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A point of interest (POI) is a geographical location, that
might carry interest for the public. A POI provides a conve-
nient way to register people’s locations through mobile de-
vices, which leads to POI data. POI data contain accurate
location information and are extremely valuable for loca-
tion based services (LBS). Accordingly, principled statistical
methods, which can be used for regression and/or prediction
are required. To partially fulfill this theoretical gap, we pro-
pose a conditional logit approach for POI choice analysis.
This new model is a natural extension of the classical choice
model (McFadden, 1974, 1978) but with two key character-
istics. First, POIs located far away from the current posi-
tion are less likely to be selected as the next POI choice.
As a result, the distance (or its appropriate transformation)
between the current position and the next POI candidate
is an important predictor and should be included in the
model. Second, the classical choice model considers a finite
choice set. By contrast, the new model studies a diverging
choice set, mainly because the total number of POI locations
in practice is typically large. The diverging choice set pro-
duces an expensive computation of the maximum likelihood
estimation (MLE). To alleviate computational costs, we fur-
ther propose a constrained maximum likelihood estimation
(CMLE) method. Compared with MLE, CMLE utilizes only
those POIs located within a reasonable distance. This prior-
itization leads to a significant reduction in computation at
a reasonable efficiency loss. To demonstrate the finite sam-
ple performance of the method, numerical studies based on
both simulated and real datasets are presented.

Keywords and phrases: Choice model, Constrained
maximum likelihood estimation, Diverging choice set, Lo-
cation based service, Point of interest.

1. INTRODUCTION

With the rapid development of wireless communication
and positioning technology, massive amounts of human
movement data have been collected. Mining and under-
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standing such data has gained substantial attention recently.
Gonzalez et al. (2008), Song et al. (2010) and Yan et al.
(2013) studied the basic laws of human mobility patterns.
The results are important for urban planning and traffic
forecasting. Zheng et al. (2009) proposed a tree-based hier-
archical graph model to mine interesting locations and travel
sequences from GPS trajectories. Li et al. (2010) proposed
a two-stage algorithm to address the problem of mining pe-
riodic behaviors of moving objects. Yuan et al. (2012) used
human mobility and points of interest (POI) data to discover
functional regions in a city. Under a discrete choice formula-
tion, Kumar et al. (2015) studied the dynamics of geographic
choice. They applied the model to study restaurant choices
in map search logs and showed that a four-parameter model
based on combinations of lognormals displayed an excellent
performance.

In this paper, we focus on analyzing POI data. A point
of interest is a geographical location, that might carry in-
terest for the public. Typical examples include universities,
hospitals, gas stations, and airports. A POI provides a con-
venient way to register location of people. This registry is
typically performed through mobile devices including GPS
devices and smart phones. An example is given in Figure 1.
The text message contained in the top rectangle box was
posted by the last author of this work on Sina Weibo, which
is the largest Twitter-type social media service in China.
This message was posted using a smart phone. At the time
the message was posted, the geographical location of the
author was detected using the GPS system in the smart
phone and then recorded in terms of longitude and latitude
values. With the permission of the author, this information
can be publicly shared on the social network. However, di-
rectly sharing this information produces an unsatisfactory
user experience. Most people, including the author are not
aware of the relationship between the actual location and
the longitude-latitude values. To address this problem, Sina
Weibo registered the location of the author to the nearest
POI, which was “Peking University”, given in the circled box
in Figure 1. The author’s followers know immediately that
this message was posted when the author was near “Peking
University”. Although this location is not fully accurate, the
reporting of this location produces a much improved user ex-
perience, because “Peking University” (as a POI) displays
excellent public awareness.

The above illustration briefly explains the POI technique.
This technique has been extensively implemented in mobile
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Figure 1. The posted text message on Sina Weibo.

internet related apps, with a particular focus on location
based services (LBS). These apps include FourSquare, Face-
book, Twitter, QQ, and WeChat. The widespread use of
LBS apps increases the availability of POI data. With the
help of POI data, one can easily infer people’s general loca-
tions for shopping, dining, traveling, and etc. Thereafter, a
new product/service can be designed and appropriate mar-
keting measures can be taken. Thus, the value produced by
POI data should be significant. Unfortunately, this value is
not achieved in practice. One primary hurdle is the lack of a
principled statistical model, that can be used for regression
and/or prediction. This motivated us to develop this work
to partially fulfill this important theoretical gap.

We present a study of one particular problem: POI choice.
In other words, given a set of predictors and the current po-
sition of a user, we develop a process to predict the next POI
choice. Let P = {1, · · · ,K} be a set collecting all possible
POI candidates. Given the current position of a user and
a set of predictive variables, the next POI is then selected
from P . Thus, the classical choice model (McFadden, 1974,
1978) can be considered subject to some challenges. The
key challenge faced here is that the size of the POI choice
set (denoted by |P|) in practice is large. In many cases,
the choice set could be comparable or even larger than the
sample size. Therefore, directly applying the classical choice
model is computationally challenging. However, POI data
provides valuable location information. Accordingly, the dis-
tance (or its appropriate transformation) between the cur-
rent position and the next POI candidate can be calculated.
Intuitively, those POIs located far away from the current po-
sition are less likely to be selected. Thus, the actual choice
set of a user likely contains only those POIs within a reason-
able distance. This constraint produces a smaller choice set,
that dynamically changes according to the current position
of the user. Additionally, the constrained choice set could be

much smaller than |P| in size and the computation should
therefore be much easier.

