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Multistage nonparametric tests for treatment
comparisons in clinical trials with multiple primary
endpoints

Peng Huang
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Many clinical trials, e.g., neurodegenerative disease tri-
als, are conducted to test whether a new treatment could
slow or modify disease progression. Multiple primary end-
points are often used since it is difficult to find a single
clinical endpoint that summarizes the treatment effect, e.g.,
the neuroprotective effect. There are three major challenges
in the design and analysis of such trials: (1) the presence of
nuisance effect regardless whether the desired neuroprotec-
tive effect exists; (2) primary endpoints are of mixed type;
(3) the need for interim analysis stopping rule for multi-
ple primary endpoints. We propose a simple nonparamet-
ric multistage adaptive (group sequential) test to overcome
these difficulties. Statistically, this test is another solution
to the multivariate nonparametric Behrens-Fisher problem.
We provide both large and small sample properties of the
proposed test. The methodology is illustrated using data
from two randomized clinical trials.

AMS 2000 subject classifications: Primary 62G10,
62H15, 62L05.
Keywords and phrases: Rank-based test, Behrens-
Fisher problem, Adaptive group sequential test, Brownian
motion.

1. INTRODUCTION

In recent years, multiple primary endpoints are increas-
ingly used in randomized controlled clinical trials to deter-
mine whether a new treatment is more efficacious than a
control. In addition, multidimensional biomarkers of differ-
ent data types are also compared between different pheno-
types and/or between different treatments. To list a few,
the National Institute of Neurological Disorders and Stroke
sponsored Neuroprotection Exploratory Trials in Parkin-
son’s Disease (NET-PD) used quality of life, activities of
daily living, mobility, and cognition (including modified
Rankin, Symbol Digit Modalities, Schwab and England ac-
tivities of daily living, PDQ-39, and 5 questions on gait
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from the UPDRS) as the primary endpoints to measure
treatment’s neuroprotective effect (Olanow, Wunderle, and
Kieburtz, 2011). In a randomized controlled trial to de-
termine if a combined pharmacological and behavioral in-
tervention improves both depression and pain in 250 pri-
mary care patients with musculoskeletal pain and comor-
bid depression, the co-primary endpoints were the depres-
sion (20-item Hopkins Symptom Checklist), pain severity
and interference (Brief Pain Inventory), and global improve-
ment in pain at 12 months (Kroenke et al., 2009). Sankoh,
D’Agostino and Huque (2003) have listed several types of
disease studies and examples where no consensus on the
most important clinical endpoint is available due to disease
complexity. In particular, they proposed that multiple pri-
mary endpoints should be considered in clinical trials for
diseases with unknown etiologies or diseases that manifest
in multiple dimensions.

This paper is motivated from the design of a Parkin-
son’s disease (PD) clinical trial to identify the most promis-
ing neuroprotective compounds for individuals with PD. In
2003, The National Institute of Neurological Disorders and
Stroke (NINDS) launched a major series of cooperative clin-
ical studies designed to evaluate a number of promising
compounds for use in slowing the progression of PD. The
first two phase II futility studies of the series Neuroprotec-
tion Exploratory Trials in PD (NET-PD) were carried out
in 5/2003–5/2005 and 3/2004–1/2006 respectively to assess
the impact of minocycline and creatine (in the first futil-
ity study), or CoQ10 and GPI 1485 (in the second futil-
ity study) on the progression of PD in order to assess if it
is non-futile to proceed with further study of these agents
(The NINDS NET-PD Investigators, 2006, 2007). The NET-
PD phase III trial, initiated in March 2007, used a global
statistical test (GST) to compare disease progression at 5
years between the creatine and placebo groups (clinicaltri-
als.gov registration number NCT00449865) based on mul-
tiple continuous and ordinal primary endpoints: quality of
life, activities of daily living, mobility, and cognition mea-
sures of modified Rankin, Symbol Digit Modalities, Schwab
and England activities of daily living, PDQ-39, and 5 ordi-
nal measures on gait from the Unified Parkinson’s Disease
Rating Scale (UPDRS) (Olanow, Wunderle, and Kieburtz,
2011). Two important features must be taken into consider-
ation when designing such type of clinical trials. First, most
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compounds for Parkinson’s disease have various effects other
than the desired neuroprotective effect. Ignoring such nui-
sance effects could result in biased assessment of treatment
benefit. A typical example of nuisance effect is the transient
symptomatic effect that does not slow the disease progres-
sion. Because of this, the null hypothesis of identical distri-
bution between the two treatments being compared is not
appropriate to use. Testing treatment effect with the pres-
ence of nuisance parameter is called a Behrens-Fisher Prob-
lem. Second, there is no gold standard single endpoint that
is sufficient to summarize treatment’s neuroprotective effect.
Treatment comparison relies on a global assessment of mul-
tiple endpoints. In addition, sequential monitory of treat-
ment effect is often required in large multi-center studies,
particularly for phase III trials. A multivariate sequential
statistical test for Behrens-Fisher Problem is a useful tool
for such clinical trial design and sequential data analysis.

Solutions to parametric multivariate Behrens-Fisher
Problem have been well studied for many years since Ben-
nett (1951) and James (1954). Christensen and Renche
(1997) have reviewed several commonly used solutions. For
multivariate nonparametric Behrens-Fisher Problem, Brun-
ner, Munzel, and Puri (2002) proposed rank based ANOVA-
type statistic andWald-type statistic to test whether there is
any difference in at least one of the endpoints. Huang, Tilley,
Woolson, and Lipsitz (2005) extended O’Brien’s rank-sum
global statistical test to Behrens-Fisher Problem in treat-
ment comparison with multiple equally important primary
endpoints. Liu et al. (2010) proposed a multivariate test
based on the maximum rank sum difference among all end-
points. However, none of these methods is for multistage
adaptive or group sequential testing that allows early stop-
ping for pronounced treatment effect or the lack of it thereof.
Since a group sequential design withG interim analysis looks
is also called an adaptive multistage design with G stages,
throughout this paper, we will not distinguish terms between
“group sequential” and “multistage”; nor between “t-th in-
terim analysis” and “t-th stage analysis”.

For single primary endpoint, group sequential designs
and stopping boundaries have been extensively studied in
the literature. Whitehead (1997) and Jennison and Turnbull
(2000) give a quite comprehensive presentation of different
strategies that can be used to develop sequential stopping
boundaries such as the repeated significant test (or confi-
dence interval) approach, Lan and DeMets (1983) flexible
error-spending function approach, stochastic curtailments,
and Bayesian approach. Critical values of the sequential
stopping boundaries are often determined numerically. Since
such numeric computation could be intensive, many authors
have tabulated the critical values for different combinations
of design parameters (such as the number of interim anal-
ysis looks, type I and type II errors, the shape of alpha
spending function or stopping boundaries). Softwares (e.g.,
EAST, PEST) have been developed to provide sequential
stopping boundaries and numerical evaluation of the design
operating characteristics.

