asymptotic distribution of the periodograms are
proposed to test the equality of spectral densities of two in-
dependent stationary point processes. In the first method,
the sample quantiles of the periodograms ratios are simply
used and compared with the exact quantiles under the as-
sumption of the equality of spectral densities. In the second
method, a conditional likelihood ratio test is constructed,
and the same idea of the first method is used to propose a
Bayesian test for the ratio of the spectral density functions.
The empirical powers and the empirical type I errors of the
tests are also compared in a simulation study. The results
emphasize the considerable powers of the tests and the em-
pirical probability of type I errors is very close to the nomi-
nal level. Finally, the proposed methods are investigated by
using two practical datasets: 1) comparing the locations of
capillaries in healthy and cancerous prostate tissue sections
and 2) comparing the locations of Alnus trees in two disjoint
regions of Iran; both the regions in each dataset are almost
of the same identical intensities. The same intensities leads
to discovering of the treatment effect (cancer in the first
data and location in the second data) in the second-order
properties of point patterns.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60G55,
62M15; secondary 62F15.

KEYWORDS AND PHRASES: Complete covariance density
function, Periodogram, Second-order intensity function,
Spatial point process, Spectral density function.

1. INTRODUCTION

1.1 General aspects

Simply speaking, a point pattern as a realization of a
point process is a set of points in a window where practi-
cally the number of points and their positions are random.
There are many observations in the form of point patterns in
nature; for instance, the positions of trees in a forest, loca-
tions of animal nests, centers of earthquakes, and galaxies in
the universe. The analysis of the structure of a point process
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is strongly related to the variation of points and interaction
between two arbitrary points. Interaction as a second order
property is usually measured by: 1) the covariance matrix of
the positions coordinates of two arbitrary points and 2) the
covariance of the number of points in two arbitrary regions.
These second-order properties are usually studied by look-
ing at the semi-variogram in the time domain or the spectral
density function in the frequency domain [10].

One may be interested in the geometric structures of
point patterns and the distribution of the number or lo-
cations of the points. These structures depend on both the
aggregation and interaction between points. The aggrega-
tion and interaction are characterized by intensity and co-
variance density functions, respectively. Spectral density is
the Fourier transform of the complete covariance density
function and is estimated asymptotically unbiased with the
discrete Fourier transform or periodogram. For a stationary
Poisson point process, the spectral density is only a function
of the intensity, whereas for the other stationary processes,
it is a function of both intensity and the Fourier transform
of the covariance density function. Therefore, it is expected
that the differences in the spectral density functions of two
stationary point processes are attributed to the differences
in the intensities and/or complete covariance densities. As
a result, if the intensity functions are equal, the source of
differences in the spectral densities is the differences among
the covariance densities. This is the main idea of this study
in testing the equality of the second-order properties of two
point processes. Consequently, to distinguish two stationary
point processes from each other, first the equality of the in-
tensities is examined [see 4]. If there is no evidence to reject
the equality of the intensities, then the second-order prop-
erties are examined by testing the equality of the covariance
density functions.

Generally, the joint distribution of the periodograms of
two point patterns, X and Y, is first reviewed on the Fourier
frequencies, respectively denoted by Ix(w) and Iy (w), as
intrinsic estimators of the spectral densities at the same fre-
quencies, fx (w) and fy (w). The asymptotic behavior of the
periodograms requires more attention to the geometry of
the window. In fact, the effect of the geometry of window
has been eliminated before the presentation of the results
as described by [2]. Under some regularity conditions, the
periodograms are approximately independent and Ix (-) and
Iy (+) are distributed according to a scale family of density
functions where the scale parameters are respectively fx ()
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and fy (+). In the first method, this concept is used to deter-
mine the significance of the differences in I'x () and Iy (+).

Based on the asymptotic distribution of periodograms,
a parametric problem is formulated with observations Ix(-)
and Iy (-) and parameters fx () and fy (-) only at the Fourier
frequencies. This allows the consideration of likelihood ratio
test conditional to the number of points in each point pat-
tern. When there is a likelihood function, it is sufficient to
introduce an appropriate prior distribution for the param-
eters to achieve a posteriori properties of the parameters.
This concept is considered in our third method.