Motivated by the above observations, we propose a con-
ditional logit model for the POI choice analysis. This new
model is a natural extension of the classical choice model
(McFadden, 1974, 1978) but with two key features. First,
as we discussed before, POIs located far away from the cur-
rent position are less likely to be selected as the next POI.
As a result, the distance (or its appropriate transformation)
between the current position and the next POI candidate
is an important predictor and should be included in the
choice model. Second, the classical choice models consider
finite choice sets. By contrast, the new model considers a
diverging choice set. This consideration is mainly because
the total number of POI locations (i.e., |P|) in practice is
large. The diverging choice set causes the computation of
the maximum likelihood estimation (MLE) to be expen-
sive. To alleviate the computational cost, we further pro-
pose a constrained maximum likelihood estimation (CMLE)
method. Compared with the MLE, the CMLE utilizes only
those POIs located within a reasonable distance, developing
a significant reduction in computation.

We contribute the following to the literature. First, to
the best of our knowledge, this investigation is one of the
first studies to formally recognize the fundamental impor-
tance of POI choice data to both theory and practice. In
terms of the theory, POI data develop a choice model with
a diverging choice set. In terms of the application, POI data
are likely one of the most important data types for the LBS
related industry. Second, a choice model is developed by al-
lowing the size of the choice set to be large. Furthermore, to
alleviate the computational cost, a novel CMLE method is
proposed. This CMLE differentiates our approach from the
existing methods (McCullagh and Nelder, 1989).

The reminder of the article is organized as follows. The
next section introduces the model and notations. Both the
MLE and CMLE are also introduced. The corresponding
asymptotic theories are developed. Numerical studies are
presented in Section 3, including a simulation study and a
real dataset analysis of Sina Weibo. This article is concluded
with a brief discussion in Section 4.

2. METHODOLOGY

2.1 Maximum likelihood estimation

Let 1 ≤ i ≤ n denote a total of n different subjects, Y0i ∈
P = {1, · · · ,K} be the current position, and Yi ∈ P be the
next POI choice. Because the total number of POI locations
is large, we assume that K → ∞ as n → ∞. Let Xik =
(Xik1, · · · , Xikp)

� ∈ R
p be the predictor associated with the

ith subject and the kth POI candidate, and Xi = {Xik : 1 ≤
k ≤ K} collect all the covariate information associated with
i. In practice, Xik is typically constructed by interacting the
subject-specific (i.e., i-specific) information with that of the
location (i.e., k-specific). Let dik be the distance between
the current position and the kth POI candidate for the ith
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subject. Depending on the real application, dik might be the
original distance or its appropriate transformation (e.g., log-
transformation). We then follow the approach by McFadden
(1974, 1978) and assume the following choice model

P (Yi = k|Xi, Y0i) = pik

= exp(αdik + β�Xik)
[ K∑
k′=1

exp(αdik′ + β�Xik′)
]−1

(1)

= vik(θ)
[ K∑
k′=1

vik′(θ)
]−1

,

where β = (β1, · · · , βp)
� ∈ R

p is the unknown regression
coefficient with a true value of β0 = (β01, · · · , β0p)

� ∈ R
p,

α ∈ R
1 is the unknown scalar with a true value of α0,

θ = (α, β�)� ∈ R
p+1 with a true value of θ0 = (α0, β

�
0 )� ∈

R
p+1, and vik(θ) = exp(αdik + β�Xik). Because the POIs

with larger distances are less likely to be selected next, we
should expect α0 < 0. However, such a constraint is theo-
retically not required.

Define Zi = (Zi1, · · · , ZiK)� ∈ R
K with Zik = I(Yi = k).

The likelihood of Yi is then given by{
K∏

k=1

vik(θ)
Zik

}[
K∑

k=1

vik(θ)

]−1

,

leading to the following log likelihood function

(2) �i(θ) =

K∑
k=1

Zik log vik(θ)− log

K∑
k=1

vik(θ).

Accordingly, the full log likelihood function is the following:

�(θ) =
∑
i

�i(θ)

=
∑
i

{∑
k

Zikθ
�X̄ik + log

∑
k

exp(θ�X̄ik)

}
,

where X̄ik = (dik, X
�
ik)

� ∈ R
p+1. This function leads to the

maximum likelihood estimator: θ̂ = argmax�(θ).
Let �̇(θ) ∈ R

p+1 and �̈(θ) ∈ R
(p+1)×(p+1) be the first and

second order derivatives of �(θ), respectively. The following
can be written:

�̇(θ) =
∑
i

�̇i(θ) =
∑
i

∑
k

(Zik − pik)X̄ik,

�̈(θ) =
∑
i

�̈i(θ) =
∑
i

Σ̂iK , and

Σ̂iK =
∑
k

pikX̄ikX̄
�
ik −

(∑
k

pikX̄ik

)(∑
k

pikX̄ik

)�
.

Therefore, E{�̇(θ0)} = 0. Define n−1E{�̈(θ0)} = E(Σ̂ik) =
ΣK . Because K → ∞ as n → ∞, we assume further that
ΣK → Σ for some positive definite matrix Σ ∈ R

(p+1)×(p+1).

