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G and related distributions with applications in
reliability growth analysis
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Motivated by four unsolved issues on the mean time be-
tween failures (MTBFs) in nonhomogeneous Poisson pro-
cesses (NHPP) with power law intensity function for com-
plete/incomplete observations, in this article, we first study
some important properties on three new distributions (i.e.,
the G, inverse G, and RG distributions). Next, we develop
three methods (i.e., the Lagrange multiplier, quantile-based
and sampling-based methods) to establish the shortest con-
fidence intervals for the MTBF in a single repairable system
and for the MTBF ratio in two independent repairable sys-
tems; and also develop two methods (i.e., the density-based
and sampling-based methods) within the framework of the
critical region and p-value approaches to test hypotheses
on the MTBF and the MTBF ratio. Simulation studies are
performed to compare the proposed methods. Two real data
sets are used to illustrate the proposed statistical methods.

Keywords and phrases: G distribution, Hypothesis test-
ing, Inverse G distribution, Nonhomogeneous Poisson pro-
cess, RG distribution, Shortest confidence interval.

1. INTRODUCTION

Suppose that a reliability growth test on a repairable sys-
tem is performed and the number of failures, denoted by
N(t), in the time interval (0, t] is observed. Furthermore,
we assume that {N(t), t > 0} follows a non-homogeneous
Poisson process (NHPP) with power law intensity function
(Crow, [2]; [3])

(1.1) λ(t) = αβtβ−1, α, β > 0.

This process is also known as the Weibull process, the
power–law process, or the Army Materiel Systems Analysis
Activity (AMSAA) model in the literature (Crow, [2]; [3];
Crow & Basu, [4]). For the failure-truncated case, let {xi}ni=1

be the successive failure times with n being predetermined.
Further, we assume that x1, . . . , xr−1(1 � r < n) are miss-
ing (Crow & Basu, [4]; Yu et al., [17], [18]) and the ob-
served data are then denoted by Y ft

obs = {xi}ni=r, where
“ft” stands for “failure-truncated” and r = 1 indicates no
missing data. At the time of the n-th failure, xn, the in-
tensity of failure is λ(xn) = αβxβ−1

n . If improvements are
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not made to the system after time xn, the failures would
occur at the constant rate λ(xn) with further operation.
Then, the subsequent times between failures of the system
independently follow an exponential distribution with the
common failure rate λ(xn). The mean time between failures
(MTBF) of the system with further operation after xn is
defined by M(xn) = 1/λ(xn) (Crow, [3]). Usually, M(xn) is
called the achieved MTBF of the system and is estimated

by M̂(xn) = x1−β̂
n /(α̂β̂) = xn/(nβ̂), where

(1.2)

α̂ = n/xβ̂
n and β̂ =

n− r + 1∑n−1
i=r+1 log(xn/xi) + r log(xn/xr)

are the maximum likelihood estimates (MLEs) of α and β,
respectively (Yu et al. , [18]). For a given t0 > 0, the current
system reliability is defined by R(t0) = exp {−t0/M(xn)},
which is the reliability of the exponential distribution with
mean M(xn). It is clear that R(t0) is a monotonic increasing
function of M(xn). Thus, statistical inferences on R(t0) will
follow if an optimal test or a confidence interval for M(xn)
is available. In fact, after the data {xi}ni=r are collected, xn

is fixed and M(xn) is a function of the parameters α and
β. Thus, we can discuss testing hypotheses and confidence
intervals on M(xn) with a known xn. From this viewpoint,
the statistical inferences on M(xn) are of importance.

Let W = 2(n − r + 1)β/β̂ and S = 2αxβ
n. Yu et al.[18]

proved that W ∼ χ2(2n− 2r), S ∼ χ2(2n),

(1.3) W × S =
4n(n− r + 1)M̂(xn)

M(xn)
,

and W is independent of S (denoted by W ⊥⊥ S). It is of
great interest to consider the following two statistical issues
related to M(xn):

Issue 1. To construct the shortest confidence interval (CI)
of M(xn) for the given xn;

Issue 2. For a given constant M0, to consider the following
hypothesis testing problem

(1.4) H0: M(xn) = M0 against H1: M(xn) �= M0.