The spectral analysis of point patterns was first intro-
duced by Bartlett [3]. The technique has been studied and
extended to two-dimensional point patterns by [23, 24]. It
has also been extended to the spatial and bivariate point
processes in [19, 20]. In time series problems, Diggle [8, 9]
and Coates and Diggle [5] initiated the modeling of the spec-
tral ratios and accordingly introduced a nonparametric test
for the equality of two spectral density functions. Fan and
Zhang [11] proposed a regression model for the logarithm of
periodograms. They employed a generalized likelihood ratio
test to investigate whether a spectral density of a station-
ary time series belonged to a particular parametric family
or not. Similarly, a test based on a Cramer-von-Mises func-
tional type test for a regression model of the logarithm of
periodograms was proposed in [6]. To link all the spectral
densities simultaneously, a semi-parametric log-linear model
for the ratio of spectral density functions was introduced
by [12]. They also conducted a test on spectral densities
equality for various independent and stationary time series.
Lund et al. [15] introduced various tests based on the ra-
tios of periodograms and a Bartlett type test for comparing
the covariance function of two independent stationary time
series. In the present study, three different methods are pro-
posed for testing the equality of the spectral densities of two
independent and stationary point processes.

The organization of the present paper is in the follow-
ing pattern: In continuation of this section, two practical
datasets of interest are introduced, that is, the prostate tis-
sues dataset and Alnus trees, motivating the use of proposed
tests. Then, the theory of the spectral analysis of spatial
point process is briefly reviewed in Section 2. A schematic
and a likelihood ratio test are presented in Section 3. This
section also contains a Bayesian testing procedure by consid-
ering a proper prior distribution for the spectrum of point
process. Moreover, the tests are also examined and com-
pared using a simulation study in Section 4. Finally, these
methods on both datasets are examined.

1.2 Data and motivations

Two motivating datasets are employed which have led
to the main question of this paper in our mind. The first
is the location of capillary profiles on a section of prostate
tissue. Figure 1 shows the midpoints of the capillaries in sec-
tions of healthy and cancerous prostate tissues. The original
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(a) healthy prostate tissue (b) cancerous prostate tissue

Figure 1. The locations of 196 capillaries on a section of a
healthy prostate (a) and the locations of 185 capillaries at the
same section from a cancerous prostate (b).

data were observed on a rectangular visual field consisting
of 1240 x 1000 pixels, corresponding to 1860 x 1500um at
the level of the specimen. The coordinates of the capillaries
were captured from the rescaled point patterns reported by
[13]. From the viewpoint of spatial point process, the data
has been studied by [16, 17] and [13], who confirmed that
the model of healthy tissue is different from the cancerous
one.

The second dataset is devoted to a new data concern-
ing Alnus trees in a forest. After finding out the tragedy of
huge illegal logging of the Alnus trees in the Kheyroud forest
at the North of Iran, the government decided to artificially
reconstruct the forest by planting these trees. The recon-
struction has a great importance because of the main role
of Alnus trees in the ecosystem of this region, and there-
fore, it is very important to keep the natural structure of
the positions of the trees in the new reconstruction. There
are many factors involved in the structure of the positions
of trees in nature, e.g., light competition, the distribution
of pests, and the slope of the ground. The first factor in-
creases the idea of homogeneity of the positions of trees;
while the other factors induce the local effects, and hence,
one may be interested in studying the local effect by com-
paring two totally disjoint regions which are the habitats
of this tree. Figure 2 shows the locations of 1586 and 1592
Alnus trees in two locally different regions in rectangular
windows whose vertices are located at the geographic co-
ordinates (555930,4046300) and (556215, 4046585) for the
first window and (556215,4046300) and (556500,4046585)
for the second window. The regions have the same latitude
but different longitude. The sampling windows are rescaled
on two disjoint square windows with one vertex on the origin
and the other vertex is located on (285,285). This dataset
refer to Alnus data, while the point patterns of the first and
second regions are respectively denoted by x and y. Gener-
ally, in the whole of this paper, the capital words, X and
Y represent two independent point processes and the lower
cases ¢ and y represent the corresponding observed point
patterns. According to the assumption of stationarity, the
unbiased estimation of the intensities leads to almost similar



Figure 2. The location of 1586 (point pattern x) and 1592
(point pattern y) Alnus trees in [0, 285] x [0, 285] windows.

values, that is, 1586/(285 x 285) ~ 1592/(285 x 285). Under
the consistency of the other effects and due to the same in-
tensities, the treatment effect of longitude could be traced
by comparing the interaction of points within two regions.
Further discussion on the data is given in Section 4.2.