While it is relatively easy for investigators to choose an
appropriate sequential design for testing treatment benefit
with single (i.e., uni-dimensional) primary endpoint, and to
implement it using existing software, it is less clear what is
the most appropriate sequential stopping rule when multiple
primary endpoints (i.e., a multi-dimensional endpoint) are
analyzed sequentially. This is because it is relatively easy
to find a commonly agreed definition of “better” with sin-
gle endpoint while there are different ways to define im-
provement with multiple endpoints. Statistical approaches
for multiple endpoints can be classified into 3 categories
(Kosorok, Shi, and DeMets, 2004): the global, auxiliary,
and multiple hypothesis methods. The global method com-
bines all endpoints into a single composite endpoint to ac-
cess treatment benefit. Examples of global method include
Wei and Lachin (1984), O’Brien (1984), Pocock, Geller, and
Tsiatis (1987), Tang, Gnecco and Geller (1989a, 1989b),
and Lin (1991). The auxiliary method chooses one end-
point as primary, and use information from all other end-
points to increase the power on the primary endpoint. The
multiple hypothesis method evaluates treatment benefit on
each single endpoint first, then combines these evaluations
across all endpoints. Examples include the Bonferroni pro-
cedures, Simes test (1986), Benjamini-Hochberg Procedure
(1995), Holm step-down (1979), Hochberg step-up (1988),
Shaffer procedure (1986), Fallback procedure (Wiens and
Dmitrienko, 2005), and various p-value based procedures.
These procedures are most suitable when the goal is to find
any type of effect (no matter it is beneficial or detrimen-
tal) between the two treatments. However, if the goal is to
find which treatment should be recommended to use when
no single gold standard endpoint is available to summarize
treatment benefit, it is more appropriate to use a global
statistical method to compare treatment’s overall benefit
across multiple equally important endpoints (Tilley et al,
1996, 2000, Olanow, Wunderle, and Kieburtz, 2011).

O’Brien (1984) introduced three types of global statistical
tests (GSTs) based on ordinal least square (OLS), general-
ized least square (GLS), and rank-sum respectively. When
multiple endpoints have a joint normal distribution, Tang,
Gnecco, and Geller (1989b) extended O’Brien’s GLS based
GST (a fixed sample size test) to a sequential test of the
equality of two treatment group means. They have showed
that, for any pre-specified directional difference in alterna-
tive hypothesis, multivariate test always requires smaller
sample size than any univariate test under the same type I
and type II error probability requirements. Since O’Brien’s
GLS multivariate test statistic is a weighted average of
univariate test statistics with weights derived from the in-
verse matrix of their variance-covariances, the resulting test
statistic can be difficult to interpret if some of the weights
are negative when the objective is to determine whether one
treatment is better than the other one. Thus, a test with
positive weights for all endpoints is recommended (Pocock,
Geller, and Tsiatis, 1987). We focus our discussions on non-
parametric tests based on ranks because multiple endpoints
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could have quite different continuous and/or ordinal distri-
butions, and assumptions of their marginal and joint dis-
tributions can be difficult to make. Based on Wei, Lin, and
Weissfeld (1989) proportional hazards regression model, Lin
(1991) proposed a sequential test using a weighted sum
of linear rank statistics with respect to marginal distribu-
tions of all single endpoints. This test is applicable when
the stochastic ordering assumption between the two treat-
ments can be made: F1u(·) ≤ F2u(·) (v = 1, . . . ,K) with at
least one strict inequality, where Fiu is the marginal cumu-
lative distribution function of the ith treatment on the vth
endpoint. Su and Lachin (1992) generalized Mann-Whitney-
Wilcoxon statist with kernel function φ(x, y) = I[x < y]
to test location shift model. Lee and DeMets (1992) used
linear rank statistics to compare treatments under location-
shift model assumption, and they have established asymp-
totic normality of sequentially computed linear rank statis-
tics. All these methods require identical null distribution
between the two treatments and thus are not solutions to
the Behrens-Fisher Problem.

To develop multistage test using sequentially computed
global statistical test statistic for Behrens-Fisher Problem,
we propose, in Section 2, a simple rank-based test statistic
which can be expressed as a linear combination of Wilcoxon
test statistics for multiple endpoints. When this rank based
test statistic is computed sequentially, it forms a discrete
time asymptotic Gaussian process (Theorem 1 in Section 3).
If, in addition, sample size ratios between the two groups
are about the same in all stages, its limiting process is
a Brownian motion measured at a finite time points. We
provide the mean and variance-covariance matrix of the
joint rank-sum test statistics. The approximation of our
stochastic process to a Brownian motion process is con-
trolled through the first two moments: their mean processes
are exactly the same, and an upper bound to the relative
difference in variance-covariance structures between the two
processes is provided. Numerical evaluation of this upper
bound is provided through simulation. These quantities are
useful to evaluate the finite sample properties of the pro-
posed stochastic process, and how well the Brownian motion
process approximation could be. Theorem proof is given in
the Appendix. The simulation in Section 4 shows how well
the type I error and statistical power are controlled when
the proposed stochastic process is applied to sequential de-
signs for univariate endpoint when sample size is moder-
ate. In Section 5, we illustrate its use in DATATOP and
QE2 trials, one with large sample size and one with mod-
erate sample size. These two Parkinson disease trials are
chosen because information from these two trials were used
in the planning of NET-PD trials. We conclude with a dis-
cussion.

2. MODEL FORMULATION

To formulate the model, we compare two groups of pa-
tients as in a randomized clinical trial to test whether a

new treatment is more efficacious than a control, based

on K-dimensional outcomes. Let xij = (xij1, . . . , xijK)
T

be the observation vector from the j-th subject in the i-

th treatment group, and x
T

be the transpose of x. Vec-
tors xi1,xi2, . . . are iid copies of random vector Xi =

(Xi1, . . . , XiK)
T

. Without loss of generality, all observa-
tions are coded so that larger values correspond to better
clinical conditions. For the v-th endpoint, Brunner, Mun-
zel, and Puri (2002) proposed to use p(v) = P (X1v <
X2v) +

1
2P (X1v = X2v) as a measure of relative treatment

effect. Quantity 1
2P (X1v = X2v) is used to account for pos-

sible discontinuous distribution. This parameter was first
introduced by Kruskal (1952) and has been used by many
other authors thereafter. We use an equivalent parameter
θv = P (X1v < X2v)−P (X1v > X2v) = 2p(v)−1 to measure
treatment difference on the v-th endpoint. Lachin (1992)
called θv a Mann-Whitney difference and pointed out that
it can be used to summarize the difference on any scale of
measurement. Huang, Ou, Piantadosi and Tan (2014) stud-
ied relationship between Mann-Whitney type difference and
other commonly used treatment differences. Figure 2 from
their paper shows that testing Mann-Whitney type differ-
ence is more likely to yield an informative conclusion than
testing other types of differences in most scenarios. They
also provided guidance how to properly define treatment su-
periority in clinical trials. Suppose the t-th interim analysis
will be conducted when data from the first nit subjects in the
i-th group are available, nit < ni,t+1, Nt = n1t+n2t, i = 1, 2,
t = 1, 2, . . .. To compare two treatment groups with multiple
endpoints nonparametrically, Huang, Tilley, Woolson, and
Lipsitz (2005) proposed several single stage nonparametric
global statistical tests for the Behrens-Fisher problem whose
test statistics have the same asymptotic distribution as the
sum of Wilcoxon rank-sum test statistics from all endpoints.
The parameter to be tested is θ̄ =

∑K
v=1 θv/K. We consider

the same hypothesis of interest:

(1) H0 : θ̄ =

K∑
v=1

θv/K ≤ 0, H1 : θ̄ > 0.