Theoretically, we assume that different POI positions
{ξ1, · · · , ξK} are independently generated according to a
probability distribution. Therefore, for two arbitrary dif-
ferent POI positions (e.g., ξk1 and ξk2 with k1 �= k2),
their mutual distance d̃k1k2 = ‖ξk1 − ξk2‖ follows a random
variable with mean μ = E(d̃k1k2) and standard deviation
σ = (var(d̃k1k2))

1/2. Without loss of generality we assume
that both |μ| and σ are bounded above.

Because K → ∞, the MLE is more complicated than a
typical one. To investigate the property of the MLE, we then
have the following technical conditions.

(C1) Asymptotic Framework. n−1(logK)2 = o(1).
(C2) Tail Probability. There exists constants c0 > 0

and K0 > 0 such that P (‖Xik − E(Xik)‖ > t) ≤
c0 exp(−t2/K0) for every 1 ≤ k ≤ K and that

P
(
σ−1|d̃k1k2 − μ| > t

)
≤ c0 exp(−t/K0), as t >

C logK, for some constant C being large.
(C3) Let YK , TK be the population version of Yi

and (Xi1, · · · , XiK) for fixed K. There ex-
ists an open set Θ0 of Θ which contains the
true parameter θ0. The conditional density of
YK given TK admits all three derivatives and
|∂3f(YK ; θ, TK))/∂θj1∂θj2∂θj3 | < MK(YK , TK) for
some MK(YK , TK) with sup

K
E[MK(YK , TK)] < ∞ for

all 1 ≤ j1, j2, j3 ≤ p.

We can verify that (C2) holds when Xik and the POIs are
i.i.d. and follows a multivariate normal. Moreover, the as-
sumption on d̃k1k2 in (C2) is obvious when the POIs are
located in a bounded region and K is large. (C3) is adapted
from the assumption on the third derivative of density com-
monly used in the literature (Shao, 1997; Fan and Li, 2001).
We then have the following theorem.

Theorem 1. Assume K → ∞ as n → ∞, ΣK → Σ for
some positive definite matrix Σ as K → ∞. Under assump-
tions (C1)–(C3), we then have

√
n(θ̂ − θ) →d N(0,Σ−1) as

n → ∞.

The proof is given in Appendix B. By Theorem 1, we
know that, even with K → ∞, the MLE θ̂ is

√
n-consistent

and asymptotically normal.

2.2 Constraint maximum likelihood
estimation

Although θ̂ as a MLE is theoretically attractive, its prac-
tical computation is not easy. This complexity is mainly be-
cause the size of the choice set P (i.e., |P| = K) is large, re-
sulting in expensive computations. However, for those POIs
with large dik values, their corresponding exp(αdik+β�Xik)
values are close to 0. Therefore, their contribution to the
likelihood function is limited. Then, we might consider con-
strainting our efforts to those POIs within a reasonable dis-
tance. To this end, define an index set Sc = {i : diYi < c} for
some constant c > 0 to collect these qualified subjects. Given
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a subject i ∈ Sc, the next POI choice Yi must be selected
from the following POI candidates Pic = {k : dik < c}. For
an arbitrary k ∈ Pic, the corresponding likelihood is given
by the following:

P (Yi = k|i ∈ Sc,Pic) = qik = vik(θ)
[ ∑
k′∈Pic

vik′(θ)
]−1

.

This function leads to the following constrained log likeli-
hood:

�c(θ) =
∑
i∈Sc

�ci(θ) =
∑

1≤i≤n

�ci(θ)I(i ∈ Sc),

and �ci(θ) =
∑

k∈Pic

Zik log vik(θ)− log
∑

k∈Pic

vik(θ).(3)

Accordingly, the constrained maximum likelihood estimator
(CMLE) can be computed as θ̂c = argmaxθ�c(θ). Compare
�c(θ) against the genuine log likelihood. Two key constraints
are noted. The first constraint is imposed by Sc, which se-
lects only those subjects whose next POI choice is suffi-
ciently close to the current position (i.e., i ∈ Sc). This con-
straint leads to a reduced sample size

∑
i I(diYi < c). The

second constraint is imposed on POI choices (i.e., k ∈ Pic).
This leads to reduced number of POI candidates (i.e., |Pic|)
for each subject i. Both constraints reduce the computa-
tional cost at a cost of efficiency loss.

Let �̇c(θ) ∈ R
p+1 and �̈c(θ) ∈ R

(p+1)×(p+1) be the first
and second order derivatives of �c(θ), respectively. Then,
the following can be directly verified:

�̇c(θ) =
∑
i

�̇ci(θ)I(i ∈ Sc) =
∑
i∈Sc

∑
k∈Pic

(Zik − qik)X̄ik,

−�̈c(θ) = −
∑
i

�̈ci(θ)I(i ∈ Sc) =
∑
i∈Sc

Σ̂c,iK(θ),

Σ̂c,iK(θ) =
∑
k

qikX̄ikX̄
�
ik −

(∑
k

qikX̄ik

)(∑
k

qikX̄ik

)�
.

Therefore, E{�̇c(θ0)} = 0. Define E(Σ̂c,iK(θ0)) = ΣcK

and πK = P (diYi < c). Then E{−n−1�̈c(θ0)} = πKΣcK .
Because K → ∞ as n → ∞, we assume further that
πK → π0 and ΣcK → Σc for some positive definite matrix
Σc ∈ R

(p+1)×(p+1). We then have the following theorem.