2. PRELIMINARIES: NOTATIONS AND
ASSUMPTIONS

Let N;; be the set of all point patterns and Nj; be a
o-field generated by the subsets of N;¢. Formally, a point
process is a measurable function X : (Q, F) — (N5, Niy),
where (2 is the sample space and F is the interested o-field
of Q. It is often possible to discriminate several spatial point
processes by comparing their first- and second-order proper-
ties. The first-order property, namely intensity function, is a
precise measure of uniformity. It is defined as the expected
number of points per unit volume [7, p. 43] as follows:

E[Nx(da)]

eR?
|da‘ b a b

Ax(a) =

|da|—0

where d € N, da is the small region around the point a, |da|
is the volume of this region, and Nx(da) is the the number
of points of X in this small region. Intensity function is often
referred to as the power of point process to create points in
a special region. Therefore, a point process is homogeneous
or stationary if the intensity function is a constant function.
This definition itself explains the way of computing sample
intensities in Alnus data.

The second-order characteristic measures the covariance
between the number of points of two different regions in an
informal manner. We refer to the second-order characteristic
by means of second-order intensity function. This function
is a measure of the dependency structure of the events [7,
p. 43] as follows:

E[Nx (da)Nx (db)]
|dal|db] ’

)\X)((a, b) = 1m
|dal,|db|—0

for any a,b € R? such that a # b. Another important
second-order characteristic of a spatial point process is the

pair correlation function which is produced from the second-
order intensity function by [18, p. 30]

Bartlett [3] proposed the unit-free complete covariance den-
sity function, kx x, that is

Hxx(a,b) = )\X(a)5(a1—bl)é(ag—bg)...é(ad—bd)
+ yxx(ab),

where d(a) is the Dirac delta function and yxx is the co-
variance density function, which in turn can be defined by

L
x E[(Nx(da) — Ax(da)) (Nx(db) — Ax(db))]
= Axx(a,b) — Ax(a)Ax(b)

= Ax(a)Ax(b)(9xx(a,b) —1).

x(a,b) =  (1daljdb))

Thus, for the stationary point process X with Ax(a) = ),
we have Ax x (a,b) = Axx(a—Db). This equation means that
the second-order intensity depends only on the lag vector,
h = a — b. Moreover, the process is called isotropic if such
dependency is an exclusive function of the scalar length,
||h||, regardless of the orientation of h. Consequently, the
complete covariance density function of a stationary point
process could be reduced to the following equation:

kxx(h) = Ad(h1)é(h2)...0(ha) +vxx(h)
A5(h1)8(hs) ... 8(ha) + A*(gx x (h) — 1).

This means that the different interactions may be observed
in two point processes with the same intensities. This is
a good reason to focus on the comparison of the second-
order characteristics instead of the simple intensities of two
point patterns. The sample pair correlation functions of
x and y in Alnus data are shown in Figure 3. There are
some differences in the estimated pair correlation functions
of two disjoint windows of Alnus trees. Particularly, for
r = 15,18,28,33,53,60, and 68, the differences are more
visible. This makes us somehow worry about the effect of
longitude on the interactions of the Alnus trees; because
trees competitions and consequently the planting procedure
depend on the longitude and it cannot be simulated using a
simple stationary Poisson model. We hope to find a testing
approach to enhance the results of plots and move from the
intuitive inference to an inference in a mathematical frame-
work.

Although the interpretations of results in the time do-
main are more objective, just like the time series analysis
in both parametric and nonparametric problems, the con-
vergence of algorithms are faster in the frequency domain.
Moreover, the spectral representation is more understand-
able in literature of physics and engineering. The character-
ization of the spectral density function of the point process
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Figure 3. Estimated pair correlation function, g(r), of Alnus
data and the theoretical value of g(r) for a Poisson process.

X, is denoted by fx and is obtained from the Fourier trans-
form of the complete covariance density function. Under the
stationarity assumption, we have

fx(w) = / kxx(h)e @ m dn
]Rd

= [ P08 . 5(h) + X (g () = 1)
e~ Hwh) qp
— x4 / (gxx (h) — 1) e=i @B qp.
Rd

For stationary Poisson point processes, since gxx = 1 [18,
p. 30], thus fx(w) = Ax.