A two-sided problem can be formulated in a similar fashion.
Parameter θ̄ was called global treatment effect (GTE)
in Huang, Woolson, and O’Brien (2008). We choose this
parametrization based on the following considerations.
First, the scientific question to be addressed is whether
one treatment is better than the other treatment when
multiple equally important endpoints are evaluated to-
gether. In fact, this θ̄ is exact the same parameter used
in the landmark study of NET-PD phase III clinical trial.
As described in Olanow, Wunderle, and Kieburtz (2011),
a rank based global statistical test of this parameter
“offers a new comprehensive method for evaluating the
progression of movement disorders in areas of functional
significance rather than on points on a scale.” A treatment
may be considered beneficial if it shows improvement
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on most endpoints. This is reflected by using θ̄ > 0 to
denote treatment benefit. Second, all θ1, . . . , θK have
the same positive weight. This avoids negative weight
that makes the hypothesis test result difficult to in-
terpret (Pocock, Geller, and Tsiatis, 1987). The equal
weight reflects the assumption of equal importance of
all endpoints. Our test statistic for parameter θ̄ will be
constructed through a composite endpoint. As suggested
in the FDA’s Guidance for Industry: Patient-Reported
Outcome Measures, a composite endpoint is suitable to
use when all components are “of similar importance to
patients, the more important and less important compo-
nents are equally likely to occur with similar frequency, and
the components are likely to have roughly similar treat-
ment effects.” (http://www.fda.gov/downloads/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/
UCM193282.pdf). When some endpoints are considered
more important than others, the weights in both θ̄ and
our nonparametric test statistics can be adjusted to re-
flect this difference. The corresponding properties of test
statistics discussed in this paper can be readily modified
to accommodate unequal weights. Third, θ̄ is invariant
to any monotone transformation of the data. This makes
it relatively easy to summarize treatment’s overall effect
across different types of endpoints. More discussions on
why θ̄ is suitable to use in clinical trials are given by Huang
et al. (2009) and Olanow et al. (2011).

3. SEQUENTIALLY COMPUTED TEST
STATISTIC

This section will construct a stochastic process from a
sequentially computed rank-sum statistic and show that it
is asymptotically a Gaussian process. We will further show
that, when sample size ratio is relatively stable in all stages,
such a discrete time stochastic process can be approximated
by a Brownian motion measured at finite time points. When
the Central Limiting Theory is applicable, this Brownian
motion approximation provides a foundation to apply many
available sequential designs for single primary endpoint,
such as O’Brien-Fleming design, for adaptive and nonpara-
metric treatment comparisons with multiple primary end-
points.

Consider the statistical problem of testing the hypoth-
esis (1) in a randomized clinical trial based on K pri-
mary endpoints. We continue to use notations in the pre-
vious section. The t-th interim analysis will be performed
when data from the first nit subjects in the i-th group are
available, and nit < ni,t+1. Let Fiv(z) = P (Xiv < z) +
1
2P (Xiv = z), θ = (θ1, . . . , θK)

T

. Throughout the paper,
we will impose regularity conditions V ar{F1v(X2v)} > 0
and V ar{F2v(X1v)} > 0 (v = 1, . . . ,K) to rule out de-
generate distributions and redundant parameters. At the
t-th stage (interim) analysis, we pool observations from
all Nt = n1t + n2t subjects and rank them separately on

each of the vth endpoints. Define test statistic at the t-th
stage by

D(n1t, n2t) =
2n1t

n1t + n2t
(R̄2t − R̄1t),

where R̄it = 1
ni

∑nit

j=1

∑K
v=1 Rijv(t) is the mean rank sum

across all K endpoints in the i-th group, Rijv(t) is the
rank of xijv among observations {x11v, . . . , x1n1tv, x21v, . . . ,
x2n2tv}. Since Wilcoxon rank-sum test statistic on the v-th
endpoint is Wv =

∑n2t

j=1 R2jv(t), test statistic

D(n1t, n2t) =
2

n2t

K∑
v=1

Wv −K(Nt + 1)

is a linear transformation of the sum of Wilcoxon rank-sum
test statistics. The following theorem shows that sequen-
tially computed test statistic D(n1t, n2t) forms an asymp-
totic Gaussian process. A proof is given in Appendix.

Theorem 3.1. Let J be a K-dimensional vector with all
elements equal to one, ξ(x, y) = I[x < y] − I[x > y] where
indicator I[E] is defined by I[E] = 1 if event E is true,
and I[E] = 0 otherwise. A, B, and C are three K ×K ma-

trices with (u, v) elements given by auv = cov
(
F2u(X1u),

F2v(X1v)
)
, buv = cov

(
F1u(X2u), F1v(X2v)

)
, and cuv =

cov
(
ξ(X1u, X2u), ξ(X1v, X2v)

)
respectively, nit is increas-

ing in t. We assume that n1t

n2t
+ n2t

n1t
= Op(1) is bounded for

t = 1, . . . , T when n1t + n2t = Nt → ∞. Then
(i) E[D(n1t, n2t)] = n1tKθ̄,

V ar[D(n1t, n2t)] = I(n1t, n2t) = (4n1t/n2t)J
T {(n2t −

1)A+ (n1t − 1)B + C/4}J .
(ii) For any s < t, Cov

(
D(n1s, n2s), D(n1t, n2t)

)
= 4n1s(n2t−1)

n2t
J

T

AJ + 4n1s(n1t−1)
n2t

J
T

BJ+ n1s

n2t
J

T

CJ =
I(n1s, n2s)(1 + γ), where

|I(n1s, n2s) γ| ≤ 8K2n1s(n2t − n2s)

n2sn2t
+ 4K2n1s

∣∣∣∣n1t

n2t
− n1s

n2s

∣∣∣∣
and

|γ| ≤ 1

min{n1s, n2s} − 1

∣∣∣∣∣
(
1− n2s

n2t

)(
1− J

T

CJ

4JT (A+B)J

)

+
(n2sn1t − n1sn2t)J

T

BJ

n2tJ
T (A+B)J

∣∣∣∣∣
= γ∗.