Theorem 2. Assume K → ∞ as n → ∞, ΣcK → Σc for
some positive definite matrix Σc as K → ∞. Under (C1)–

(C3), we then have
√
n(θ̂c − θ) →d N(0,Σ−1

c ) as n → ∞.

The proof is is given in Appendix A. By Theorem 2, the
CMLE θ̂c is also

√
n-consistent and asymptotically normal.

However, compared with the MLE θ̂, its asymptotic effi-
ciency is different. Σ− Σc is a semipositive definite matrix.
This implies that the CMLE is statistically less efficient than
the MLE. However, its computation is simpler.

3. NUMERICAL STUDIES

3.1 A simulation study

We devote this section to evaluate the finite sample per-
formance of the CMLE and MLE methods. Specifically, the
sample size is fixed at n = 200 and 500. The number of POI
choices is fixed at K = 100, 200, and 500. For a given (n,K)
combination and one particular simulation replication, the
longitude and latitude of each POI are randomly generated
from a standard normal distribution. Here the original Eu-
clidean distance is used for dik. The predictor dimension is
fixed at p = 5 and Xi is generated from a normal distribu-
tion with a mean of 0 and a covariance of cov(Xij1 , Xij2) =
0.5|j1−j2|. Let θ0 = (α0, β

�
0 )� = (−2, 2, 1, 0, 0, 0)� ∈ R

6.
The current position is randomly selected from the K POI
choices. The next location is randomly selected from the re-
maining POIs according to model (1). Subsequently, both
the MLE and CMLE are computed. To select the cutoff
value for the CMLE, we compute the distances between the
current positions of the users and their next POI choices. Let
Cτ be the corresponding τth quantile. We set c = Cτ with
τ = 50%, 80%, and 100%, respectively. Accordingly, the
percentage of the sample size used in the CMLE is aprroxi-
mately 50%, 80%, and 100% respectively. The CMLE with
c = C1.00 is different from the MLE. The difference is that
the MLE makes use of all the samples (i.e., every 1 ≤ i ≤ n)
and also all the POIs (i.e., every 1 ≤ k ≤ K). However,
with c = C1.00, the CMLE included all the samples, but not
necessarily every POI.

The experiment is randomly replicated M = 200 times.

Let θ̂(m) = (θ̂
(m)
j : 1 ≤ j ≤ p + 1) be one particular es-

timator (e.g., MLE) obtained in the mth simulation repli-
cation. We then evaluate the estimation error by the root
of the mean squared error as RMSE = M−1

∑
m{‖θ̂(m) −

θ0‖2/(p+1)}1/2. Let ŜE
(m)2

j be the jth diagonal element of

Σ̂(m), which is the estimated asymptotic covariance for θ̂
(m)
j ,

according to either Theorem 1 or 2. Moreover, we compute

a test statistic as Z
(m)
j = θ̂

(m)
j /ŜE

(m)

j for each simulation
replicationm and each regression coefficient j. Fix the signif-
icance level to be α = 5%. We then reject the null hypothesis

of H0 : θj = 0 vs. H1 : θj �= 0, when |Z(m)
j | > z1−α/2, where

zα stands for the αth quantile of a standard normal distribu-
tion. Define for each predictor an Empirical Rejection Prob-

ability (ERP) as ERPj = M−1
∑M

m=1 I(|Z
(m)
j | > z1−α/2).

The ERP corresponds to the empirical size and power ac-
cording to whether θj = 0. Define M0 = {j : θj = 0}
and M1 = {j : θj �= 0}. Summarize the average size and
power as SIZE = |M0|−1

∑
j∈M0

ERPj and POWER =

|M1|−1
∑

j∈M1
ERPj , respectively. Here |M0| and |M1|

stand for the size of M0 and M1, respectively. For a given
cutoff value Cτ , the number of POIs involved for the ith sub-
ject is given by |Pic|, where Pic = {k : dik < Cτ}. Accord-
ingly, the Average Percentage of the POI (APP) involved by
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the CMLE is given by APP = |Sc|−1
∑

i∈Sc
|Pic|/K. Larger

APP values result in larger CPU times (CPU). The detailed
results are given in Table 1 with standard deviation (sd) for
the RMSE, APP and CPU in parentheses.

From Table 1, we draw the following conclusions: (1) The
performance of the CMLE with τ = 50% is not acceptable,
because its RMSE value is substantially higher than that of
the MLE. The standard deviation of the RMSE is also much
higher than that of the MLE. Consider the case with n = 500
and K = 100, the RMSE of the CMLE with τ = 50% is 0.25
with sd 0.15, which is much larger than 0.07 with a sd 0.03
of the MLE. (2) By contrast, the CMLE with τ = 80%
is much better. In fact, the performance of the CMLE with
τ = 100% is almost identical with that of the full scale MLE;
see for example when n = 200 and K = 500, the RMSE of
CMLE with τ = 100% is 0.11, which is identical with that of
the MLE up to two decimal digits. (3) However, the average
number of POIs involved by the corresponding CMLE is
typically much less than that of the MLE. For example, the
APP value is 27.5% for the case with n = 500, K = 200, and
τ = 80%. Therefore, the CPU time demanded by CMLE is
substantially less.

