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Semiparametric random effects models for
longitudinal data with informative observation
times

Yang Li
∗
and Yanqing Sun

Longitudinal data frequently arise in many fields such
as medical follow-up studies focusing on specific longitudi-
nal responses. In such situations, the responses are recorded
only at discrete observation times. Most existing approaches
for longitudinal data analysis assume that the observation or
follow-up times are independent of the underlying response
process, either completely or given some known covariates.
We present a joint analysis approach in which possible cor-
relations among the responses, observation and follow-up
times can be characterized by time-dependent random ef-
fects. Estimating equations are developed for parameter es-
timation and the resulting estimates are shown to be con-
sistent and asymptotically normal. A simulation study is
conducted to assess the finite sample performance of the
approach and the method is applied to data arising from a
skin cancer study.

Keywords and phrases: Estimating equations, Informa-
tive censoring, Informative observation process, Joint anal-
ysis approach, Longitudinal data.

1. INTRODUCTION

Longitudinal data arise in many fields such as medical
follow-up studies that focus on longitudinal responses. In
such situations, each study subject is observed only at fi-
nite discrete times rather than continuously. Therefore, the
responses are known only at a set of observation times but
missing otherwise. The resulting data are usually incomplete
and unbalanced among individuals.

Analysis of longitudinal data concerns two processes:
one is the underlying response process, which is usually
of practical interest but not continuously observable. The
other refers to the observation process, which determines
the discrete observation times. Many authors have consid-
ered the analysis of longitudinal data, for example, Diggle
et al. (1994) who presented a relatively comprehensive re-
view about the commonly considered models and estima-
tion methods. Lin and Ying (2001), Welsh et al. (2002),
Wellner and Zhang (2007) and Sun (2010) developed some
semiparametric and nonparametric procedures for regres-
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sion analysis. These approaches all assume that the two pro-
cesses mentioned above are independent, either completely
or conditional on some known covariates. To relax this as-
sumption, Sun et al. (2007b), Zhao and Tong (2011) and
Zhao et al. (2013b) modeled the possible correlations by
time-independent random effects. However, these methods
assume follow-up times to be independent from both the
response and the observation processes given covariates.

In many situations, the underlying response process, the
observation and follow-up times may be correlated. For ex-
ample, both observation times and responses may depend
on the stage of disease progression, which can also often
determine the follow-up time. Lipsitz et al. (2002) consid-
ered general linear models for longitudinal data where the
responses were assumed to have a multivariate Gaussian dis-
tribution. Sun et al. (2007), He et al. (2009) and Sun et al.
(2012) proposed joint model based approaches; however, it
is assumed that the shared random effects are fixed over
time or follow some specific distributions, and the covari-
ates are either multiplicative or additive in their effects to
the response process. Without such specific distribution as-
sumption, Sun et al. (2005) and Zhao et al. (2013) consid-
ered marginal model based methods; however, the models
indicate that when the observation process is common for
everyone, people with the same covariates are expected to
have the same responses throughout the study. It is apparent
that such assumptions may not be realistic in many appli-
cations.

We present a joint analysis approach for longitudinal data
by which the possible correlations can be characterized by
time-dependent random effects with arbitrary distributions.
For the response process, a class of semiparametric trans-
formation models are considered. Estimating equations are
developed for parameter estimation and the resulting esti-
mators are shown to be consistent and asymptotically nor-
mal. The remainder of this paper is organized as follows. We
introduce notation and present the relevant models in Sec-
tion 2. Section 3 presents the estimation procedure and es-
tablishes asymptotic properties of the proposed estimators.
In Section 4, we demonstrate a model-checking technique
and an extensive simulation study is presented in Section 5
to evaluate finite sample properties of the estimation proce-
dure. An illustrative example is given in Section 6 and some
discussion and remarks are provided in Section 7.
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2. NOTATION AND MODELS

Consider a longitudinal study in which subjects are ob-
served only at discrete times. For subject i (i = 1, . . . , n),
let Yi(t) denote the response process and let Ni(t) be the
observation process which gives the cumulative number
of observations at time t. In practice, one often observes
Ñi(t) = Ni(t ∧ Ci) where a ∧ b = min(a, b) and Ci denotes
a possible censoring or follow-up time. Let {Ti,1, · · · , Ti,mi}
be the discrete times when Yi(t) is observed and let Zi(t)
be a p-dimensional vector of covariates, assumed to be
continuously traceable in the study. In the following, we
present a joint modeling approach and model the possible
correlation between Yi(t), Ni(t) and Ci through an unob-
served random process bi(t) = (b1i(t), b2i(t), b3i(t))

′. Define
Bit = {bi(s), s ≤ t} and Zit = {Zi(s), s ≤ t}. We assume
that the bi(t)’s are independent and identically distributed
with b1i(t) > 0 and b2i(t) > 0, Bit is independent of Zit, and
given Zit and Bit, Ci, Ni(t) and Yi(t) are mutually indepen-
dent. Also we assume that the mean function of Yi(t) can be
postulated by the following semiparametric transformation
model

(1) E{Yi(t)|Zi(t),bi(t)} = g{μ0(t)e
θ′Zi(t)}b1i(t),

where g(·) is a known twice continuously differentiable
and strictly increasing link function, θ is a vector of un-
known regression parameters and μ0(t) denotes an unspeci-

fied smooth function of t. We assume that E{b1i(t)|dÑi(t) =
1,Zit} = 1 for identifiability. In particular, when g(x) = x,
μ0(t) represents the baseline mean function that is estimable
at {Ti,1, · · · , Ti,mi}.