(iii) Let N0 ≡ 0 and G ≥ 1 be any finite integer. If
limNt→∞ n2t/n1t = r0 as Nt = n1t + n2t → ∞ for t =
1, . . . , G and some non-zero constant r0, then, the random

process {n−1/2
1t D(n1t, n2t), t = 1, ..., G} converges to a Gaus-

sian process with the first two moments given by (i) and (ii).
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It is seen that, under the condition of Theorem 3.1(iii),
the upper bound γ∗ in Theorem 3.1(ii) converges to zero as
sample size increases. This implies that the limiting process

of {n−1/2
1t D(n1t, n2t), t = 1, ..., G} has the same variance-

covariance structure as a Brownian motion measured at fi-
nite time points. We thus obtain the following:

Theorem 3.2. Under the same assumptions as in Theo-
rem 3.1(iv) and r0 = limNt→∞ n2t/n1t for all t = 1, . . . , G,
process {D(n1t, n2t), t = 1, . . . , G} converges to a Brown-

ian motion with drift δ = r0Kθ̄

4JT (r0A+B)J
at information times

{I(n1t, n2t), t = 1, 2, . . . , G}:⎧⎪⎨
⎪⎩

EA[D(n1t, n2t)] = δI(n1t, n2t),
V ar[D(n1t, n2t)] = I(n1t, n2t)

CovA

(
D(n1s, n2s), D(n1t, n2t)

)
= V ar[D(n1s, n2s)]

for any s < t. The subscript A is used to denote “asymptot-
ically true”.

Since limN→∞
1

n1t
I(n1t, n2t) = 4J

T

(A + B/r0)J under
the assumption of Theorem 3.2, an immediate result is that
sequence 1√

n1t
{D(n1t, n2t) − n1tKθ̄} converges in distribu-

tion to N(0, 4J
T

(A+B/r0)J).

Remark 1. Let Zt = D(n1t, n2t)/
√
I(n1t, n2t). Under the

assumption of Theorem 3.2, asymptotically, process {Zt, t =
1, . . . , G} has the canonical joint distribution
(2){

Zt ∼ N
(
δ
√

I(n1t, n2t) , 1
)
,

Cov(Zs, Zt) =
√
I(n1s, n2s)/I(n1t, n2t) for any s < t.

described in Jennison and Turnbull (2000).

Remark 2. When K = 1 and the endpoint has non-normal
distribution, sequential test statistics are sometimes con-
structed using score function and Fisher information that
are derived from the corresponding log-likelihood function.
An unexpected property of this approach is that, as sam-
ple size increases, the numerical estimate of Fisher infor-
mation (served as an information time) does not always in-
crease. Sometimes the estimated Fisher information at a lat-
ter stage could be even smaller than its estimate at an earlier
stage. Such an embarrassing scenario will never happen in
our case because I(n1t, n2t) is increasing in t. If we re-scale
the process D(n1t, n2t) to Dt∗ = D(n1t, n2t)/

√
I(n1G , n2G)

using new time scale t∗ =
√

I(n1t, n2t)/I(n1G, n2G) for
t = 1, 2, . . . , G, then 0 < t∗ ≤ 1, and process

{Dt∗ , t
∗ =

√
I(n11, n21)/I(n1G, n2G) , . . . , 1}

is asymptotically a Brownian motion with drift δ∗ =
δ
√
I(n1G, n2G) in information time interval t∗ ∈ [0, 1]:

Dt∗ ∼ N(δ∗t∗, t∗). Here, t∗ is sometimes called an informa-
tion fraction. Consequently, this process can be used in con-
junction with many existing univariate multistage sequential

procedures to yield multistage test procedures for comparing
multidimensional outcomes (see simulation of next section).
For example, the conditional likelihood ratio based SCPRT
in the stochastic process setting for testing (1), or equiva-
lently, H0 : δ∗ ≤ δ∗0 vs. Ha : δ∗ > δ∗0 , on a set of discrete
information time points, (t∗1, t

∗
2, ..., t

∗
G), using a G-stage de-

sign. Here δ∗ = δ∗
θ̄
= r0Kθ̄

4JT (r0A+B)J

√
I(n1G, n2G), t

∗
g (≤ 1) is

the information fraction (g = 1, ..., G), t∗g1 ≤ t∗g2 for g1 < g2,
and t∗G = 1. In multistage test, ifDt∗g hits the upper stopping
boundary defined by (ag, bg), i.e., Dt∗g ≥ bg, the null hypoth-
esis is rejected in favor of Ha; If it hits the lower stopping
boundary (Dt∗g ≤ ag), the null hypothesis is accepted; oth-
erwise, the trial continues. At the final Gth stage, we have
aG = bG to terminate the trial. Let L(Dt∗ |D1) be the like-
lihood function of Dt∗ given D1. The conditional maximum
likelihood ratio is given by

(3) λ(t∗, Dt∗ |D1) =
maxz>zαL(Dt∗ |D1 = z)

maxz≤zαL(Dt∗ |D1 = z)
,

where zα is the (1−α)th percentile of a standard normal dis-
tribution. As shown earlier, the sequential process {Dt∗} is
approximately a Brownian motion process. Based on Xiong
et al. (2003), the lower and upper stopping boundaries are:
(4)
ag = zα+{2atg(1−tg)}1/2, and bg = zα−{2btg(1−tg)}1/2,

where a and b are determined by the probability ρ of discor-
dance between the decisions from interim analysis and final
analysis. This probability is chosen as a design parameter.
Typically, ρ = 2% is selected (Tan, Xiong, Kutner, 1998).

Remark 3. In addition to establishing the large sam-
ple property, the upper bounds of |I(n1s, n2s) γ| and γ∗

in Theorem 3.1 allow us to assess how well the Brownian
motion approximation is when the sample size is only mod-
erate. The regularity conditions V ar{F1v(X2v)} > 0 and
V ar{F2v(X1v)} > 0 (v = 1, . . . ,K) require data from both
treatment groups have the same distribution support. This
is true for almost all clinical trial applications. Under such

regularity conditions, 4J
T

(A + B)J is bounded away from
zero since both A and B are positive definite matrices. The

quantity J
T

CJ is bounded by K2 since all elements in ma-
trix C are bounded by 1. For small to moderate sample
sizes, e.g., both n1s and n2s are greater than 30, the upper
bound γ∗ of |γ| generally is a small number. Simulation in
Table 1 shows the magnitude of γ∗ under different distri-
butions and correlation structures among K endpoints. The
data were generated using the same method as described
in the next section. Equal correlation among K endpoints
were generated by setting r1 = · · · = rK = 0.5, and unequal
correlation among K endpoints were generated by setting
r1 = · · · = rK−1 = 0.5 and rK = 1. These upper bounds
also provide theoretical bases why the method would work
even for small to moderate sample sizes.
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Table 1. Simulation evaluation of the upper bound γ∗ in
Theorem 1(ii), n1t = 2n1s, Δr = n1s