To our best knowledge, even for the complete-observation
case (corresponding to r = 1), Issues 1 and 2 are not ad-
dressed in the literature. For example, for the Weibull pro-
cess with complete observations, Crow [3] only computed
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equal-tailed CIs for M(xn) with confidence coefficients 0.80,
0.90, 0.95 and 0.98 (see Table 1 of Crow [3]). For the Weibull
process with incomplete observations, Yu, Tian and Tang
[18] derived the equal-tailed CI for M(xn) for a given confi-
dence coefficient. In general, the density function of W×S is
very skew, hence, for a given confidence coefficient the equal-
tailed CI of M(xn) is not the shortest. Next, for Issue 2,
the traditional critical-region approach employs the equal-
tail method (instead of the equal-height method), yielding
an incorrect critical region; while the traditional p-value ap-
proach approximately calculates the p-value as

(1.5) 2×min{Pr(Z0 � Z0, obs|H0), Pr(Z0 � Z0, obs|H0)},

where Z0, obs denotes the observed value of the test statistic
Z0 defined by (5.10).

Now, we consider two independent repairable systems and
assume their failures follow two different NHPPs with inten-
sity functions λ1(t) = α1β1t

β1−1 and λ2(t) = α2β2t
β2−1, re-

spectively. Furthermore, we assume that x1, . . . , xr1−1(1 �
r1 < n) and y1, . . . , yr2−1(1 � r2 < m) are missing for Sys-
tems 1 and 2, respectively. For the failure-truncated case,
their observed data are respectively denoted by X ft

obs =
{xi}ni=r1

and Y ft
obs = {yj}mj=r2

. In particular, when r1 =
r2 = 1, these observations become complete observations.
Let M1(xn) and M2(ym) denote the achieved MTBFs for
Systems 1 and 2, respectively. For the purpose of compari-
son, we are interested in the following two issues:

Issue 3. To construct the shortest CI for the MTBF ratio
M2(ym)/M1(xn) for the given (xn, ym);

Issue 4. For a given constant ρ0, to consider the following
hypothesis testing problem

(1.6) H ′
0:

M2(ym)

M1(xn)
= ρ0 against H ′

1:
M2(ym)

M1(xn)
�= ρ0.

To our knowledge, even for the complete-observation case,
solutions to Issues 3 and 4 are not yet available.

To address Issues 1–4 above, in this paper we will develop
three methods (i.e., the Lagrange multiplier, quantile-based
and sampling-based methods) to establish the shortest CIs
for the MTBF in a single repairable system and for the
MTBF ratio in two independent repairable systems; and also
develop two methods (i.e., the density-based and sampling-
based methods) within the framework of the critical region
and p-value approaches to test hypotheses on the MTBF
and the MTBF ratio. However, the implementation of the
five methods involve three new distributions: (i) the distri-
bution of the product of two independent chi-square random
variables, which is called G distribution in this paper first
time; (ii) the distribution of the reciprocal of a G random
variable, which is called the inverse G distribution; and (iii)
the distribution of the ratio of two independent G random
variables, which is named as RG distribution. Therefore, the
second objective of this paper is to study some important

properties on the three distributions by paying special at-
tention to the G distribution.

The distributions of the product Z = XY have been in-
vestigated by several authors, especially when X and Y are
independent random variables and come from the same dis-
tribution family. For example, with the operational method
of Mellin transforms, Wells, Anderson and Cell [15] only de-
rived the density function of the product of two independent
random variables distributed according to non-central chi-
squared distributions. Although a chi-squared distribution is
a special case of a non-central chi-squared distribution, their
derivation is rather complicated. Joarder [7] and Joarder
and Omar [8] obtained the joint density of a bivariate chi-
squared distribution with two correlated components, which
reduces to the density of the product of two independent
chi-square variables with the same degrees of freedom if the
correlation coefficient is set to be zero. For the gamma dis-
tribution family, Stuart [12] proved that Z ∼ Gamma(q, 1)
if X ∼ Gamma(p, 1) is independent of Y ∼ Beta(q, p − q).
Withers and Nadarajah [16] studied the distribution of the
product of two independent gamma variables. However, we
note the following facts: (i) the motivation for these papers
is mainly from the theoretical study rather than from the
practical demand; (ii) several important properties (e.g., cu-
mulative distribution function in accessible forms, the com-
putation of the quantile, the calculation of the mode of the
density) for the G distribution are not yet available. There-
fore, there is a need to thoroughly investigate the G and
related distributions.