Suppose that a point pattern contains mx points in a
rectangular window, W, with sides of length [; along the
i’th coordinate of the Cartesian system for i =1,...,d, and
let z;, j = 1,...,nx, be the positions of the points. Note also
that nx is an observation from the random variable Nx (W).
Spectral density function is estimated using the discrete
Fourier transform of the sample complete covariance den-
sity function. The estimated function is called periodogram
and evaluated at the Fourier frequencies wp = 27p, where
p=(p1,...,p4), pj € {—nx,...,nx}rand j=1,...,d. The
values of periodogram show the relative proportion of every
frequency w to the total spatial variance of the process [14].
Formally, the periodogram is defined by

Ix(w) = Fx(w)Fx(w)
= ZX exp{inLflzj}

Jj=1

nx
<Z exp{inlek}>
k=1
nx nx

= Z Z expliw’ L™ (z; — z1,)}
j=1k=1

nx mnx

= Z Z exp{iw’ L™ hj},

j=1k=1
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where Fx(w) is the complex conjugate of Fy(w), and L is
a scaling matrix constructed as L = diag(ly,...,l;). Note
that L_lzj precisely scales the window W to the unite cube.

The periodogram is an asymptotic unbiased but inconsis-
tent estimate of the spectral density function at the Fourier
frequencies. The spectral density, fx(w), tends to zero as
lw|| = oo. Thus, when nx < 100, it is recommended to
compute the periodogram only for p € {0,+1,...,+16}¢
[20]. The symmetric behavior of periodogram, i.e. Ix (wp) =
Ix(w_p), halves the cost of computation. To compare the
spectral densities of two point processes in our simula-
tion study, the set of Fourier frequencies is considered as
pe{+l,...,£8}¢ =P.

Pagano [22] confirmed that the periodogram of a realiza-
tion of a 2-dimensional stationary random field is asymp-
totically distributed as the exponential distribution and the
results were extended to higher dimensions in [26]. Using
the same method and given Nx (W) = ny, similar results
were obtained for d-dimensional point processes:

2IX (wp)
fx (wp)

(1) ~ X%z)a Wp 7é 0,

and

2{Ix(0) = Ax}  »
£ (0) Xay

The periodograms are asymptotically independent under
mild restrictions on the geometry of the window, W. Pre-
cisely, Bandyopadhyay and Lahiri [2] showed that the pe-
riodograms are independent when W is a cube in R?. The
independence does not necessarily hold for the general shape
of W, e.g. spheres and hyper-rectangles and the general sam-
pling designs.

3. TESTING APPROACHES

In this section, we introduce three testing procedures
based on the asymptotic distribution of periodograms to
compare the spectral densities of two independent and sta-
tionary point processes in R%. Suppose that X and Y are
independent stationary point processes and let Ix,fx, Iy,
and fy be their corresponding periodograms and spectral
density functions, respectively. To compare the second-order
properties of X and Y, we need to test

(2)

for any w € R? and thus the problem is nonparametric.

A rejection area for (2) is constructed based on the peri-
odograms only at the Fourier frequencies. Using (1) and the
asymptotic independence of I'y and Iy, and conditioning on
Nx (W) =nx, and Ny (W) = ny, we obtain that

Ix (wp)/fx (wp)
Iy (wp)/fy (wp)

Hy : fx(w) = fy(w), versus Hj : fx(w) # fy (w),

(Nx(W) =nx,Ny(W) =ny) ~ F(2,2).



Thus, the asymptotic conditional distribution of T(p) =
Ix(wp)/Iy(wp) under H; is

3) -

(mip +1)*

where nop = 1 and nip = fx(wp)/fy (wp). Note that un-
der the null hypothesis, T(p) is conditionally distributed
as F(2,2). We are now ready to introduce the rejection
area.

fT(p)‘NXJVY (ﬂnzany) = t>0,

3.1 Schematic approach

Using (3), one may test the hypotheses (2) by looking at
the @ — @ plot of T'(p). Therefore, the level of researcher’s
consent plays an important role in decision making and the
rejection criterion changes from person to person. Consider-
ing the distribution of the ratios of periodograms under Hy,
one may build a goodness-of-fit test based on the sample
quantiles. Under the null, the number of T'(p)’s exceeding a
given threshold u, Ti,um say, is distributed as a binomial ran-
dom variable with |P|¢ trials and the approximately success
probability

p=P(T(p)>u)=

14w’

where |A|c denotes the cardinality of A. Thus, using the
normal approximation, one may reject Hy at the significance
level, a;, when

(Toum = Plop)/v/Plep( = p)| > za2.

The expected value of a random variable with density
function (3) does not exist and consequently it is not pos-
sible to employ the central limit theorem on T'(p),p € P.
We then follow the same method as [5] and define R(p) =
In(Ix(wp)) — In(ly (wp)). Under the null hypothesis and
given Nx (W) = nx and Ny (W) = ny, the statistic R(p) is
conditionally distributed as a logistic random variable with
distribution function

Fr(r) = !