n2s
− n1t

n2t
, and 1000

simulations

Distribution r1, · · · , rK K n1s = n2s γ∗

Δr = 0 Δr = 10%

Uniform 2 30 0.0060 0.0529
100 0.0017 0.0475

equal 5 30 0.0031 0.0503
100 0.0009 0.0469

unequal 5 30 0.0032 0.0499
100 0.0009 0.0469

Normal 2 30 0.0060 0.0537
100 0.0018 0.0477

equal 5 30 0.0034 0.0508
100 0.0001 0.0471

unequal 5 30 0.0034 0.0506
100 0.0010 0.0470

Exponential 2 30 0.0062 0.0535
100 0.0018 0.0478

equal 5 30 0.0037 0.0510
100 0.0011 0.0470

unequal 5 30 0.0038 0.0514
100 0.0011 0.0472

4. SIMULATION

The goal of our simulation is to evaluate the performance
of multistage test constructed through combining existing
univariate sequential stopping boundaries with the proposed
rank based stochastic process for multi-dimensional end-
points (see Remarks 1 and 2 of the previous section). In
particular, we evaluated how type I and type II errors were
controlled when the sample size was small or moderate. We
present simulation results for K = 4 and 8 endpoints. Re-
sults for other choices of K are similar and are not presented
here.

The simulation study was modeled after the Parkinson
disease trial and designed to evaluate the operating charac-
teristics (e.g., type I and II errors) of the resulting sequential
test for testing hypothesis (1) and the finite-sample perfor-
mance. Let xiju = ruyij0 +

√
1− r2u yiju, where i = 1, 2;

j = 1, · · · , ni; and u = 1, · · · ,K. The yij0 and yiju were gen-
erated independently from exponential and beta distribu-
tions, respectively. We considered type I error α = 0.05 and
type II error β = 0.10. We set r1 = · · · = rK = r = 0.5 or
0.8. Since many Parkinson’s disease clinical endpoints are or-
dinal with 5 different levels (“normal”, “mild”, “moderate”,
“severe”, and “most serious”), one or two endpoints in each
simulated dataset were further discretized into 5 levels: -2,-
1, 0, 1 and 2. To introduce unequal covariances between the
two groups, the cut-off values used in the two groups were
not the same. For exponential distribution, yij0 and yiju
under the null hypothesis were generated from the standard
exponential distribution Exp(1) for both groups. Under the
alternative hypothesis, they were generated from Exp(1) for

i = 1 and Exp(3/4) for i = 2 respectively. For beta distribu-
tion, yij0 and yiju under the null hypothesis were generated
from Beta(0.43, 1) distribution for both groups. Under the
alternative hypothesis, they were generated from Beta(0.43,
1) for i = 1 and Beta(0.55, 1) for i = 2 respectively. We
fixed randomization ratio r0 = 1. When the total number of
interim analysis looks (stages) G = 1, it reduces to the fixed
sample size test. In each setting, the empirical power and
type I error rate of the sequential test constructed by com-
bining SCPRT or O’Brien-Fleming stoping boundaries with
process {Dt∗ , t

∗ =
√
I(n11, n21)/I(n1G, n2G) , . . . , 1} were

computed in single stage, 2-stage and 3-stage designs, re-
spectively. All simulations were performed in R, with 10,000
replications.

We used two sequential stopping boundaries to illustrate:
the O’Brien-Fleming stopping boundary and the SCPRT
stopping boundaries (Xiong, 1995; and Xiong et al., 2003).
The latter is derived by requiring the multistage test to have
a negligible discordance probability, namely, the probability
that the results based on interim data would be reversed
should the analysis be performed with the data from all
stages. These two stopping boundaries were chosen because
they both have the required conservatism for not reject-
ing the null hypothesis too early, and their required max-
imum sample sizes are not much larger than that of the
conventional single stage test. The O’Brien-Fleming stop-
ping boundary is quite conservative at early stages while
the SCPRT is not so conservative at early stages but re-
mains to be conservative throughout all stages much like
the Haybittle-Peto procedure. A detailed comparison of the
two stopping boundaries can be found in Tan et al. (1998)
and Freidlin et al. (1999).

The multistage tests considered in the simulation in-
clude both two and three-stage tests. We used n11 = n21,
n12 = n22, and n13 = n23 to denote the cumulative sample
sizes per group at stages 1, 2, and 3, respectively (Table 2).
In addition, the type I and II errors for a single stage test are
also included as a reference. The simulation study demon-
strates that both the type I and II errors for the multistage
tests are reasonably preserved, namely, similar to those of
a single stage test (Table 2), although the statistical power
for the case of 4 endpoints are slightly (5%) attenuated.

5. APPLICATION TO PARKINSON DISEASE
CLINICAL TRIALS

Example 1: The multi-center randomized controlled clin-
ical trial, Deprenyl and Tocopherol Antioxidative Therapy
of Parkinsonism (DATATOP), is the NIH sponsored first
landmark neuroprotective treatment study. The DATATOP
was carried out in 1987-1989 by the Parkinson Study Group
to determine whether long-term therapy with deprenyl or
tocopherol would postpone the initiation of levodopa ther-
apy for patients with early, untreated PD (The Parkinson
Study Group, 1989). Eight hundred patients were randomly
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Table 2. Simulation using SCPRT and O’Brien-Fleming stopping boundaries

Distribution θ r K Stages Type I error Power
G(n11, . . . , n1G) α = 0.05 1− β = 0.9

SCPRT OBF SCPRT OBF

Exponential 0.22 0.5 4 1 (74) 0.0456 0.0456 0.8539 0.8539
2 (37, 74) 0.0456 0.0428 0.8539 0.8493
3 (25, 50, 74) 0.0454 0.0388 0.8529 0.8409

8 1 (67) 0.0381 0.0381 0.8921 0.8921
2 (33, 67) 0.0381 0.0355 0.8921 0.8883
3 (22, 44, 67) 0.0381 0.0339 0.8915 0.8823

0.8 4 1 (101) 0.0403 0.0403 0.8496 0.8496
2 (50, 101) 0.0403 0.0379 0.8496 0.8453
3 (34, 68, 101) 0.0403 0.0356 0.8491 0.8371

8 1 (98) 0.0371 0.0371 0.8787 0.8787
2 (49, 98) 0.0371 0.0352 0.8787 0.8741
3 (33,66,98) 0.037 0.0334 0.8784 0.8659

Beta 0.1563 0.5 4 1(147) 0.0459 0.0459 0.8615 0.8615
2 (74, 147) 0.0459 0.0438 0.8615 0.8566
3 (39, 78, 147) 0.0459 0.0398 0.8615 0.8483