The rest of the paper is organized as follows. Some basic
notation and preliminary results are introduced in Section 2.
In Sections 3 and 4, we study some important properties for
the G, inverse G, and RG distributions, respectively. Sta-
tistical inferences on MTBFs for Issues 1–4 are developed
in Section 5. Two real data sets are used to illustrate the
proposed statistical methods in Section 6. In Section 7, we
conduct several simulation studies to compare the proposed
statistical methods. Finally, a discussion is presented in Sec-
tion 8.

2. NOTATION AND PRELIMINARIES

The calculation in this paper involves several spe-
cial functions, including the gamma function Γ(α) =∫ +∞
0

tα−1e−t dt and the incomplete gamma function

γ(α, x) =
∫ x

0
tα−1e−t dt. We use Laplace(μ, b) to denote the

Laplace distribution with density 0.5b exp(−b|x−μ|), where
x ∈ R, −∞ < μ < ∞ and b > 0. Gamma(α, β) denotes
the gamma distribution with density βαxα−1e−βx/Γ(α),
where x ∈ R+, α > 0 and β > 0. In particular,
Gamma(1, β) = Exponential(β) and Gamma(ν/2, 1/2) =
χ2(ν). IBeta(α, β) denotes the inverted beta distribution
with density xα−1/[B(α, β)(1+x)α+β ], where x ∈ R+, α > 0
and β > 0. If two random variables X and Y have the same

distribution, we denote this byX
d
= Y . The notationX ⊥⊥ Y
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denotes that X is independent of Y . We also need the fol-
lowing important results.

Lemma 1. (Waston, [14]). For any v ∈ R, we have

(2.1)

∫ +∞

0

t−(v+1) exp

(
−t− z2

4t

)
dt = 2

(z

2

)−v

Kv(z),

where Kv(z) is the modified Bessel function of the second
kind of order v (Gradshteyn et al., [6]), which can be cal-
culated by the built-in R function besselK(z, ν).

Lemma 2. The incomplete gamma function γ(α, x) can be
expanded as the power series

(2.2) γ(α, x) = xαΓ(α) e−x
+∞∑
k=0

xk

Γ(α+ k + 1)
,

which can be calculated by the built-in R function
pgamma(x, α) × gamma(α).

Lemma 3. (Waston, [14]). For any integer k � 0, we have

(2.3) Kk+ 1
2
(z) =

( π

2z

) 1
2

e−z
k∑

r=0

(k + r)!

r!(k − r)!(2z)r
.

In particular, K1/2(z) = [π/(2z)]1/2e−z.

Lemma 4. (Equation (2.10.1.12), Prudnikov et al., [11],
Vol. 2). For r, p, c, v > 0 and α < 0, we have

∫ +∞

0

tα−1 exp(−pt−r)γ(v, ct) dt(2.4)

=
cvp

α+v
r

r

+∞∑
r=0

Γ(−α+v+k
r )(−cp

1
r )k

k!(k + v)

+ c−α
+∞∑
r=0

Γ(α+ v − rk)(−crp)k

k!(rk − α)
.

3. THE G DISTRIBUTION

Motivated by (1.3) and Issues 1–2 in Section 1, in this
section we study some important properties on the distribu-
tion of the product of two independent chi-squared random
variables. Since the letter “G” comes after the letter “F”,
we call this distribution the G distribution by mimicking the
F distribution (named after R. A. Fisher), which is the dis-
tribution of the ratio (up to a constant) of two independent
chi-squared random variables. We also introduce the inverse
G distribution, which plays a crucial role in the construction
of the shortest CI for MTBF.

3.1 Definition

Definition 1. (G and inverse G distributions). Let X ∼
χ2(n), Y ∼ χ2(m), and X ⊥⊥ Y . (i) The distribution of
Z = XY is called G distribution with n and m degrees

of freedom, denoted by Z ∼ G(n,m). (ii) The distribution
of T = 1/(XY ) is called inverse G distribution with n and
m degrees of freedom, denoted by T ∼ IG(n,m). ‖

It is clear that G(n,m) = G(m,n). Examples 1 and 2
below show the close relationship between theG distribution
and Laplace/uniform distributions.

Example 1. (Connection with Laplace distribution). Let

X,Y
iid∼ Laplace(μ, b), then

4b2|X − μ| × |Y − μ| ∼ G(2, 2).