1+e T’

—o00 < 1r < oQ.

Thus, one can consider the sample average of squared devi-
ations as

_ ,
= [Pl ZR ()

and reject Hy for large enough values of R. It could be ver-
ified that E[R?(p)] = m2/3 and Var(R?(p)) = 167*/45. So,
using the normal approximation, the null is rejected at level
a when

N
\/16774/ 45 x |P|¢)

ZQ/Q.

The other goodness-of-fit tests such as Kolmogorov-Smirnov
can be applied to this problem as well.

3.2 Conditional likelihood ratio test (CLRT)

Let us denote the vector of periodograms I'y (wp) and the
vector of spectral densities fx(wp), p € P, by Ix and fy,
respectively, and use the same notations to define Iy and
fy. The asymptotic independence and the asymptotic dis-
tribution of periodograms are used to compute the density
function of the random vector (Ix,Iy) and hence the con-
ditional likelihood function in terms of the periodograms.
Thus, the asymptotic conditional likelihood function given
Nx (W) =nx and Ny (W) = ny for large number of points
is

Ix(wp) Iy (wp)
exp (_ fx(wp) f"(wp))
L(fx, fy[Ix,Iy) = [ | fx (wp)ty (wp)

P

The third rejection area for (2) is obtained by comparing
the conditional likelihoods under the null and the alternative
hypotheses. Let Ly, vy ny (fx, fy[Ix,Iy), i = 1,2, be the
conditional likelihoods under H; given the fixed number of
observations Nx (W) = nx and Ny (W) = ny. Let also 0,
denote the parameter space under H;, ¢ = 1,2. Thus, the
small value of the conditional likelihood ratio

maxe, Lu,|ny Ny (Fx, fy|Ix, Iy)

maxeg, LH1\NX,NY (fx,fy‘Ix,Iy)’

encourages the rejection of Hy. In other words, we reject
the null when A < ¢, where ¢, is determined in such a way
that the level of test does not exceed . The conditional ML
estimates under Hy are

Ey(wp) = Ix(wp) and fy(wp) = Iy (wp),

and under the null hypothesis the conditional ML estimates
of fx(wp) = fy (wp) are (Ix(wp) + Iy (wp))/2, for p € P.
Thus, the rejection area is changed to

A= H 4IX wp IY(WP) < Cars
(Tx(wp) + Iy (wp))?

or equivalently
—2h (

for a suitable choice of ¢/,. Under the null hypothesis the ran-
dom variables In (4Ix(wp)Iy (wp)/(Ix(wp) + Iy (wp))?),
p € P, are independently and identically distributed as
Z =1In (4T1T2 /(T + T2)2) where T and T5 are independent
exponentially distributed random variables with unit mean.
It was computed in [15] that E[Z] = In(4) —2 =~ —0.614 and
var(Z) = 4—n%/3+ (4—8y+27?) ~ 0.759, where v ~ 0.577
is the Euler’s constant. For large values of |P|¢ the central
limit theorem features the rejection area as

In(A) — |P[c E[Z]
|P|cvar(Z)

Alx ( wpﬂY( ») ,
(Tx(wp) + Iy (@ >>2> = Co

21—
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According to the cost of sampling, in some problems the
sample sizes Nx and Ny are supposed to be fixed numbers,
called again nx and ny. Under the assumption of constant
sample size, the CLRT is also a likelihood ratio test and all
the features of likelihood ratio test including the x? approx-
imation are accessible.

3.3 Bayesian approach

This approach is discussed only for the case of constant
sample size. Following [25, p. 231], we compute the Bayes
factor, B, as the ratio of the likelihood function under
the null hypothesis and the marginal density of the peri-
odograms under the alternative, that is

J(Ix,Iy|fx = fy)
my(Ix,Iy)
f(Ix,Iy|fx = fy)
ff(IX,Iy|fX,fy)7T1(fX,fy)dfxdfy’

where the numerator denotes the likelihood under the null
hypothesis and f(Ix,Iy|fx,fy) and 7 (fx, fy) represent re-
spectively the likelihood and the prior densities under H;
[25, p. 231]. Using the vector of ratios T = (T(p),p € P)
instead of the direct use of periodograms, the parameter
spaces and hence the priors under the null and the alter-
native hypotheses are simplified. Note that the parameter
space under the null hypothesis is