8 1 (132) 0.0393 0.0393 0.9094 0.9094
2 (66, 132) 0.0393 0.0367 0.9094 0.9054
3 (44, 88, 132) 0.0391 0.0336 0.9087 0.9004

0.8 4 1 (199) 0.0373 0.0373 0.8262 0.8262
2 (100, 199) 0.0373 0.0358 0.8262 0.8212
3 (66, 132, 199) 0.0373 0.0326 0.826 0.8126

8 1 (193) 0.0354 0.0354 0.8458 0.8458
2 (97, 193) 0.0354 0.0336 0.8458 0.8415
3 (64, 126, 193) 0.0353 0.0313 0.8453 0.8319

assigned to one of four treatment groups: placebo, active
tocopherol and deprenyl placebo, active deprenyl and toco-
pherol placebo, or both active drugs. The primary endpoint
in DATATOP was the development of disability necessitat-
ing the introduction of levodopa therapy. After a mean fol-
low up of 14±6 months, deprenyl was found to not only sig-
nificantly delay the need of levodopa, but also significantly
slow the progression measured by the total Unified Parkin-
son’s Disease Rating Scale (UPDRS) and its subscales. No
tocopherol effect was found in the study. Since the decision
to initiating levodopa is not a clinical scale and was later
found to be confounded with many factors not related to the
disease progression such as patient’s social life, loss of job,
and family relations (The Parkinson Study Group, 1993),
we retrospectively analyzed its 3 key movement dysfunc-
tion measures from UPDRS sub-scales: mentation, motor,
and activities of daily living (ADL). At the end of two-year
study, patients receiving deprenyl were found to have sig-
nificant better measures on these endpoints as comparing
to patients not receiving deprenyl. Our objective was to see
whether treatment benefit on these 3 endpoints could be
identified earlier by a multistage test with fewer sample size,
as compared to the original analysis performed when data
from all 800 patients have been collected.

We used a multistage rank-based test with interim anal-
yses performed at six and nine months, respectively, after
the first patient was enrolled. The three primary endpoints

are mentation, motor and activities of daily living scores
from the UPDRS. The single stage test has a significance
level of 5% and power of 80% to detect a difference of θ̄ as
shown in Table 3. A three multistage sequential tests were
derived by combining SCPRT with the proposed rank based
stochastic process (Table 3). The calendar time to perform
interim analysis was determined by the information frac-
tion t∗ described in Remark 2 of Section 3 and patient’s
randomization date. The SCPRT design has the same type
I and II error rates as the single stage test, and it has a
discordance probability of less than 1%. With the availabil-
ity of this multistage test, Table 3 suggests a pronounced
early treatment effect since the first stage data has already
demonstrated the significance for both the six months and
the nine months analyses: the stochastic process hits the
early stopping upper bound for efficacy, and the chance of a
potential reversion of the conclusion at the end of the study
is negligible.

Example 2: To illustrate the proposed method in a ran-
domized trial with moderate sample sizes, we used data from
the multicenter controlled clinical trial of Coenzyme Q10 in
early Parkinson’s disease (QE2 trial). Same as the previous
example, our goal was to show whether the emerging trend
for efficacy was sufficient for an early conclusion for effi-
cacy when using the proposed multistage test. The trial was
conducted in 1999-2001 to determine whether Coenzyme
Q10 could slow the functional decline in Parkinson’s dis-
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Table 3. Parkinson Disease Trial multistage Test Results

G Stage Sample Size θ̄ Test Information Lower Upper
Statistic Fraction t∗ Boundary Boundary

. Analysis based on 6-month improvement with total sample size 768
1 1 (n11, n21) = (387, 381) 0.2249 8.1150 1.00 1.96 1.96
2 1 (n11, n21) = (180, 190) 0.2280 3.8267 0.45 −0.13 1.91

2 (n12, n22) = (387, 381) 0.2249 8.1150 1.00 1.96 1.96
3 1 (n11, n21) = (120, 130) 0.2189 2.4498 0.31 −0.46 1.66

2 (n12, n22) = (255, 262) 0.2252 5.3546 0.66 0.19 2.38
3 (n13, n23) = (387, 381) 0.2248 8.1150 1.00 1.96 1.96

. Analysis based on 9-month improvement with total sample size 663
1 1 (n11, n21) = (355, 308) 0.2175 7.2230 1.00 1.96 1.96
2 1 (n11, n21) = (170, 160) 0.2286 3.6341 0.46 −0.13 1.92

2 (n12, n22) = (355, 308) 0.2175 7.2230 1.00 1.96 1.96
3 1 (n11, n21) = (110, 105) 0.1966 2.0225 0.31 −0.46 1.67

2 (n12, n22) = (225, 210) 0.1929 4.0597 0.63 0.12 2.34
3 (n13, n23) = (355, 308) 0.2175 7.2230 1.00 1.96 1.96

ease (Shults, et al., 2002). Sixteen and 64 patients were ran-
domized to receive placebo or Coenzyme Q10 respectively,
and were followed for up to 16 months or until disability
requiring treatment with levodopa had developed. Treat-
ment efficacy was measured by mental (mentation), motor,
ADL (average daily living) subscales of the UPDRS, and
the Schwarb and England ADL (SEADL) score. The pri-
mary outcome was the change in the total UPDRS score
(a sum of mental, motor and ADL) from baseline to the
last visit in 16 months. At the end of the study, the inves-
tigators concluded a significant improvement in the total
UPDRS for patients receiving Coenzyme Q10 with p-value
of 0.09 (Shults et al., 2002).

Instead of testing treatment effect through a sum of men-
tal, motor and ADL scores in UPDRS, we evaluated all 3
components jointly. We derived a two-stage test using a sig-
nificance level of 5% and power of 80%. The first stage anal-
ysis was performed using the first half of the patients with
corresponding information fraction t∗1 = 0.602. The critical
values of the stopping boundaries are 2.001 and 1.6546 for
stage 1 and stage 2, respectively. The observed test statis-
tic at the first stage analysis was Dt∗1

= 0.454 < 2.001,
which suggests that the trial should continue to the sec-
ond stage. At the end of stage 2 analysis, Dt∗2

= 1.66 was
obtained. This is slightly greater than the critical level of
1.6546. Thus, the multistage test gives a stronger evidence
of treatment benefit as compared to the original findings
from QE2 trial investigators.

6. DISCUSSION

Clinical trials are often conducted to test whether a new
treatment could improve clinical outcomes as compared to
the standard of care. It is well recognized that many treat-
ments have nuisance effect even if they do not show the
desired clinical benefit. In recent years, multiple primary
endpoints are increasly used in treatment comparison to ob-
tain a more comprehensive assessment of treatment benefit.