In fact, since |X − μ|, |Y − μ| iid∼ Gamma(1, b), we have

2b|X − μ|, 2b|Y − μ| iid∼ Gamma

(
1,

1

2

)
= χ2(2).

By the definition of the G distribution, we obtain 4b2|X −
μ| × |Y − μ| ∼ G(2, 2). ‖

Example 2. (Connection with uniform distribution). Let

X,Y
iid∼ U(0, 1), then

4 log(X)× log(Y ) ∼ G(2, 2).

In fact, since − log(X), − log(Y )
iid∼ Gamma(1, 1), we have

−2 log(X), −2 log(Y )
iid∼ χ2(2). By the definition of the G

distribution, we have 4 log(X)× log(Y ) ∼ G(2, 2). ‖

3.2 Density and cumulative distribution
function

Lemma 5 below gives an explicit expression for the prob-
ability density function (pdf) of the G distribution G(n,m)
in terms of the modified Bessel function of the second
kind.

Lemma 5. The pdf of Z ∼ G(n,m) is given by

(3.1) fZ(z;n,m) =
z

n+m
4 −1Kn−m

2
(
√
z)

2
n+m

2 −1Γ(n2 )Γ(
m
2 )

, z � 0,

where Kv(z) defined by (2.1) is the modified Bessel function
of the second kind of order v. ‖

Proof. Let X ∼ χ2(n), Y ∼ χ2(m), and X ⊥⊥ Y . Further-
more, let fX(x;n) and fY (y;m) be the pdfs of X and Y ,
respectively. Then, the pdf of Z = XY is given by

fZ(z;n,m)

=

∫ +∞

0

1

y
fX

(
z

y
;n

)
fY (y;m) dy

=
1

2
n+m

2 Γ(n2 )Γ(
m
2 )

∫ +∞

0

1

y

(
z

y

)n
2 −1

exp

(
− z

2y

)
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· ym
2 −1 exp

(
−y

2

)
dy

=
z

n
2 −1

2
n+m

2 Γ(n2 )Γ(
m
2 )

∫ +∞

0

y
m
2 −n

2 −1

· exp
(
−y

2
− z

2y

)
dy [Let y/2 = t]

=
z

n
2 −1

2
n+m

2 Γ(n2 )Γ(
m
2 )

∫ +∞

0

(2t)
m
2 −n

2 −1

· exp
(
−t− z

4t

)
2 dt

=
z

n
2 −1

2nΓ(n2 )Γ(
m
2 )

∫ +∞

0

t−(n
2 −m

2 +1)

· exp
[
−t− (

√
z)2

4t

]
dt

(2.1)
=

z
n
2 −1

2nΓ(n2 )Γ(
m
2 )

2

(√
z

2

)−(n
2 −m

2 )

Kn−m
2

(
√
z)

=
z

n+m
4 −1Kn−m

2
(
√
z)

2
n+m

2 −1Γ(n2 )Γ(
m
2 )

,

which implies (3.1).

Remark 1. (i) Armed with the Mellin transforms, Wells,
Anderson and Cell [15] derived the pdf of the product of
two independent random variables distributed according to
the non-central chi-squared distribution with non-central
parameters Δ1 and Δ2 and degrees of freedom n and m,
respectively. By simply setting Δ1 = Δ2 = 0, they obtained
the pdf of the product of two independent chi-squared ran-
dom variables, which is identical to (3.1). However, our proof
to (3.1) is more straightforward. (ii) Note that the modi-
fied Bessel function of the second kind of order v satisfies
Kv(z) = K−v(z) for any v ∈ R, then the G distribution pos-
sesses the symmetry property; that is, G(n,m) is identical
to G(m,n). ‖

Figure 1 shows four plots of the density of the G distri-
bution with four different combinations of n and m. When
n = 1, 2 orm = 1, 2 or n+m < 8, the density of Z ∼ G(n,m)
is monotone decreasing; when n,m � 3 and n+m � 8, the
density of Z ∼ G(n,m) is unimodal.

Next, we will derive the cumulative distribution function
(cdf) of the G distribution for different cases. Theorem 1
below gives the cdf of the G(n,m) distribution in terms of
the modified Bessel function of the second kind for the gen-
eral case. When |n−m| is odd, two alternative expressions
for the cdf of the G(n,m) are provided by Theorem 2. Fig-
ure 2 shows plots of the cdf of the G distribution with four
different combinations of n and m.