The observation process Ni(t) is assumed to follow the
marginal proportional rates model given by

(2) E{dNi(t)|Zi(t),bi(t)} = exp{γ′Zi(t)}b2i(t)dΛ0(t),

where E{b2i(t)} = 1, γ is a vector of unknown parameters
and dΛ0(t) is an unknown baseline rate function. It can be
seen that both of the above models can be viewed as nat-
ural generalizations of the transformation model and pro-
portional rates model studied in Li et al. (2010), Zhao et al.
(2011) and Zhao et al. (2013) among others. Compared with
the existing models, the proposed models are relatively flex-
ible in handling the possible dependence since neither the
form nor the distribution of bi(t) needs to be specified. By
taking different forms of g(·) and bi(t), model (1) allows for
various types of dependence for the mean function of Yi(t)
on Ni(t) and Zi(t). In particular, when either b1i(t) or b2i(t)
is unity or independent of the other one, the two processes
Yi(t) and Ni(t) are independent given Zit. Therefore, the es-
timation procedure proposed next also applies to data with
noninformative observation times as special cases.

For the follow-up or censoring time Ci, we consider the
following additive hazards model

(3) λi(t|Zi(t),bi(t)) = λ0(t) + ξ′Zi(t) + b3i(t),

where E{b3i(t)} = 0, λ0(t) is an unknown baseline haz-
ard function and ξ is an unknown vector of regression pa-
rameters. The random effects b1i(t), b2i(t) and b3i(t) char-
acterize possible correlations between Ci and Yi(t), Ni(t),
for which b3i(t) = 0 implies noninformative censoring. The
same model has also been studied in Kalbfleisch and Pren-
tice (2002), Lin et al. (1998), Zhang et al. (2005) and Sun et
al. (2013) among others. In the following, we study the joint
analysis of the proposed models with the focus on estimation
of regression parameters θ along with γ and ξ.

3. ESTIMATION PROCEDURE

In this section, we present an estimation procedure for
θ which is usually of primary interest. To this end, first
note that Ñi(t) jumps by one at time t if and only if Ci ≥
t and dNi(t) = 1. Based on the conditional independence
assumption between Ci, Ni(t) and Yi(t) given Zit and Bit,
we have, under (2)

E{dÑi(t)|Zit} = E

[
E{I(t ≤ Ci)dNi(t)|Zit,Bit}

∣∣∣∣Zit

]
(4)

= E

[
E{I(t ≤ Ci)|Zit,Bit}E{dNi(t)|Zit,Bit}

∣∣∣∣Zit

]
= E{I(t ≤ Ci)b2i(t)|Zit} exp{γ′Zi(t)}dΛ0(t).

By the property of double expectation and model (3), the
first term in (4) equals

E{I(t ≤ Ci)b2i(t)|Zit}

= E

{
exp{−Λ∗

0(t)−Bi(t)− ξ′Z∗
i (t)}b2i(t)

∣∣∣∣Zit

}
,

where Λ∗
0(t) =

∫ t

0
λ0(s)ds, Bi(t) =

∫ t

0
b3i(s)ds and Z∗

i (t) =∫ t

0
Zi(s)ds. Hence,

(5) E{dÑi(t)|Zit} = exp{η′X∗
i (t)}dΛ∗

1(t),

where η = (γ′, ξ′)′, X∗
i (t) = (Z′

i(t),−Z′∗
i (t))

′ and dΛ∗
1(t) =

exp{−Λ∗
0(t)}E[b2i(t)exp{−Bi(t)}]dΛ0(t).

Let τ be a known constant representing the length of
the study. Define dM∗

i (t; η) = dÑi(t) − eη
′X∗

i (t)dΛ∗
1(t) and

dM∗
i (t) = dM∗

i (t; η0), where η0 denotes the true value of
η. It is straightforward to show that M∗

i (t) is a mean-zero
stochastic process. It follows that η and Λ∗

1(t) can be esti-
mated by η̂ and Λ̂∗

1(t; η̂), respectively, by solving the follow-
ing two estimating equations

(6) Uη(η) =

n∑
i=1

∫ τ

0

{
X∗

i (t)− X̄∗(t; η)

}
dÑi(t) = 0,

and

(7)

n∑
i=1

[
dÑi(t)− eη

′X∗
i (t)dΛ∗

1(t)

]
= 0,
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where X̄∗(t; η) = S(1)(t; η)/S(0)(t; η) and S(k)(t; η) =
n−1

∑n
i=1 e

η′X∗
i (t)X∗

i (t)
⊗k for k = 0, 1 and 2. Here and

throughout a⊗0 = 1, a⊗1 = a and a⊗2 = aa′. Define
Λ̂∗
1(t) = Λ̂∗

1(t; η̂), x̄
∗(t) = limn→∞X̄∗(t; η0) and s(k)(t) =

limn→∞S(k)(t; η0).
For the estimation of θ, consider

E{Yi(t)dÑi(t)|Zit}
= E{Yi(t)I

(
dÑi(t) = 1

)
|Zit}

=
E{Yi(t)I

(
dÑi(t) = 1

)
|Zit}

E{I
(
dÑi(t) = 1

)
|Zit}

E{dÑi(t)|Zit}

by the definition of dÑi(t) and simple manipulation. From
the conditional independence assumption between Ci, Ni(t)
and Yi(t) given Zit and Bit, the last equality equals

E{Yi(t)dÑi(t)|Zit}

=
E

[
E{Yi(t)I

(
dÑi(t) = 1

)
|Zit,Bit}|Zit

]
E{I

(
dÑi(t) = 1

)
|Zit}

E{dÑi(t)|Zit}

=
g{μ0(t)e

θ′Zi(t)}E{b1i(t)I
(
dÑi(t) = 1

)
|Zit}

E{I
(
dÑi(t) = 1

)
|Zit}

×E{dÑi(t)|Zit}
= g{μ0(t)e

θ′Zi(t)}E{b1i(t)|dÑi(t) = 1,Zit}
×E{dÑi(t)|Zit}

= g{μ0(t)e
θ′Zi(t)}E{dÑi(t)|Zit},

under model (1). Combining (5), it follows that

(8) E{Yi(t)dÑi(t)|Zit} = eη
′X∗

i (t)g{μ0(t)e
θ′Zi(t)} dΛ∗

1(t).