However, most multivariate tests require identical distribu-
tion under the null hypothesis which is not applicable when
treatment only has nuisance effect without the desired ef-
fect. For example, a treatment could change the distribution
shape or covariance structure among the primary endpoints
without changing their mean values. We have addressed
these data challenges in the framework of the Behrens-Fisher
problem, and proposed a rank-based multistage (sequential)
test to accommodate the need for interim analyses in clin-
ical trials. We showed that the stochastic process formed
from a sequentially computed global statistical test (GST)
statistic converges to a Gaussian process. Furthermore, if
the sample size ratios between the two groups are about the
same in all stages, we showed that the process can be ap-
proximated by a Brownian motion measured at finite time
points. We have derived a more accurate inequality for finite
sample case and showed that the asymptotic results hold for
studies with small to moderate sample sizes. With rich avail-
able resources in univariate sequential designs and property
in (2), this strategy greatly simplifies the development of
stopping rules for multidimensional endpoints with desired
operating characteristics. The asymptotic properties in The-
orem 3.1 provides a foundation for further developments of
sequential tests for multi-dimensional endpoints.

An important extension of current work is to the case
when there are confounding covariates and missing obser-
vations, or some of the endpoints are survival endpoints.
These works are currently in progress and will be re-
ported later. When K = G = 1, our test based on Zt =
D(n1t, n2t)/

√
I(n1t, n2t) is a modified Wilcoxon test for the

Behrens-Fisher problem that controls type I error asymp-
totically. This avoids the problem of non-robustness seen in
Wilcoxon test (Fagerland, Morten, and Sandvik, 2009). Al-
though our applications have focused on Parkinson disease
trials, the method can be used widely in clinical research on
stroke, dermatology, multiple sclerosis, asthma, rheumatoid
arthritis, and potentially in early stage trials on cancer im-
munotherapy where multiple immune-response monitoring
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parameters are frequentily used as intermediate markers for
clinical response.

Zhao, Hu, and Lagakos (2009) argued that, for any J-
dimensional parameter (or function) μ0(·) of interest and
K total number of looks, if we can find consistent estimate
μ̂n(·; t) such that

√
n{μ̂n(s;Tk) − μ0(s)} (k = 1, 2, . . . ,K)

converges weakly to a Gaussian process, we can always con-
struct sequential stopping boundaries for μ0(·). This is true
for the construction of essentially all sequential stopping
boundaries when sample size is large enough. However, it
is not clear how large the sample size should be in order to
have a good numerical approximation to the Gaussian pro-
cess. In many applications, such an asymptotic Gaussian
process may not be readily identifiable. Moreover, numeri-
cal computation of critical values of the stopping boundaries
is often not trivial when the sample size is relatively small
or moderate.

When planning a group sequential trial with multiple pri-
mary endpoints, the required sample size depends on the

information matrix through J
T

(r0A + B)J , where r0 =
n2t/n1t (t = 1, . . . , G) is a fixed non-zero randomization
ratio. Our result can be generalized to the class of multi-
stage tests that allow the test critical levels at each stage
and the sample size to depend on the updated estimate

of J
T

(r0A + B)J , which is usually not well estimated at
the planning stage of the study. If this value is underes-
timated, so is the sample size, leading to an underpow-

ered test. Similarly, the updated estimate of J
T

(r0A+B)J
will affect the critical level of the test at each stage (se-
quential stopping boundary). Various adaptive designs in
sample size re-estimation have been proposed. For example,
Wittes and Brittain (1990) and Gould and Shih (1992) pro-
posed an internal pilot data for sample re-estimation where
no early stopping is considered, whereas Gould and Shih
(1998) allowed early stopping. Denne and Jennison (2000)
used Stein’s two-stage procedure (Stein, 1945) and its gen-
eralization to update sample sizes for group sequential tests
(see Chapter 7 of Jennison and Turnbull (2000) for flexible
monitoring of group sequential tests). Xiong et al. (2003)
proposed a nuisance parameter adaptive design using the
updated variance based on data from previous stage by us-
ing the power function approximated by a Taylor expansion.

Like the rank-sum test proposed by O’Brien (1984), our
hypothesis (1) and multistage procedure are constructed for
testing treatment’s global benefit across multiple equally im-
portant endpoints in clinical trial setting. If the treatment
has strong beneficial effects on half of the endpoints and
equally strong detrimental effects on the remaining half of
the endpoints, our test will lose power. This is a desired
property of our proposed test because we do not want to
have a high power to claim benefit for such a treatment. If
the goal is to test whether the treatment has any type of
effect (positive or negative), Liu et al. (2010) proposed an
omnidirectional test based on the maximum rank sum dif-
ference Tmax among K endpoints. They have showed, when

treatment has strong effects in both positive and negative
directions, or it has a strong positive effect on one endpoint
but trivial effects on all others, a test based on Tmax gives
a much higher power to reject the null hypothesis than the
tests proposed by O’Brien (1984) and Huang et al. (2005).

Our multistage test, suitable for the Behrens-Fisher prob-
lem, allows unknown and possibly unequal variances be-
tween the two groups. In fact, our test can still be used
even when a treatment may demonstrate some unexpected
effects or nuisance effects. For example, almost all Parkin-
son disease agents are known to have certain symptomatic
(nuisance) effects. If the goal is to test treatment’s neuro-
protective effect in a randomized placebo-controlled clinical
trial (like DATATOP and NET-PD trials), the null hypoth-
esis of equal joint distribution of multiple endpoints between
the two groups is not appropriate to use. In our simulation,
the symptomatic effect is demonstrated through the change
in distribution shape (or more specifically, the change in
variance). Upon the rejection of the null hypothesis, a claim
of global treatment benefit can be made. If we are further
interested to know which endpoints have stronger effects,
we can continue to test treatment effect on each single end-
point. These tests will be considered as secondary analyses
and do not affect the type I error of the primary test for
hypothesis (1).

APPENDIX. THEOREM PROOF

Proof of Theorem 3.1.
(i) is a direct consequence of Eξ(x1iv, x2jv) =

θv, D(n1t, n2t) = 2
n2t

∑K
v=1 Wvt − K(Nt + 1), and

V ar[(W1t, . . . ,WKt)
T

] = n1tn2t{(n2t − 1)A + (n1t − 1)B +
C/4}, where Wvt =

∑n2

j=1 R2jv(t) is the Wilcoxon rank-sum
test statistic on the v-th endpoint at the t-th interim anal-
ysis.

(ii) For any s < t,

cov
(
D(n1t, n2t)−D(n1s, n2s), D(n1s, n2s)

)
= cov

(
2

1 + r0
(R̄22 − R̄12)−

2

1 + r0
(R̄21 − R̄11),

2

1 + r0
(R̄21 − R̄11)

)

=
1

n2sn2t
J

T
{
4n1sn2s(n2t − n2s)A

+ 4n1sn2s(n1t − n1s)B
}
J

+
4n2

1s(n2s − n2t)

n2tN1s
J

T

Σ(n1s, n2s)J

= n1s(n2t − n2s)n2sn2tJ
T

(4A+ 4B − C)J

+
4n1s(n2sn1t − n1sn2t)

n2sn2t
J

T

BJ.