Theorem 1. The cdf of Z ∼ G(n,m) is given by

(3.2) FZ(z;n,m) =
z

n+m
4

2
n+m

2 −1Γ(n2 )

+∞∑
k=0

z
k
2 Kn−m

2 +k(
√
z)

2kΓ(m2 + k + 1)
,

Figure 1. Plots of the pdf fZ(z;n,m) defined by (3.1) for the
G distribution with different combinations of the degrees of
freedom. (i) n = m = 1; (ii) n = m = 2; (iii) n = m = 4; (iv)

n = 10, m = 6.

where Kv(z) defined by (2.1) is the modified Bessel function

of the second kind of order v. ‖

Proof. Let X ∼ χ2(n), Y ∼ χ2(m), and X ⊥⊥ Y . Fur-

thermore, let fX(x;n) be the pdf of X and FY (y;m) =

γ(m/2, y/2)/Γ(m/2) be the cdf of Y . Then the cdf of

Z = XY is given by

FZ(z;n,m)

=

∫ +∞

0

fX(x;n)FY

( z

x
;m

)
dx,

=
1

2
n
2 Γ(n2 )Γ(

m
2 )

∫ +∞

0

x
n
2 −1e−

x
2 γ

(m

2
,
z

2x

)
dx(3.3)

(2.2)
=

1

2
n
2 Γ(n2 )Γ(

m
2 )

∫ +∞

0

x
n
2 −1e−

x
2

( z

2x

)m
2

Γ
(m

2

)

· e− z
2x

+∞∑
k=0

(
z
2x

)k
Γ(m2 + k + 1)

dx

=
z

m
2

2
n+m

2 Γ(n2 )

+∞∑
k=0

(
z
2

)k
Γ(m2 + k + 1)

·
∫ +∞

0

x
n
2 −m

2 −k−1e−
x
2− z

2x dx. [Let x/2 = t]
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Figure 2. Plots of the cdf FZ(z;n,m) defined by (3.2) for
the G distribution with different combinations of the degrees
of freedom. (i) n = m = 1; (ii) n = m = 2; (iii) n = m = 4;

(iv) n = 10, m = 6.

=
z

m
2

2
n+m

2 Γ(n2 )

+∞∑
k=0

(
z
2

)k
Γ(m2 + k + 1)

·
∫ +∞

0

(2t)
n
2 −m

2 −k−1e−t− z
4t 2 dt

=
z

m
2

2mΓ(n2 )

+∞∑
k=0

(
z
4

)k
Γ(m2 + k + 1)

·
∫ +∞

0

t−(m
2 −n

2 +k+1)e−t− (
√

z)2

4t dt

(2.1)
=

z
m
2

2mΓ(n2 )

+∞∑
k=0

(
z
4

)k
Γ(m2 + k + 1)

2

(√
z

2

)m
2 −n

2 +k

· Km
2 −n

2 +k(
√
z )

=
z

n+m
4

2
n+m

2 −1Γ(n2 )

+∞∑
k=0

z
k
2 Kn−m

2 +k(
√
z )

2kΓ(m2 + k + 1)
,

which implies (3.2).

Theorem 2. If |n−m| is odd, i.e., there is a non-negative

integer k such that |n−m|
2 = k + 1

2 , then the cdf of Z ∼
G(n,m) can be expressed as a sum of finite terms

FZ(z;n,m)(3.4)

=

√
π

2
n+m−3

2 Γ(n2 )Γ(
m
2 )

×
k∑

r=0

(k + r)!

r!(k − r)!2r
γ

(
n+m− 1

2
− r,

√
z

)
.

Alternatively, the cdf can be expressed as a sum of infinite
terms

FZ(z;n,m)(3.5)

=
z

m
2

2mΓ(n2 )Γ(
m
2 )

+∞∑
k=0

(− z
4 )

kΓ(n−m
2 − k)

k!(k + m
2 )

+
z

n
2

2nΓ(n2 )Γ(
m
2 )

+∞∑
k=0

(− z
4 )

kΓ(m−n
2 − k)

k!(k + n
2 )

.