3.2 A real example

We obtained a dataset from Sina Weibo
(www.weibo.com), the largest Twitter-type social me-
dia service in China. The data contains 2,038 observations
collected between January 24th, 2012 and October 16th,
2013. Each observation corresponds to one location tran-
sition occuring between two consecutive POIs. We require
that the transition from one POI to another must occur
within one hour. Otherwise, the dependence of the next POI
choice on the current location could be extremely weak. In
total, 1,154 unique POIs are involved, the density is given
in Figure 2. A descriptive analysis reveals that the median
and maximal values of the transitional distances (i.e., the
distances between two consecutive POIs) are 1.04 and 61.06
kilometers, respectively. Therefore that c0.50 = 1.04 and
c1.00 = 61.06. Similarly, we find that c0.80 = 3.32.

To explain the POI transitional behavior of a user, the
following predictors are considered. The first predictor is the
log-transformed inter-POI distance (dik), whose regression
coefficient is expected to be negative. The other predictor
Xik is defined as the interaction of Wi and Vk. Here, Wi is
set of subject-specific variables and Vk is location-specific.
Specifically, Wi describes the ith user’s gender (M or F) and
residence (local resident or tourist). Vk classifies the POIs
into the following seven categories: landmarks (LM, e.g., a
very high building tower), dinning places (DP, e.g., restau-
rants, fast foods), shopping centers (SC, e.g., supermarket,
shopping malls), transportation centers (TC, e.g., train sta-
tions, airports), tourist attractions (TA, e.g., national parks,
museums), school areas (SA, e.g., middle schools, universi-
ties), and others (OT).

We then apply our method to the dataset. As suggested
by the simulation study, the CMLE with τ = 80% is con-

Table 1. Detailed Simulation Results based on 200
Replications

n = 200
K 50% 80% 100% MLE

100 RMSE 0.47 0.19 0.12 0.12
(0.31) (0.08) (0.04) 0.04)

APP (%) 22.00 29.60 59.60 100
(2.90) (3.40) (8.50) (-)

CPU (second) 0.41 0.66 1.31 2.62
(0.09) (0.12) (0.30) (0.15)

SIZE (%) 3.50 5.00 2.80 4.80
POWER (%) 85.30 100 100 100

200 RMSE 0.40 0.19 0.12 0.11
(0.25) (0.09) (0.04) 0.04)

APP (%) 21.00 27.90 57.60 100
(2.70) (2.90) (8.10) (-)

CPU (second) 0.86 1.15 1.96 3.77 9
(0.19) (0.21) (0.45) (0.34)

SIZE (%) 3.00 6.20 7.30 3.70
POWER (%) 84.70 100 100 100

500 RMSE 0.43 0.17 0.11 0.11
(0.27) (0.07) (0.04) 0.03)

APP (%) 19.40 25.90 55.60 100
(2.00) (2.20) (7.80) (-)

CPU (second) 1.78 2.45 5.39 10.41
(0.25) (0.48) (1.29) (1.08)

SIZE (%) 5.00 3.70 4.80 5.50
POWER (%) 82.30 100 100 100

n = 500
K 50% 80% 100% MLE

100 RMSE 0.25 0.12 0.08 0.07
(0.15) (0.05) (0.02) (0.03)

APP (%) 22.50 29.50 65.70 100
(2.40) (2.80) (7.90) (-)

CPU (second) 1.85 2.68 5.8 9.72
(0.29) (0.40) (1.02) (0.81)

SIZE (%) 4.70 6.20 5.30 4.50
POWER (%) 97.00 100 100 100

200 RMSE 0.26 0.11 0.07 0.07
(0.16) (0.05) (0.03) (0.02)

APP (%) 21.00 27.50 62.50 100
(2.00) (2.10) (6.80) (-)

CPU (second) 2.80 4.32 10.54 19.89
(0.34) (0.50) (1.57) (0.66)

SIZE (%) 5.80 5.00 5.20 4.30
POWER (%) 97.50 100 100 100

500 RMSE 0.25 0.11 0.07 0.07
(0.16) (0.05) (0.02) (0.02)

APP (%) 19.30 25.90 60.00 100
(1.40) (1.60) (6.30) (-)

CPU (second) 5.83 9.27 60.72 116.49
(0.63) (1.19) (8.37) (3.64)

SIZE (%) 5.20 4.00 5.30 4.70
POWER (%) 97.50 100 100 100

sidered because of its good balance between computational
cost and statistical efficiencies. For a comparison purpose,
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Figure 2. The heat map of POIs in Beijing.

Table 2. The Estimates and Associated SEs for the Real Data
Analysis

Effects 80% ML

M → DP 10.74 (0.56) 13.82 (0.43)
F → DP 12.19 (0.12) 15.29 (0.11)
M → LM 11.98 (0.25) 14.94 (0.18)
F → LM 12.54 (0.09) 15.45 (0.07)
M → SC 11.06 (0.70) 14.38 (0.58)
F → SC 12.08 (0.20) 15.42 (0.17)
M → TC 13.28 (0.38) 14.69 (0.45)
F → TC 12.82 (0.21) 15.39 (0.16)
M → TA 13.15 (0.17) 15.84 (0.14)
F → TA 13.76 (0.06) 16.64 (0.05)
M → SA 11.59 (0.34) 14.85 (0.32)
F → SA 12.47 (0.11) 15.93 (0.09)
M → OT 11.36 (0.35) 13.88 (0.30)
dik -2.53 (0.08) -1.65 (0.04)

we also compute the MLE. The interaction between the res-
idence and POI category is not significant at the 5% level
and is thus excluded. The model is refitted and the detailed
results are given in Table 2. Here, the category of Female and
Others, denoted by F → OT, is treated as the baseline. The
analysis results obtained by CMLE with τ = 80% and MLE
are qualitatively similar. However, in terms of computation
time demanded, their difference is significant. The average
percentage of POI involved by CMLE with τ = 80% is only
11.36% (131.05 out of 1154). The CPU time demanded by
CMLE with τ = 80% is 1.87 hours on a workstation with In-
tel(R) Xeon(R) CPU E5 2603 1.80GHz. However, the CPU
time of MLE is 22.38 hours.