Now we have
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(5)

cov
(
D(n1t, n2t), D(n1s, n2s)

)
= V ar[D(n1s, n2s)]+

cov
(
D(n1t, n2t)−D(n1s, n2s), D(n1s, n2s)

)
=

4n1s

n2s
J

T {(n2s − 1)A+ (n1s − 1)B + C/4}J

+
4n1s(n2t − n2s)

n2sn2t
J

T

AJ

+
4n1s(n2sn1t − n1sn2t − n2s + n2t)

n2sn2t
J

T

BJ

− n1s(n2t − n2s)

n2sn2t
J

T

CJ

=
4n1s(n2t − 1)

n2t
J

T

AJ +
4n1s(n1t − 1)

n2t
J

T

BJ

+
n1s

n2t
J

T

CJ

= I(n1s, n2s)(1 + γ),

where

|I(n1s, n2s) γ|

=

∣∣∣∣n1s(n2t − n2s)

n2sn2t
J

T

(4A+ 4B − C)J

+
4n1s(n2sn1t − n1sn2t)

n2sn2t
J

T

BJ

∣∣∣∣
≤

∣∣∣∣n1s(n2t − n2s)

n2sn2t
J

T

(4A+ 4B − C)J

∣∣∣∣
+

∣∣∣∣4n1s(n2sn1t − n1sn2t)

n2sn2t
J

T

BJ

∣∣∣∣
≤ 8K2n1s(n2t − n2s)

n2sn2t
+ 4K2n1s

∣∣∣∣n1t

n2t
− n1s

n2s

∣∣∣∣
and

|γ|

=
∣∣∣n1s(n2t − n2s)

n2sn2t
J

T

(4A+ 4B − C)J

+
4n1s(n2sn1t − n1sn2t)

n2sn2t
J

T

BJ
∣∣∣

×
(
(4n1s/n2s)J

T {(n2s − 1)A+ (n1s − 1)B + C/4}J
)−1

≤

∣∣∣ (n2t−n2s)
n2t

J
T

(4A+ 4B − C)J + 4(n2sn1t−n1sn2t)
n2t

J
T

BJ
∣∣∣

4JT {(n2s − 1)A+ (n1s − 1)B}J

≤ 1

min{n1s, n2s} − 1

∣∣∣∣∣
(
1− n2s

n2t

)(
1− J

T

CJ

4JT (A+B)J

)

+
(n2sn1t − n1sn2t)J

T

BJ

n2tJ
T (A+B)J

∣∣∣∣∣
= γ∗.

(iii) Without the loss of generality, we only
need to show that, for any s < t, vector

(n
−1/2
1s D(n1s, n2s), n

−1/2
1t D(n1t, n2t))

T

converges to a bivari-
ate normal distribution as Ns → ∞ and Nt −Ns → ∞. For
higher finite dimension case, the proof is similar. The asymp-

totic normality of n
−1/2
1t D(n1t, n2t) was shown by Huang

et al. (2008). For joint asymptotic normality, it suffices to

show that Z = λ10n
−1/2
1s D(n1s, n2s) + λ20n

−1/2
1t D(n1t, n2t)

has asymptotic normal distribution for any constants λ10

and λ20. Define λ1 = λ10n
−1/2
1s , λ2 = λ20n

−1/2
1t , and

U = −K(λ1 + λ2)n1s(θ̄ − 1)

− 2(λ1 + λ2)

n1s∑
l=1

K∑
v=1

F2v(x1lv)

− 2λ2

n1t∑
l=n1s+1

K∑
v=1

F2v(x1lv)

+ 2

(
λ1

n1s

n2s
+ λ2

n1t

n2t

) n2s∑
l=1

K∑
v=1

F1v(x2lv)

+ 2λ2
n1t

n2t

n2t∑
l=n2s+1

K∑
v=1

F1v(x2lv)

From Central Limiting Theorem, U has asymptotic nor-
mal distribution with V ar[U ] = 4(λ2

1n1s + 2λ1λ2n1s +

λ2
2n1t)J

T

AJ +4
(

λ2
1n

2
1s

n2s
+ 2λ1λ2

n1sn1t

n2t
+

λ2
2n

2
1t

n2t

)
J

T

BJ , On

the other hand,

V ar[Z]

= V ar[λ1{D(n1s, n2s)− n1sJ
T

θ}
+ λ2{D(n1t, n2t)− n1tJ

T

θ}]
= λ2

1I(n1s, n2s) + λ2
2I(n1t, n2t) + 2λ1λ2{I(n1s, n2s)

+Op(1)}
= (λ2

1 + 2λ1λ2)I(n1s, n2s) + λ2
2I(n1t, n2t) + λ1λ2Op(1)

= (λ2
1 + 2λ1λ2)

{
4n1s

n2s
J

T

(n2sA+ n1sB)J +Op(1)

}

+ λ2
2

{
4n1t

n2t
J

T

(n2tA+ n1tB)J +Op(1)

}
+ λ1λ2Op(1)

= 4(λ2
1n1s + 2λ1λ2n1s + λ2

2n1t)J
T

AJ

+ 4

{
(λ2

1 + 2λ1λ2)
n2
1s

n2s
+ λ2

2

n2
1t

n2t

}
J

T

BJ

+ (λ1 + λ2)
2Op(1)

Comparing V ar[U ] and V ar[Z], we have

V ar[Z] = V ar[U ] + 8λ1λ2n1s

(
n1s

n2s
− n1t

n2t

)
J

T

BJ

+ (λ1 + λ2)
2Op(1)
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= V ar[U ] + 8λ10λ20

√
n1s

n1t

(
n1s

n2s
− n1t

n2t

)
J

T

BJ

+Op

(
1

n1s
+

1

n1t
+

1√
n1sn1t

)

= V ar[U ] + op(1) +Op

(
1

n1s
+

1

n1t
+

1√
n1sn1t

)
.

This implies that limNs,Nt→∞(V ar[Z]−V ar[U ]) = 0. Since
E[ZU ] = E[U2] and E(Z−U)2 = E[Z]2−E[U ]2−2E[(Z−
U)U ] = V ar[Z]− V ar[U ] → 0 as Ns, Nt → ∞, we see that,
for any constant ε > 0 and as Nt → ∞,

P{|Z − U | > ε} ≤ E(Z − U)2/ε2 → 0.

That is, Z − U converges in probability to zero. Since Z =
U + (Z − U), using Slutsky Theorem, Z and U have the
same asymptotic distribution. Thus Z also has asymptotic
normal distribution.
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