We define

dMi(t; θ, η) = Yi(t)dÑi(t)− eη
′X∗

i (t)g{μ0(t)e
θ′Zi(t)} dΛ∗

1(t)

and dMi(t) = dMi(t; θ0, η0), where θ0 denotes the true value
of θ. Then Mi(t) is a mean-zero stochastic process, which
naturally suggests the following estimating equations to es-
timate θ and μ0(t):

n∑
i=1

[
Yi(t)dÑi(t)− eη̂

′X∗
i (t)g{μ0(t)e

θ′Zi(t)}dΛ̂∗
1(t)

]
(9)

= 0, 0 ≤ t ≤ τ,

and

n∑
i=1

∫ τ

0

W (t)Zi(t)(10)

×
[
Yi(t)dÑi(t)− eη̂

′X∗
i (t)g{μ0(t)e

θ′Zi(t)}dΛ̂∗
1(t)

]
= 0,

where W (t) is a possibly data-dependent weight function.

We denote the estimates of θ and μ0(t) by θ̂ and μ̂0(t; θ̂, η̂),

respectively. Define μ̂0(t) = μ̂0(t; θ̂, η̂).

In general, neither θ̂ nor μ̂0(t) have closed forms and some
iterative algorithms may be necessary to solve (9) and (10).
For some special cases, μ̂0(t) can be written explicitly. For
example, when g(x) = log(x), it can be shown that

μ̂0(t) = exp

{ ∑n
i=1 Yi(t)dÑi(t)∑n

i=1 e
η̂′X∗

i (t)dΛ̂∗
1(t)

− θ̂′Z̄(t; η̂)

}

and

θ̂ =

{ n∑
i=1

∫ τ

0

W (t){Zi(t)− Z̄(t; η̂)}Z′
i(t)e

η̂′X∗
i (t)dΛ̂∗

1(t)

}−1

×
n∑

i=1

∫ τ

0

W (t){Zi(t)− Z̄(t; η̂)}Yi(t)dÑi(t),

where Z̄(t; η̂) =
∑n

i=1 Zi(t)e
η̂′X∗

i (t)∑n
i=1 eη̂

′X∗
i
(t) .

To establish the asymptotic properties of θ̂, we define

M̂∗
i (t) = Ñi(t)−

∫ t

0

eη̂
′X∗

i (s)dΛ̂∗
1(s),

M̂i(t) =

∫ t

0

Yi(s)dÑi(s)−
∫ t

0

eη̂
′X∗

i (s)g{μ̂0(s)e
θ̂′Zi(s)}dΛ̂∗

1(s),

ÊZ(t; θ̂, η̂) =

∑n
i=1 Zi(t)ġ{μ̂0(t)e

θ̂′Zi(t)}eθ̂′Zi(t)+η̂′X∗
i (t)∑n

i=1 ġ{μ̂0(t)eθ̂
′Zi(t)}eθ̂′Zi(t)+η̂′X∗

i (t)

ez(t) = limn→∞ÊZ(t; θ0, η0) and ÊZ(t) = ÊZ(t; θ̂, η̂).

The following theorem establishes the consistency and
asymptotic normality of θ̂ and η̂.

Theorem 1. Assume that the conditions (C1)–(C5) given

in the Appendix hold. Then θ̂ and η̂ are consistent estima-
tors of θ0 and η0, respectively. n

1/2(θ̂− θ0) and n1/2(η̂−η0)
converge weakly to mean-zero normal distributions with co-
variance matrices that can be consistently estimated by
Σ̂θ = Â−1

θ Σ̂Â−1
θ and Σ̂η = Ω̂−1

η Ψ̂Ω̂−1
η , respectively, where

Σ̂ = n−1
∑n

i=1(ξ̂1i − ξ̂2i − ξ̂3i)
⊗2, Ψ̂ = n−1

∑n
i=1 ζ̂

⊗2
i ,

ξ̂1i =

∫ τ

0

W (t)
(
Zi(t)− ÊZ(t)

)
dM̂i(t) ,

ξ̂2i =

∫ τ

0

W (t)D̂(t; θ̂, η̂)

S(0)(t; η̂)
dM̂∗

i (t) ,

ξ̂3i =

∫ τ

0

ÂηΩ̂
−1
η

(
X∗

i (t)− X̄∗(t; η̂)
)
dM̂∗

i (t) ,

ζ̂i =

∫ τ

0

(
X∗

i (t)− X̄∗(t; η̂)
)
dM̂∗

i (t) ,

Âθ =
1

n

n∑
i=1

∫ τ

0

W (t)ġ{μ̂0(t)e
θ̂′Zi(t)}

× {Zi(t)− ÊZ(t)}⊗2eθ̂
′Zi(t)+η̂′X∗

i (t)μ̂0(t)dΛ̂
∗
1(t),

D̂(t; θ̂, η̂) =
1

n

n∑
i=1

{Zi(t)− ÊZ(t)}g{μ̂0(t)e
θ̂′Zi(t)}eη̂′X∗

i (t),
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Âη =
1

n

n∑
i=1

∫ τ

0

W (t)g{μ̂0(t)e
θ̂′Zi(t)}eη̂′X∗

i (t)

× {Zi(t)− ÊZ(t)}{X∗
i (t)− X̄∗(t; η̂)}′dΛ̂∗

1(t),

Ω̂η =
1

n

n∑
i=1

∫ τ

0

{X∗
i (t)− X̄∗(t; η̂)}⊗2eη̂

′X∗
i (t)dΛ̂∗

1(t).