From Table 2, all of the estimates are significant at the 1%
level. The estimate of α is negative, confirming our expec-

tation that people tend to select places within a reasonable
distance. To interpret the estimation result, consider the es-
timates for F → SC. The estimates are 12.08 and 15.42 for
CMLE and MLE, respectively. Both results suggested that
females are more likely to choose shopping centers as their
next POI choice than others (i.e., OT). Other estimates can
be interpreted similarly.

To further validate the prediction accuracy of this model,
we randomly divide the sample into two equal sized sets,
which are denoted as D0 and D1. D0 is used for training
and D1 is used for testing. Subsequently, the CMLE with
τ = 80% is estimated based on D0, producing the CMLE
estimator. With the CMLE estimator, the next POI choice
probabilities can be computed for every i ∈ D1 and 1 ≤
k ≤ K. For each testing sample i ∈ D1, the POI with the
largest choice probability (denoted by Ŷi) is predicted to
be the next choice. The resulting forecasting accuracy is
computed as FA = |D1|−1

∑
i∈D1

I(Yi = Ŷi). For a reliable
estimation, the experiment is randomly replicated 20 times
and the averaged forecasting accuracy (AFA) is computed.
The resulting AFA values is 10.5%. Given that the number
of candidate POI choices is more than one thousand, this
forecasting accuracy is encouraging.

In real practice, one can typically place at least five adver-
tisements on a mobile device (e.g., a smart phone). There-
fore, we can develop at least five different POI predictions
for each subject. The resulting prediction accuracy should
be further improved to an extent. With the CMLE, we can
compute the next POI choice probability for each subject
i and each location k. For a given subject i, we can rank
different locations according to their choice probabilities.

We next use Ŷ
(k)
i to indicate the location with the kth

largest choice probability. Therefore Ŷ
(1)
i = Ŷi. We then

collect the top five POIs with the largest choice probabil-

ity by Ci = {Y (k)
i : 1 ≤ k ≤ 5}. We then re-define the

forecasting accuracy as FA = |D1|−1
∑

i∈D1
I(Yi ∈ Ci). The

resulting AFA = 29.4%, which is satisfactory for industry
applications.

4. CONCLUDING REMARKS

The wide spread use of mobile devices increases the avail-
ability of location-related data. POI data are likely one of
the most important types of data and are critically impor-
tant for the LBS-related industry. We consider this work to
be an initial attempt to address problems related to POI
choice analysis. Our work serves as a call to the statisti-
cal community to investigate mobile-internet related data
analysis. Further research along this direction is required.
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APPENDIX A. THE PROOF OF
THEOREM 2

One can verify easily that the log likelihood function �(θ)
is a strictly convex function. As a result, it can have only
one maximizer. Therefore, the theorem conclusion follows,
if we can show the existence of at least one local maximizer
that satisfies the theorem conclusion.

Recall the notations Pic = {k : dik < c} and
E{−�̈ic(θ0)} = πKΣcK , with ΣcK → Σc. Let nc = |Sc|.
For simplicity of notations, we denote Σ̂c,iK(θ0) as QKi and

Q̃Ki = I(i ∈ Sc)Σ̂c,iK(θ0). Furthermore, by definition we
have

− 1

nc

∂2�c(θ0)

∂θ∂θ�
=

n

nc
· 1
n

∑
1≤i≤n

I(i ∈ Sc)Σ̂c,iK(θ0)

=
n

nc
· 1
n

∑
1≤i≤n

I(i ∈ Sc)·{ ∑
k∈Pic

X̄ikX̄
�
ikqik −

∑
k∈Pic

X̄ikqik
∑

k∈Pic

X̄�
ikqik

}
=

n

nc
· 1
n

∑
1≤i≤n

Q̃Ki.

(4)

It is clear that both {QKi, i ∈ Sc,K = 1, 2, · · · , } and
{Q̃Ki,K = 1, 2, · · · , } are the triangular array. Write QKi =
(QKi,st : 1 ≤ s, t ≤ (p + 2)) ∈ R

(p+2)×(p+2). Subsequently,
we are going to establish the theorem conclusion according
to the following four steps.

In step 1, we show that nc/n →p π0. Note that E(nc)/n =
πK → π0, it is sufficient to show nc/n →p πK , where
πK = P (i ∈ Sc). In the 2nd step, we establish the following
important conclusion.

(5) n−1 max
1≤s,t≤p+2

E(Q̃2
Ki,st) → 0.