T
BOl

®) =

Oy = {(fx,fy) € R‘flc X R‘E‘C

fX:fY}a

whereas the distribution of T under Hy does not depend
on parameters. Particularly, regarding (3), the asymptotic
joint density function of T is

nip
Jrym; (t) = —_—, for t = (tp,p € P).
| };[P (nip+tp)2 P

We thus compute the Bayes factor for the point null hy-
pothesis Hy : n, = fx(p) @ fy(p) = 1 versus H; : m, # 1
using T, where @ is simple component-wise division and 1
is a |P|c x 1 vector of ones. The Bayes factor for the new
testing problem is

©6) B _ fr(tln=1)  fr(tln=1)
T Tmr([H) [ fr[H)m (n)dn’
where n = (np, p € P), mr(t|H1) is the marginal density of

T and 7 is the prior density of n under H;. For the sake of
conciseness, we refer to [25, p. 228] for the rejection criterion
using the Bayes factor.

We need to introduce a priori distribution under the al-
ternative. Let the elements of the parameter vectors fx and
fy be independent and In (fx(wp)) and In (fy (wp)) are in-
dependently distributed as N(ux,0%) and N(uy, 0% ), re-
spectively, i.e., the density function of fx is

fix(8) = (Ins — uX)Q}, s> 0,

1 1
. exp{——o
s\/2mo% { 20%
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for ux € R and ox > 0. Hence, the prior distribution of
n(p) under the alternative hypothesis is Log-normal with
parameters px — py and 0% + 0%, and the marginal density
of T on H; is

(¢ ) = /mc H

1
. — _ — 21 4
exp{ 2(U§(+0%)(Hmp (ux — py))* Ydmip,

Mip 1
(Mp + tp)2 mipr/27(0% + 02

and consequently the Bayes factor becomes

1
BY = —
0BG
1 1
= 1+t 2/
}EP( 2 r/flo };[P (mp +tp)* \/27(0% + 02)
X exp{— >(1H Mp — (tix — py))* }dnip.

2(0% + 0%

A numerical study is designed for comparison of the pre-
sented approaches in the following section.

4. NUMERICAL RESULTS
4.1 Simulation study

In order to evaluate the performance of the mentioned
tests in comparing the spectral density functions of two sta-
tionary point processes, three distinct types of point pro-
cesses were simulated on the square region W = [0,1] x [0, [].
As mentioned earlier, the periodograms at Fourier frequen-
cies are approximately distributed as independent x? ran-
dom variables as nx — oo. Since the results of this study
strongly depend on this convergence, the windows and in-
tensities of point processes are chosen in such a way that
the number of points achieves an acceptable performance
for the convergence. The considered point processes in this
simulation study are as follows:

e P()): Stationary Poisson process with intensity A,

e MatC(k,r,u): Matérn cluster process with the parent
process of P(k), radius parameter of the clusters of r
and the mean number of points per cluster of p,

e I Matq(k,r): Inhibition process of Matern’s first type
with homogeneous Poisson process of intensity x for
proposal points and the inhibition distance parameter
r, i.e., no pair could have an inter-point distance less
than r.

Simulated realizations from the employed point patterns are
shown in Figure 4. More detailed descriptions of these pro-
cesses can be found in [1]. In each setting, 1,000 simulation
replicates are used. Table 1 shows the ratios of rejections
at level a = 0.05. The ratio of rejections for two different
processes represents the empirical power and the ratios of
rejections for the same processes represents the empirical
size of the tests. As previously explained, the spectral den-



Figure 4. Realizations of spatial point processes used in the
simulation on a 10 x 10 region. (a) Poisson process of
intensity A = 10, (b) Matérn cluster process with k = 10,
r=0.1 and pn = 1 and (c) Matérn inhibition process of type
I with k =10, r = 0.01.

sity function of stationary Poisson processes is equal to the
constant intensity. However, for non Poisson stationary pro-
cesses, the spectral density is a function of constant inten-
sity. Therefore, since the relative difference of the intensities
of processes P(10) and P(20) are the same as P(100) and
P(200), hence the same powers are expected for different
windows. This claim is confirmed by the simulation study.
Moreover, the power of each test increases by growth of the
relative difference of intensities.