The proof of the theorem above is sketched in Ap-
pendix A.

4. MODEL CHECKING

As mentioned above, a main advantage of the proposed
methodology is that it is applicable to a class of correlated
models through the link function g(·) and random effects
bi(t). On the other hand, one may question how to choose
an appropriate form of g(·) for the response process. To an-
swer this question, one may develop some model selection
procedure and choose an optimal g(·) among several candi-
date models. However, such a strategy can be very difficult
for longitudinal data because of their incompleteness. To
access the adequacy of the proposed models with a given
link function g(·), one can develop an omnibus goodness-of-
fit test based on the cumulative summation of the residual
process (Lin et al., 1993; Lin et al., 2000; Li et al., 2010;
Zhao et al., 2013) as follows

F(t, x) = n−1/2
n∑

i=1

∫ t

0

I(Zi(s) ≤ z)dM̂i(s),

where {Zi(u) ≤ z} represents that each component of Zi(u)
is no greater than the corresponding component of z. In gen-
eral, the distribution of F(t, x) is unknown or very difficult
to obtain. Under the proposed models, F(t, x) is expected to
flunctuate randomly around 0. In Appendix B, it is shown
that the null distribution of F(t, x) can be approximated by
a mean-zero Gaussian distribution

F̂(t, z) = n−1/2
n∑

i=1

{
û1i(t, z)− û2i(t, z)− V̂η(t, z)Ω̂

−1
η ζ̂i

(11)

− V̂θ(t, z)Â
−1
θ (ξ̂1i − ξ̂2i − ξ̂3i)

}
ei,

where e1, e2, . . . , en are independent standard normal vari-
ables independent of the observed data,

û1i(t, z) =

∫ t

0

{
I
(
Zi(s) ≤ z

)
− ÊI(s, z; θ̂, η̂)

}
dM̂i(s),

û2i(t, z) =

∫ t

0

Γ̂(s; θ̂, η̂)

S(0)(s; η̂)
dM̂∗

i (s),

Γ̂(t; θ̂, η̂) = n−1
n∑

i=1

{I(Zi(t) ≤ z)− ÊI(t, z; θ̂, η̂)}

× g{μ̂0(t)e
θ̂′Zi(t)}eη̂′X∗

i (t),

V̂η(t, z)

= n−1
n∑

i=1

∫ t

0

g{μ̂0(s)e
θ̂′Zi(s)}eη̂′X∗

i (s){I(Zi(s) ≤ z)

− ÊI(s, z; θ̂, η̂)} × {X∗
i (s)− X̄∗(s; η̂)}′dΛ̂∗

1(s),

V̂θ(t, z) = n−1
n∑

i=1

∫ t

0

ġ{μ̂0(s)e
θ̂′Zi(s)}I(Zi(s) ≤ z)

× {Zi(s)− ÊZ(s)}′eθ̂
′Zi(s)+η̂′X∗

i (s)μ̂0(s)dΛ̂
∗
1(s),

ÊI(t, z; θ̂, η̂)

=

∑n
i=1 I(Zi(t) ≤ z)ġ{μ̂0(t)e

θ̂′Zi(t)}eθ̂′Zi(t)+η̂′X∗
i (t)∑n

i=1 ġ{μ̂0(t)eθ̂
′Zi(t)}eθ̂′Zi(t)+η̂′X∗

i (t)

eI(t, z) = limn→∞EI(t, z; θ0, η0)

and ζ̂i, ξ̂1i, ξ̂2i, ξ̂3i are the same as defined in the pre-
vious section. Therefore for a given set of data, one can
obtain a large number of realizations from F̂(t, z) by
repeatedly generating standard normal random samples
{e1, e2, . . . , en}. A formal goodness-of-fit test can be per-
formed with the corresponding p-value being calculated by
comparing sup0≤t≤τ,z|F(t, z)| to a large number of realiza-

tions from sup0≤t≤τ,z|F̂(t, z)|.

5. A SIMULATION STUDY

In this section, we present results obtained from an exten-
sive simulation study conducted to assess the finite sample
behavior of the estimation procedure proposed in the pre-
vious sections. In the study, the covariate Zi was assumed
to be a Bernoulli random variable with the probability of
success being 0.5. Given Zi and some unobserved random
effects bi(t) = (b1i(t), b2i(t), b3i(t))

′, the hazard function of
the censoring time Ci was assumed to have the form

(12) λi(t|Zi,bi(t)) = λ0 − ξZi + b3i(t),

with the length of study τ being 1. The number of obser-
vations Ni(t) was assumed to follow a Poisson process on
(0, Ci) with the rate function

(13) E{dNi(t)|Zi,bi(t)} = exp{γZi}b2i(t)dΛ0(t) .