This conclusion is used subsequently to establish the follow-
ing two conclusions in the 3rd and 4th steps, respectively.∥∥∥− 1

nc

∂2�c(θ0)

∂θ∂θ�
− Σc

∥∥∥ →p 0,(6)

n−1/2
c

∂�c(θ0)

∂θ

d−→ N(0,Σc),(7)

where ‖A‖2 = tr(A�A) for an arbitrary matrix A. Lastly,

the asymptotic normality of the MLE θ̂ is established based
on (6) and (7).

Step 1. Recall that πK > 0. This conclusion is obvious
base on the definition of nc.

Step 2. To prove (5), we write X̄ik = {X̄ik,j : 1 ≤ j ≤
(p+2)}� ∈ R

p+2. Then, X̄ik,1 = dik, X̄ik,2 = 1, and X̄ik,j =
Xik,j−2 for j ≥ 2. Next, by definition we have

Q̃2
Ki,st = I(i ∈ Sc)

{ ∑
k∈Pic

X̄ik,sX̄ik,tqik−

( ∑
k∈Pic

X̄ik,sqik

)( ∑
k∈Pic

X̄ik,tqik

)}2

= I(i ∈ Sc)

[ ∑
k∈Pic

{
X̄ik,s −

( ∑
k′∈Pic

X̄ik′,sqik

)}
{
X̄ik,s −

( ∑
k′∈Pic

X̄ik′,sqik

)}
qik

]2

≤ Q̃Ki,ssQ̃Ki,tt.

Next note that 0 ≤ Q̃Ki,ss ≤
∑

k∈Pic
X̄2

ik,sqik ≤
( max
1≤k≤K

|X̄ik,s|)2 ≤ (G+μ0)
2, where μ0 = ‖E(Xik)‖+μ < ∞

and

G = max
1≤k≤K

‖Xik −E(Xik)‖+ max
1≤k≤K

‖dik − μ‖ := G1 +G2.

Consider G1 first. We then have

EG4
1 ≤ 4

∫ ∞

0

t3P (G1 > t)dt

= 4

(∫ √
K0 logK

0

+

∫ ∞

√
K0 logK

)
t3P (G1 > t)dt

≤ K2
0 (logK)2 + 4

∫ ∞

√
K0 logK

t3P (G1 > t)dt.

(8)

Next, for an arbitrary fixed constant u, define a con-
stant ũK = [K0(u

2 + 1) logK]1/2 with K0 being the con-
stant defined in (C2). We then have P (G1 > ũK) ≤
c0K exp{−(u2 + 1) logK} = c0 exp(−u2 logK). Let t = ũK

and σ = (2 logK)−1/2. Then apply this back to (8), we have∫
∞√
K0 logKt3P (G1 > t)dt

≤ c0(K0 logK)2
∫ ∞

0

(u3 + u) exp(−u2 logK)du

= c0
√
πK2

0 (logK)
3
2

1√
2πσ

∫ ∞

0

(u3 + u2) exp(− u2

2σ2
)du

= (logK)
3
2O(1).

Consequently, we have EG4
1 ≤ C1(logK)2, for some con-

stant C1. Note that μ < σ logK, as K → ∞. Then, as
t > C logK for some constant C > 0, we have by (C2) that
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P

(∣∣∣dik − μ

σ

∣∣∣ > t

)
=

K∑
k′=1

P

(∣∣∣dY0ik − μ

σ

∣∣∣ > t|Y0i = k′
)
P (Y0i = k′)

=

K∑
k′=1

P

(∣∣∣dk′k − μ

σ

∣∣∣ > t

)
P (Y0i = k′)

≤ c0 exp(−t/K0).

Therefore, σ−1(dik − μ) has the same tail probability as
Xik,s − E(Xik,s). Let G̃2 = σ−1G2. Then as the argument

for G1, we have E(G̃4
2) ≤ C2(logK)2 for some constant C2.

Therefore, E(G4
2) ≤ C2σ

4(logK)2. Combined these argu-
ment together, we have EG4 ≤ C3σ

4(logK)2 for some con-
stant C3.

Combined with the fact μ0 < ∞, we have for some
constant C4, max

1≤s,t≤p+2
E(Q̃2

Ki,st) ≤ max
1≤s≤p+2

E(Q̃2
Ki,ss) ≤

C4[σ
4(logK)2 + μ4]. This combined with (C1) leads to the

(5).

Step 3. We next consider (6). Note that E(Q̃Ki) =
πKΣcK := Σ̃cK . Recall that p is fixed. We first show that
n−1

∑
1≤i≤n Q̃Ki,st →p Σ̃cK,st, where Σ̃cK,st is the (s, t) el-

ement of Σ̃cK . By (5), we have, for any ε > 0

P

⎛⎝∣∣∣n−1
∑

1≤i≤n

{
Q̃Ki,st − Σ̃cK,st

}∣∣∣ > ε

⎞⎠
≤ ε−2n−1E(Q̃2

Ki,st) → 0.

(9)

Therefore, n−1
∑

1≤i≤n

Q̃Ki,st →p Σ̃cK,st. Recall the πK →

π0,ΣcK → Σc, we have Σ̃cK → π0Σc. Combining with (4)
and the fact that n/nc →p 1/π0, the conclusion (6) holds.