On the other hand, the window plays a critical role in
testing a Poisson process versus a clustered or inhibition
processes. For instance, as shown in Table 1, the empirical
power of testing P(-) versus MatC(-,-,-) or IMaty(-,-), in
almost all settings, is increasing in the size of window. This is
due to the structure of spectral density of the process under
H; which is not equal to the constant intensity. It is worth
mentioning that the main factor affecting the power is the
number of points indeed. The result shows that detecting
a stationary Poisson process from another non Poisson sta-
tionary process needs more samples when compared with the
problem of recognition of two stationary Poisson processes.
Maybe the rate of convergence in the joint asymptotic dis-
tribution of periodograms can explain this in the behavior
of tests.

Consider the testing problem of (2) when X is a Poisson
process of intensity 100 and Y is MatC(100,0.1,4) process.
The power of all three testing methods for this setting of

parameters produce greater power in comparison with the
case when Y is a MatC(100,0.1,1) process. Visually, for
fixed parameters x and r, the clustered behavior of Matern
cluster process is increasing in p and all tests recognize this
behavior. The visual discrimination of IMat;(10,0.2) from
IMat;(10,0.02) is not as simple as the previous case. Both
point processes have the same intensities and therefore, the
differences originate from the differences in the interaction
between the points of each process or simply from different
spectral densities. However, the tests show an acceptable
power in the recognition of these two processes.

Testing procedures are repeated with two identical pro-
cesses X and Y to testify the empirical level which we
would like to keep at level 0.05. This procedure employs
the same processes X and Y from P(10), MatC(10,0.05,4),
and I Mat(10,0.05). Tests based on Tyum, R, and CLRT are
conservative and they reject the null hypothesis at rates rea-
sonably close to the nominal level, 0.05. The results of Table
1 show that the T, test has the greatest power and rela-
tively the smallest probability of type I error. Informally, for
1,000 simulation replicates from P(10) and assuming values
px = py =5 and 0% = 0% = 1 for the hyper parameters,
the test based on the Bayes factor rejects the null hypothesis
at level less than 0.01.

4.2 Real data

Mattfeldt et al. [16, 17] proposed the use of Strauss hard-
core model for the locations of capillaries in prostate tis-
sues. The model consists of four parameters, i.e., the inten-
sity parameter, A, the minimum distance parameter, g, the
minimum distance of uncorrelated points, R, and the in-
teraction strength, . We refer to Baddeley and Turner [1]
for Strauss hard-core model. Both results of the studies of
[16, 17] confirmed that the difference between healthy and
cancerous tissues is the difference in v parameter of point
processes. Hahn [13] verified the difference in the spatial
model of healthy and cancerous tissues by testing the corre-
sponding empirical K functions. According to the number
of points, both point patterns are assumed to have the same
intensities. Thus, the methods described in Section 3 can be
employed to test the differences in the complete covariance
functions of the capillaries of healthy and cancerous tissues.
The p-values of tests based on Thum, R, and CLR statis-
tics are 0.36,0.25 and 0.18, respectively, of which all do not
reject the hypothesis of the same complete covariance func-
tions. Summing up this result with the result reported by
[13], one may claim that cancer does not affect the first and
second order properties of the locations of capillaries on the
prostate tissue. Thus, the reported difference by [13] is re-
flected on higher moments.

As mentioned earlier, the second dataset is devoted to two
point patterns of Alnus trees, as shown in Figure 2. A sum-
mary statistic for X and Y is initiated, called the nearest-
neighbor function G [see 18, p. 35]. The sample G functions
of z and y along the theoretic G function of the station-
ary Poisson process are as shown in Figure 5(a) and 5(b).
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Table 1. The ratio of rejections for different point processes and different tests