In practice, the exact time of Ci may not be observable
and dÑi(t) is observed instead of dNi(t); thus we considered

E{Ñi(t)|Zi,Bit} for the observation times. From (12) and
(13),

E{dÑi(t)|Zi,Bit} = exp{γZi + ξZit}dΛ∗
1(t),

where dΛ∗
1(t) = exp{−λ0t − Bi(t)}b2i(t)dΛ0(t). Given Zi

and bi(t), Ñi(t) was assumed to follow a nonhomogeneous
Poisson process and the total number of observation times
mi was generated with mean E{mi} = E{Ñi(τ)|Zi,Biτ}.
Then the observation times {Ti,1, . . . , Ti,mi} were taken as
mi order statistics from the density function

fÑ (t) =
exp{γZi + ξZit}dΛ∗

1(t)∫ τ

0
exp{γZi + ξZit}dΛ∗

1(t)
.
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Table 1. Estimation results for θ with the link function
g(x) = log(x)

n = 100 n = 200
θ0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0, 0)
Bias -0.004 -0.006 -0.018 -0.003 0.006 -0.008
SEE 0.186 0.199 0.218 0.131 0.140 0.154
SSE 0.193 0.208 0.220 0.129 0.149 0.149
CP 0.944 0.935 0.943 0.958 0.943 0.962

(γ0, ξ0) = (0, 0.2)
Bias 0.033 0.029 0.024 0.021 0.028 0.024
SEE 0.180 0.192 0.211 0.129 0.137 0.152
SSE 0.187 0.206 0.214 0.133 0.137 0.155
CP 0.939 0.929 0.953 0.942 0.947 0.948

(γ0, ξ0) = (0.5, 0)
Bias 0.005 0.002 0.000 -0.005 -0.001 -0.008
SEE 0.169 0.181 0.199 0.121 0.129 0.142
SSE 0.174 0.185 0.205 0.124 0.134 0.145
CP 0.943 0.950 0.946 0.942 0.943 0.949

(γ0, ξ0) = (0.5, 0.2)
Bias 0.017 0.033 0.012 0.020 0.024 0.018
SEE 0.169 0.177 0.196 0.120 0.127 0.139
SSE 0.171 0.183 0.199 0.123 0.128 0.142
CP 0.940 0.937 0.952 0.938 0.946 0.945

To generate Yi(Ti,j) at each observation time Ti,j , we
considered

E{Yi(Ti,j)|Zi,bi(t)} = g{μ0(t)e
θZi}b1i(t),

and obtained Yi(Ti,j) by first generating Y ∗
i (Ti,j) from a

Poisson distribution with the mean function of Y ∗
i (t) being

equal to g{μ0(t)e
θZi}b1i(t)E{I(t ≤ Ci)|Zi,Bit}, and then

taking Yi(Ti,j) =
Y ∗
i (Ti,j)

E{I(Ti,j≤Ci)|Zi,Bit} . The results given be-

low are based on the sample sizes of 100 and 200 with 1,000
replications and W (t) = 1.

We took λ0 = 2, dΛ0(t) = 5
t (e

0.5 − e−0.5)(et − e−t)dt,

b1i =
2evi

e−1/e , b2i(t) =
2teui+vit

(e0.5−e−0.5)(et−e−t) and b3i = vi with ui

and vi being random numbers generated from uniform dis-
tributions over (−0.5, 0.5) and (−1, 1), respectively. Table 1
shows the estimation results for θ based on the simulated
data with the link function g(x) = log(x), μ0(t)} = e2t, and
the true values of (γ, ξ) being equal to (0, 0), (0, 0.2), (0.5,
0), (0.5, 0.2). The table includes the estimated bias given

by the average of the proposed estimators θ̂ minus the true
value θ0, the average of the estimated standard errors (SEE),
the empirical sampling standard error (SSE) and the 95%
empirical coverage probability (CP). It can be seen that the
proposed approach seems to perform well. Specifically, the
proposed estimate seems to be unbiased and the estimated
standard errors agree well with the empirical ones. Also as
expected, the CP’s are close to their nominal levels and the
standard errors become smaller when sample sizes increase.

In addition to the scenarios presented by Table 1, we
investigated those with various link functions and random

Table 2. Estimation results for θ with the link function
g(x) = x

n = 100 n = 200
θ0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0, 0)
Bias 0.008 0.005 -0.006 0.009 0.004 0.009
SEE 0.269 0.261 0.249 0.191 0.186 0.178
SSE 0.287 0.277 0.246 0.201 0.187 0.185
CP 0.932 0.928 0.948 0.939 0.953 0.940

(γ0, ξ0) = (0, 0.2)
Bias 0.035 0.041 0.047 0.042 0.036 0.040
SEE 0.259 0.254 0.245 0.186 0.181 0.174
SSE 0.282 0.265 0.257 0.191 0.184 0.184
CP 0.927 0.934 0.924 0.929 0.936 0.921

(γ0, ξ0) = (0.5, 0)
Bias -0.007 0.015 0.010 0.001 0.011 0.010
SEE 0.247 0.239 0.233 0.176 0.172 0.166
SSE 0.256 0.259 0.249 0.180 0.179 0.177
CP 0.939 0.930 0.927 0.939 0.933 0.936

(γ0, ξ0) = (0.5, 0.2)
Bias 0.052 0.051 0.045 0.040 0.051 0.042
SEE 0.244 0.239 0.231 0.174 0.171 0.166
SSE 0.252 0.258 0.237 0.178 0.171 0.169
CP 0.932 0.917 0.935 0.929 0.947 0.930

Table 3. Averaged sum of residuals based on results from
Tables 1 and 2 when n = 200

g(t) = log(t) g(t) = t
θ0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0,0) 3.134 3.584 4.260 3.116 3.473 4.147
(γ0, ξ0) = (0, 0.2) 3.311 3.795 4.525 3.288 3.678 4.435
(γ0, ξ0) = (0.5, 0) 4.115 4.872 5.982 4.117 4.658 5.736
(γ0, ξ0) = (0.5, 0.2) 4.404 5.177 6.367 4.379 5.056 6.255

effects. For example, the results given in Table 2 were ob-
tained with the same setups as those for Table 1 except that
g(x) = x and μ0(t) = 2t. Such results all suggest that the
proposed procedure perform well for practical situations. To
further study how various link functions affected the estima-
tion results, we also calculated the averaged sum of absolute
residuals (RES) for each scenario, defined as

RES =
1

n

n∑
i=1

mi∑
j=1

|dM̂i(Ti,j)|.