Step 4. Now, we consider the proof of (7). Let RcK,i =
∂�ci(θ0)/∂θ ∈ R

p+2 with i ∈ Sc. Then ∂�c(θ0)/∂θ =∑
1≤i≤n

RcK,iI(i ∈ Sc). Accordingly,

n−1/2
c Σ

−1/2
cK

∂�c(θ0)

∂θ

= (nc/n)
−1/2 · n−1/2

∑
1≤i≤n

Σ
−1/2
cK RcK,iI(i ∈ Sc)

:= (nc/n)
−1/2 · n−1/2

∑
1≤i≤n

R̃cK,i,

where R̃cK,i = Σ
−1/2
cK RcK,iI(i ∈ Sc). It is easy to see

that E (RcK,iI(i ∈ Sc)) = 0 and cov (RcK,iI(i ∈ Sc)) =

πKΣcK = Σ̃cK . Consequently, E(R̃cK,i) = 0 and

cov
(
R̃cK,i

)
= πKIp+2, where Ip+2 is the identity matrix

and πK = P (i ∈ Sc). Note that {R̃cK,i, i ∈ Sc,K ≥ 1}
is also triangular array with both nc → ∞ and K → ∞.
It is then sufficient to show that the following Linderberg

condition
(10)

lim
K→∞

n−1
∑

1≤i≤n

E
(
‖R̃cK,i‖2I(‖R̃cK,i‖ > ε n1/2)

)
= 0.

Note that R̃cK,i are independent and identically distributed.
We thus have

n−1
∑

1≤i≤n

E
(
‖R̃cK,i‖2I(‖R̃cKi‖ > εn1/2)

)
= E

(
‖R̃cK,1‖2I(‖R̃K,1‖ > εn1/2)

)
.

As a result, it suffices to show that lim
K→∞

E‖R̃cK,1‖2 < ∞.

For any K, we have E‖R̃cK,1‖2 = E{trace(R̃cK,1R̃
�
cK,1)} =

πK(p + 2) ≤ p + 2 < ∞ and consequently, the Lindeberg
condition (10) holds. Recall that πK → π0, as K → ∞.
Therefore, as K → ∞,

n−1/2Σ
−1/2
cK

∂�c(θ0)

∂θ

d−→ N(0, π0Ip+2).

Since Σ
−1/2
cK Σ

1/2
c → Ip+2, as K → ∞, we have

n−1/2 ∂�c(θ0)
∂θ

d−→ N(0, π0Σc). Combined with nc/n →p π0.

We have n
−1/2
c

∂�c(θ0)
∂θ

d−→ N(0,Σc) This completes the proof
of (7).

Step 5. In the last step, we investigate the asymptotic
behavior of the MLE θ̂. We start with investigating its exis-
tence. Following similar technique as in Fan and Li (2001),
it suffices to show that

lim
C→∞

P

(
sup

‖u‖=C

�(θ0 + n−1/2
c u) ≤ �(θ0)

)
= 1.

We introduce some notations. For any vector a =
(a1, · · · , am)T ,b = (b1, · · · , bm)T , denote |a| =

∑
i

|ai|,

Daf(x) = ∂|a|f/∂a1 · · · ∂am and ba =
m∏
i=1

bai
i . Then by Tay-

lor expansion for multivariate function with integral remain-
der, we have

�c(θ0 + n−1/2
c u)− �c(θ0)

= n−1/2
c

∂�c(θ0)

∂θ�
u+ n−1

c u� ∂2�c(θ0)

∂θ∂θ�
u

+ n−3/2
c

∑
|a|=3

Ra(θ0 + n−1/2
c u)ua,

(11)

where Ra(θ0+n
−1/2
c u) = 2−1

∫ 1

0
(1−t)2Da�c(θ0+tn

−1/2
c u)dt

with |Ra(θ0 + n
−1/2
c u)| ≤ 2−1 max

|a|=3
max
θ∈Θ

|Da�c(θ)|. By the

assumption (C3), we see that n−1
c |Ra(θ0 + n

−1/2
c u)| ≤

2−1M(YK , TK) = Op(1). Combined with the fact that
nc → ∞ and ‖u‖ is fixed, we have that the last term on
the right side of (11) is of order op(‖u‖2).
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From Step 2, it follows that n
1/2
c ∂�c(θ0)/∂θ

� = Op(1).
So the first term is of the order Op(‖u‖). Also by (6) and
(11), we have

�c(θ0 + n−1/2
c u) = �c(θ0) +Op(‖u‖)− u�Σcu+ op(‖u‖2).

As C being sufficiently large, the third term on the right
hand side dominate the second term and consequently, there
exists

√
nc-consistency estimator, denoted as θ̂. Because θ̂ is√

nc-consistent, the standard Taylor’s expansion type argu-
ment can be applied (Shao, 1997; Fan and Li, 2001), which
leads to

0 = n−1/2
c

∂�(θ̂)

∂θ

= n−1/2
c

∂�(θ0)

∂θ
+ n−1/2

c (θ̂ − θ)�
∂2�c(θ0)

∂θ∂θ�
+ op(‖θ̂ − θ‖2).

This conclusion, together with (7), (6), leads to
√
nc(θ̂ −

θ0) →d N(0,Σ−1
c ). This completes the entire theorem proof.

APPENDIX B. PROOF OF THEOREM 1

The first conclusion of Theorem can be viewed as a special
case of c = ∞. As c = ∞, we have nc = n,Kc = K. Then
conclusion Theorem 1 is derived based on the Theorem 2.
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