Testing based on

l Trum R CLRT Bayesian
P(10) vs P(20) 1 0.825 0.232 0.331 0.195
5 0.954 0.160 0.279 0.194
V40 0.961 0.164 0.259 0.285
V60 0.966 0.147 0.250 0.291
V80 0.970 0.168 0.274 0.294
v/100 0.956 0.195 0.292 0.291
P(100) vs P(200) 1 0.948 0.168 0.278 0.112
2 0.954 0.176 0.277 0.197
3 0.954 0.151 0.262 0.201
5 0.964 0.169 0.269 0.282
V40 0.966 0.162 0.256 0.285
V60 0.971 0.162 0.265 0.279
P(10) vs P(35) 5 1.000 0.767 0.899 0.784
10 1.000 0.753 0.904 0.784
P(35) vs P(30) 5 0.167 0.044 0.045 0.100
10 0.155 0.043 0.057 0.140
P(35) vs P(50) 5 0.524 0.067 0.101 0.190
10 0.506 0.065 0.089 0.210
P(100) vs MatC(100,0.1,1) 0.5 0.364 0.056 0.071 0.190
1 0.181 0.056 0.070 0.150
2 0.342 0.051 0.077 0.120
3 0.692 0.075 0.136 0.180
5 0.896 0.114 0.190 0.580
P(100) vs MatC(100,0.1, 4) 0.5 0.999 0.829 0.915 0.843
1 1.000 0.971 0.993 0.986
2 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000
P(100) vs MatC(100,0.05,4) 0.5 0.998 0.905 0.955 0.919
1 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000
P(100) vs IMat;(100,0.05) 0.5 0.905 0.281 0.385 0.257
1 0.997 0.444 0.628 0.378
2 1.000 0.507 0.710 0.493
3 0.998 0.498 0.671 0.476
5 1.000 0.509 0.699 0.497
IMat1(10,0.2) vs IMat;(10,0.02) 10 1.000 0.911 0.975 0.948
IMat;(10,0.1) vs IMat;(10,0.01) 10 0.834 0.103 0.155 0.935
MatC(10,0.1,1) vs MatC(10,0.1,2) 10 1.000 0.575 0.754 0.537
MatC(10,0.1,1) vs MatC(10,0.1,4) 10 1.000 1.000 1.000 1.000
P(10) vs P(10) 10 0.056 0.042 0.051 0.007
P(35) vs P(35) 10 0.050 0.051 0.057 0.007
IMat;(10,0.05) vs IMat:(10,0.05) 10 0.060 0.041 0.044 0.007
MatC(10,0.05,4) vs MatC(10,0.05,4) 10 0.066 0.048 0.053 0.007

Figures 5(c)-5(h) also show the same demonstrations for
sample L, K, and F functions and we respectively refer to
[18, p. 35, 33 and 35] for the computation of these functions.
Although it is typical to employ only one of these statistics,
Figure 5 shows the possible disagreements of the decisions
based on the global envelopes. Simply speaking, the gray
areas of all figures represent the acceptance regions of the
stationary Poisson model for data based on the correspond-
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ing statistic. The hypothesis of stationary Poisson model is
rejected based on a statistic at level a« = 0.05, when the sam-
ple statistic does not remain between the given boundaries
at least for a point r* € Ry [see 21, for details]. Comparing
the sample G and L functions and the prepared boundaries
emphasizes the lack of fitness of stationary Poisson process
to both point patterns. Based on sample K function and
the corresponding global envelope, the hypothesis of sta-
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Figure 5. The estimated G, L, K and F' functions for Alnus
data. The figures also contain the theoretic functions for the
stationary Poisson point process and upper and lower
boundaries are given for each graph based on the global
enveloping of 19 simulations from stationary Poisson process.

tionary Poisson model is rejected for the point pattern x.
However, based on F' function, one may consider the station-
ary Poisson model and thus comparing the spectral densities
is equivalent to comparing the intensities. These contradic-
tory decisions based on the summary statistics propose that
it is not advisable to trust only in a summary statistic and
leave the others. Therefore, comparing the stationary inten-
sities to explore the difference between the spectral density
functions is misleading for this data. So, we need a test-
ing procedure not depending on the further assumption of
stationary Poisson model.

On the other hand, the estimated intensities of both point
patterns are very close together and thus the effect of lon-
gitude is not traceable within the first order properties.
The second-order properties are looked into by testifying
the equality of the interactions between points in = and y.
The rejection of null hypothesis represents the significance
of the effect of longitude on the interactions of the positions
of trees. The problem of reconstruction of the forest becomes
complicated by the rejection of Hy.

The nonparametric nature of the presented methods
helps to solve the problem regardless of any further assump-
tion. Therefore, there is need to test whether the differences
in sample pair correlation functions (Figure 3) are signifi-
cant enough to reject the hypothesis of the same second-
order properties or not. These small differences in sample
functions are addressed as the treatment effect of longi-
tude in sampling windows. The first order comparison is
not helpful since the estimated intensities are very close.
The other choice is to compare the second order properties.
The p-values corresponding to Tyum, R, and CLRT are, re-
spectively 0.584, 0.167, and 0.054, which cannot reject the
hypothesis of Hy : fx = fy and thus we claim that the
interaction of trees is not affected by the local factor of
longitude. As shown in Figure 3, the sample pair correla-
tion functions show the same behavior; they are different in
some small intervals, but it is difficult to visually compare
them.
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