Table 3 presents the results obtained for scenarios repre-
sented by Tables 1 and 2 when n = 200, where the baseline
mean function is common for Yi(t) given bi(t) and Zi. The
results show that when the choice of g(·) is reasonable, such
residuals are comparable whether the covariate effects are
additive (for g(x) = log(x)) or multiplicative (for g(x) = x)
to the response process.

One question of practical interest is that for longitudinal
data when the observation process is informative, whether
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Table 4. Estimation results of θ based on the proposed
procedure and the one given by Zhao et al. (2013), when

g(x) = log(x) and ξ0 = 0

θ0 n = 100 n = 200
BIAS BIAS∗

1 BIAS∗
2 BIAS BIAS∗

1 BIAS∗
2

γ0 = 0.5
0 0.008 -0.140 -0.118 0.000 -0.148 -0.135
0.2 0.003 -0.162 -0.141 -0.002 -0.154 -0.143
0.5 -0.009 -0.167 -0.139 -0.011 -0.169 -0.149
γ0 = 0.8
0 -0.007 -0.208 -0.196 0.000 -0.212 -0.181
0.2 -0.005 -0.210 -0.202 -0.002 -0.224 -0.198
0.5 -0.009 -0.220 -0.192 -0.011 -0.246 -0.195

some existing procedure applies to the situations as consid-
ered by models (1)–(3). While there are limited procedures
for regression analysis based on a class of transformation
models for the response process, most of them model pos-
sible correlation between Yi(t) and Ñi(t) by incorporating

a specific function of Ñi(s), s ≤ t to the marginal mean of
Yi(t) (Sun et al., 2005; Li et al., 2013; Zhao et al., 2013), for
example, a function denoted by h(·) in Zhao et al. (2013).
One possible drawback is that such applications are highly
subject to the specific form of h(·), which cannot capture
correlations of an arbitrary form. To illustrate this numeri-
cally, we considered both the proposed estimation procedure
and the one given in Zhao et al. (2013). Note that the latter
also considered a possible dependent terminal event time Di

but assumed a noninformative Ci given Zi, For ease of com-
parison, we made Di > Ci in our scenarios and used each
subject’s last observation time as Ci when applied the com-
peting procedure. Table 4 presents the estimation results
for θ obtained for g(x) = log(x), b1i = 1

2 (exp{0.5 − vi} −
exp{−0.5 − vi} + Gi), b2i(t) = (t+1) exp{vi(t+1)}

e0.5(t+1)−e−0.5(t+1) , b3i = vi,

dΛ0(t) =
20t
t+1{e0.5(t+1) − e−0.5(t+1)}, μ0(t) = exp{5t}, with

vi and Gi being random numbers from the uniform distri-
bution over (−0.5, 0.5) and the gamma distribution with
mean 1 and variance 0.5, respectively. In the table, BIAS
represents the estimated bias from the proposed estimate;
BIAS∗

1 and BIAS∗
2 denote the estimated biases given by

Zhao et al. (2013) using h(Fit) = Ñ(t−) and h(Fit) = 0, re-
spectively. The results suggest that the proposed estimates
still appear to be unbiased, but the competing method could
give substantially biased estimates for θ when the correla-
tions between Yi(t), Ni(t) and Ci introduced by bi(t) are
misinterpreted by h(·) or totally ignored.

6. AN APPLICATION

In this section, we applied the proposed methodology de-
scribed in the previous sections to longitudinal data aris-
ing from a skin cancer study conducted by the University
of Wisconsin Comprehensive Cancer Center in Madison,
Wisconsin (Li et al., 2011; Zhang et al., 2013). One main

Table 5. Analysis results for the skin cancer data

Est. SEE 90% CI p-value

γ1 0.529 0.072 (0.410, 0.648) < 0.001
γ2 0.566 0.072 (0.448, 0.684) < 0.001
ξ1 1.203 0.171 (0.922, 1.484) < 0.001
ξ2 1.038 0.171 (0.757, 1.319) < 0.001

g(x) = x
θ1 -0.448 0.187 (-0.814, -0.082) 0.017
θ2 1.164 0.225 (0.723, 1.064) < 0.001

g(x) = log(x)
θ1 -0.225 0.123 (-0.427, -0.024) 0.066
θ2 0.972 0.118 (0.777, 1.167) < 0.001

objective of this double-blind, placebo-controlled random-
ized Phase III clinical trial is to evaluate the effectiveness
of 0.5g/m2/day PO difluoromethylornithine (DFMO) in re-
ducing the recurrence rates of basal cell carcinoma (BCC)
for patients with a history of skin cancers. At each visit,
the numbers of BCC occurrences since the previous visit
were recorded. Each patient was scheduled to be assessed
every six months; however as expected, the actual observa-
tion times vary from patient to patient. Besides a patient’s
treatment group (placebo or DFMO), the study also pro-
vided information on the number of prior skin cancer oc-
currences which is shown to be significantly related to the
skin cancer recurrence process. For the analysis, we focus
on the 290 patients with at least one observation. Among
them, 161 patients had one or two skin cancer occurrences
prior to the study, and the others had experienced more.

In the following, we consider covariates defined by Zi =
(Zi1, Zi2)

′, where Zi1 = 1 if patient i was given the DFMO
treatment and Zi1 = 0 otherwise, and Zi2 = 1 if the patient
had experienced more than two (up to 35) skin cancer oc-
currences and Zi2 = 0 if not, i = 1, . . . , 290. Yi(t) represents
the total number of BCC occurrences observed up to time
t. The longest follow-up time was scaled to be τ = 1, which
corresponds to 1,879 days in the original data set.

To apply the proposed estimation procedure, we assumed
that the skin cancer recurrence process, the observation pro-
cess and the hazard of censoring can be described by models
(1)–(3), respectively. Following the notation above, the pri-
mary interest is to estimate θ1, the effect of DFMO. Table 5
presents the analysis results obtained by applying the pro-
posed estimation procedure with W (t) = 1. We considered
two link functions: g(x) = x and g(x) = log(x), and the re-
sults include the point estimates (Est.), the estimated stan-
dard errors (SEE), the estimated 90% confidence intervals
(CI’s) and p-values for tests with the null hypotheses assum-
ing no covariate effects. At the significance level of α = 0.1,
the results suggest that DFMO has significantly reduced
the recurrence rates of BCC, and a more severe skin cancer
history appears to be positively correlated with the recur-
rence rate of skin cancer. Such results appear consistent with
those concluded by Li et al. (2014) for both choices of link
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functions. In addition, the results also suggest that both the
observation and follow-up times significantly depend on the
covariates.

To assess the adequacy of our models above, we applied
the goodness-of-fit test derived in Section 4 and obtained
the p-values of 0.801 and 0.383, respectively, for g(x) = x
and g(x) = log(x). This suggests that while both of our link
functions appear to be reasonable for the data, the former
is preferred over the latter.

7. CONCLUDING REMARKS

This paper considers regression analysis of longitudinal
data when both the observation and follow-up times may
be informative about the underlying response process of in-
terest. For the problem, we present a class of semiparametric
transformation models for the response process which allow
possible correlations to be characterized by time-dependent
random effects. Comparing with existing models that as-
sume either independence or structured dependence based
on fixed forms or distributions, the proposed models provide
flexibility for modeling both the underlying response process
and its correlation to other processes. For parameter estima-
tion, an easy-to-implement estimating equation approach is
developed and both finite and asymptotic properties of the
resulting estimators are established. In addition, the exten-
sive simulation study indicated that the approach works well
for practical situations and the approach is applied to a skin
cancer study which motivated the research.

We note several possible directions for future work. First
for simplicity, we assumed that the dependence between
Yi(t) and Ni(t) in models (1)–(2) can be completely charac-
terized by random effects bi(t) and covariates Zi(t). How-
ever in practice, one may want to incorporate more terms
to the content of g(·) as well when additional information
is available. For example, if it is known from pivotal trials
or experiences that a longitudinal response depends on the
length of period since subject i is last observed, one may
consider modifying model (1) as follows:

E{Yi(t)|Zi(t),bi(t)} = g{μ0(t)e
θ′Zi(t)+α(t−Ti,j)}b1i(t),

where j = max{k : Ti,k ≤ t} and Ti,j represents subject
i’s last observation time. In such cases, the same method-
ology immediately applies for estimating θ and α together,
by replacing θ and Zi(t) by (θ′, α′)′ and

(
Zi(t)

′, t − Ti,j

)′
,

respectively, in the estimation procedure. Second, the focus
of the article has been on regression analysis of the response
process Yi(t), therefore, bi(t) was treated as a shared latent
vector. However, if one is solely interested in calculating any
correlation between Yi(t), Ni(t) and Ci at certain times, one
may usually need a distribution assumption on bi(t) and
apply some existing procedures for inference (Lipsitz et al.,
2002; He et al., 2009; Sun et al., 2007, 2007b; Li et al., 2013).
Other than the effects of bi(t), we have assumed the pro-
portional rates and additive hazards models, respectively,
on Ni(t) and Ci. In context of dependent processes, a pro-

cedure that is robust to such models is another interesting
direction for future research.
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APPENDIX A

Proof of Theorem 1

To derive the asymptotic properties of the proposed esti-
mator θ̂, we need the following regularity conditions.

(C1). {Ñi(·), Yi(·), Ci,Zi(·)}ni=1 are independent and iden-
tically distributed.

(C2). There exists a τ > 0 such that P (Ci ≥ τ) > 0.

(C3). Both Ñi(t) and Yi(t) (0 ≤ t ≤ τ , i = 1, . . . , n) are
bounded.

(C4).W (t) and Zi(·), i = 1, . . . , n, have bounded variations
and W (t) converges almost surely to a deterministic
function w(t) uniformly in t ∈ [0, τ ].

(C5). Aθ = E
∫ τ

0
W (t)ġ{μ0(t)e

θ′
0Zi(t)}{Zi(t) −

ez(t)}⊗2eθ
′
0Zi(t)+η′

0X
∗
i (t)μ0(t)dΛ

∗
1(t) and Ωη =

E
[ ∫ τ

0

{
X∗

i (t)− x̄∗(t)
}⊗2

eη
′
0X

∗
i (t)dΛ∗

1(t)
]

are both positive definite.

Define

U1(θ; η̂) =

n∑
i=1

∫ τ

0

W (t)Zi(t)

×
[
Yi(t)dÑi(t)− eη̂

′X∗
i (t)g{μ̂0(t)e

θ′Zi(t)}dΛ̂∗
1(t)

]
= 0

and note that μ̂0(t) satisfies

n∑
i=1

[
Yi(t)dÑi(t)− eη̂

′X∗
i (t)g{μ̂0(t)e

θ′Zi(t)}dΛ̂∗
1(t)

]
(14)

= 0, 0 ≤ t ≤ τ. (A.1)

Let

Âθ(θ) = −n−1∂U1(θ, η̂)/∂θ
′, Âη(η) = −n−1∂U1(θ0, η)/∂η

′,

Aθ = lim
n→∞

Âθ(θ0) and Aη = lim
n→∞

Âη(η0).

The consistency of θ̂ and η̂ follows from the facts that
U1(θ0; η̂) and Uη(η0) both tend to 0 in probability as n → ∞,

and that Âθ(θ) and −n−1∂Uη(η)/∂η both converge uni-
formly to the positive definite matrices Aθ and Ωη over θ
and η, respectively, in neighborhoods around the true values
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θ0 and η0. Then the Taylor series expansions of U1(θ̂; η̂) at

(θ0; η̂) and (θ0, η0) yield n1/2(θ̂−θ0) = A−1
θ n−1/2U1(θ0; η̂)+

op(1) = A−1
θ

{
n−1/2U1(θ0; η0)−Aηn

1/2(η̂−η0)
}
+op(1). The

proof of Theorem 1 is sketched as follows:
(1) First, using some derivation operation to U1(θ; η̂) and

(A.1), we can get

Âθ(θ) = n−1
n∑

i=1

∫ τ

0

W (t)g{μ̂0(t)e
θ̂′Zi(t)}

×
{
Zi(t)− ÊZ(t)

}⊗2
eθ

′Zi(t)+η̂′X∗
i (t)dΛ̂∗

1(t).

(2) The use of Taylor expansions of U1(θ0; η0) and (A.1)
at μ0(t) yield

U1(θ0; η0) =

n∑
i=1

∫ τ

0

w(t)
(
Zi(t)− ez(t)

)
dMi(t)

−
n∑

i=1

∫ τ

0

w(t)
(
Zi(t)− ez(t)

)
g{μ0(t)e

θ′
0Zi(t)}

×eη
′
0X

∗
i (t)d{Λ̂∗

1(t; η0)− Λ∗
1(t)}+ op(n

1/2).

It follows from (7) that

Λ̂∗
1(t; η0)− Λ∗

1(t) =
1

n

n∑
i=1

∫ t

0

dM∗
i (t)

s(0)(t)
+ op(n

−1/2).

Thus

U1(θ0; η0) =

n∑
i=1

(ξ1i − ξ2i) + op(n
1/2),(15)

where ξ1i =
∫ τ

0
w(t)

(
Zi(t) − ez(t)

)
dMi(t), ξ2i =∫ τ

0
w(t)d(t)
s(0)(t)

dM∗
i (t) and d(t) = limn→∞ D̂(t; θ0, η0).

(3) Differentiation of U1(θ0, η) and (A.1) with respect to
η′ yields

Âη(η) = n−1
n∑

i=1

∫ τ

0

W (t)g{μ̂0(t)e
θ′
0Zi(t)}eη′X∗

i (t)

× {Zi(t)− ÊZ(t)}{X∗
i (t)− X̄∗(t; η)}′dΛ̂∗

1(t; η).

(4) According to equation (6) and the arguments similar
to Lin et al. (2000), one can show that

n1/2{η̂−η0} = Ω−1
η n−1/2

n∑
i=1

ζi+op(1) (A.2)

where Ωη = E
[ ∫ τ

0

{
X∗

i (t) − x̄∗(t)
}⊗2

eη
′
0X

∗
i (t)dΛ∗

1(t)
]
and

ζi =
∫ τ

0

(
X∗

i (t)− x̄∗(t)
)
dM∗

i (t).

Combining the results in steps (1)–(4), we have

U1(θ0; η̂) =

n∑
i=1

(ξ1i − ξ2i − ξ3i) + op(n
1/2),

and hence

√
n(θ̂−θ0) = A−1

θ n−1/2
n∑

i=1

(ξ1i−ξ2i−ξ3i)+op(1), (A.3)

where ξ3i =
∫ τ

0
AηΩ

−1
η

{
X∗

i (t) − x̄∗(t)
}
dM∗

i (t). Then it fol-
lows from the multivariate central limit theorem that the
conclusions hold.

APPENDIX B

Proof of the null distribution of F(t, z)

Define V (θ̂, η̂) =
∑n

i=1

∫ t

0
I(Zi(s) ≤ z)dM̂i(s). By apply-

ing the Taylor expansion,

F(t, x; θ̂, η̂) = n−1/2V (θ0, η0) +
∂V (θ0, η0)

n∂η′
√
n(η̂ − η0)

+
∂V (θ0, η̂)

n∂θ′
√
n(θ̂ − θ0) + op(1).

By following arguments and manipulations similar to
those in Appendix A, it can be shown

V (θ0, η0) =
n∑

i=1

{u1i(t, z)− u2i(t, z)}+ op(n
1/2),

where u1i(t, z) =
∫ t

0
{I

(
Zi(s) ≤ z

)
− eI(s, z)}dMi(s),

u2i(t, z) =
∫ t

0
Γ(s)

s(0)(s)
dM∗

i (s) and Γ(t) = limn→∞ Γ̂(t; θ0, η0).

Also ∂V (θ0,η0)
n∂η′ and ∂V (θ0,η̂)

n∂θ′ can be estimated by −V̂η(t, z)

and −V̂θ(t, z), respectively. In addition, we obtained

n1/2{η̂ − η0} = Ω−1
η n−1/2

n∑
i=1

ζi + op(1)

and

√
n(θ̂ − θ0) = A−1

θ n−1/2
n∑

i=1

(ξ1i − ξ2i − ξ3i) + op(1),

from (A.2) and (A.3). Therefore, F(t, z; θ̂, η̂) can be ex-
pressed as a sum of i.i.d. mean-zero terms for fixed t. By
the multivariate central limit theorem, F(t, z) converges in
finite-dimensional distribution to a mean-zero Gaussian dis-
tribution. Since F(t, z) is tight based on the empirical pro-
cess theory, F(t, z) converges weakly to a mean-zero Gaus-

sian process that can be approximated by F̂(t, z) given by
equation (11).
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