‖
Proof. From (3.1), we have

FZ(z;n,m)

=
1

2
n+m

2 −1Γ(n2 )Γ(
m
2 )

∫ z

0

t
n+m

4 −1

· Kn−m
2

(
√
t ) dt [Let w =

√
t ]

=
1

2
n+m

2 −2Γ(n2 )Γ(
m
2 )

∫ √
z

0

w
n+m

2 −1

· Kn−m
2

(w) dw

[
∵ |n−m|

2
= k +

1

2

]

(2.3)
=

1

2
n+m

2 −2Γ(n2 )Γ(
m
2 )

∫ √
z

0

w
n+m

2 −1
( π

2w

) 1
2

e−w

·
k∑

r=0

(k + r)!

r!(k − r)!(2w)r
dw

=

√
π

2
n+m−3

2 Γ(n2 )Γ(
m
2 )

k∑
r=0

(k + r)!

r!(k − r)!2r

·
∫ √

z

0

w
n+m

2 −r− 3
2 e−w dw

=

√
π

2
n+m−3

2 Γ(n2 )Γ(
m
2 )

·
k∑

r=0

(k + r)!

r!(k − r)!2r
γ

(
n+m− 1

2
− r,

√
z

)
,

which implies (3.4).
In (3.3), after making the transformation t = 1/x, we

obtain
(3.6)

FZ(z;n,m) =
1

2
n
2 Γ(n2 )Γ(

m
2 )

∫ +∞

0

t−
n
2 −1e−

1
2t γ

(m

2
,
z

2
t
)
dt.

In (2.4) let α = −n/2, p = 1/2, r = 1, v = m/2, c = z/2,
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then (3.6) becomes

FZ(z;n,m)

=
1

2
n
2 Γ(n2 )Γ(

m
2 )

[(z

2

)m
2

(
1

2

)−n
2 +m

2

·
+∞∑
k=0

Γ(−(−n
2 + m

2 + k))(− z
4 )

k

k!(k + m
2 )

+
(z

2

)n
2

+∞∑
k=0

Γ(−n
2 + m

2 − k)(− z
4 )

k

k!(k + m
2 )

]

=
z

m
2

2mΓ(n2 )Γ(
m
2 )

+∞∑
k=0

(− z
4 )

kΓ(n−m
2 − k)

k!(k + m
2 )

+
z

n
2

2nΓ(n2 )Γ(
m
2 )

+∞∑
k=0

(− z
4 )

kΓ(m−n
2 − k)

k!(k + n
2 )

,

which indicates (3.5).

In practice, the cdf of the G(n,m) distribution can be
calculated by

FZ(z;n,m) =

∫ z

0

fZ(t;n,m) dt,

where fZ(·;n,m) is the pdf of the G(n,m) distribu-
tion and is defined by (3.1). The built-in R function
integrate(fZ(t;n,m), 0, z) can facilitate the computation
of the integral.

Remark 2. The α-th quantile of the G(n,m) distribution,
denoted by G(α;n,m), is the solution to the equation

h(z) =̂

∫ z

0

fZ(t;n,m) dt− α = 0.

The built-in R function uniroot(h(z), c(a, b)) can be used to
find the solution, where (a, b) is the isolation interval such
that h(a) × h(b) < 0. A suggestion on choosing a and b is
that we could set a small a and a large b. For example, let
a = 0, then h(a) = h(0) = −α < 0, then we only need to
choose a large b = 1,000,000, say, such that h(b) > 0. ‖

3.3 Moments, mode and moment
generating function

Other important distributional properties such as the k-
th moment, the mode of the density, the skewness, kurtosis
and moment generating function (mgf) of the G distribution
are given in the following theorem.

Theorem 3. Let Z ∼ G(n,m), we have the following re-
sults.

(1) The k-th moment of Z is given by

(3.7) E(Zk) =

k∏
i=1

(n+ 2k − 2i)(m+ 2k − 2i), k � 1.

In particular,

E(Z) = nm, E(Z2) = (n+ 2)n(m+ 2)m, and

Var(Z) = 2nm(n+m+ 2).

(2) When n,m � 3 and n + m � 8, the mode ω of the
density of Z is determined by the equation

H(ω) =̂ (m− 2)ω
n+m

4 −2Kn−m
2

(
√
ω )(3.8)

− ω
n+m

4 − 3
2Kn−m

2 −1(
√
ω ) = 0.

(3) The skewness of Z is

(3.9) γ1 =
4[(n+ 2)2 + (m+ 2)2 + 3nm+ 2(n+m)]√

2nm(n+m+ 2)
3
2

.

(4) The kurtosis of Z is

γ2(3.10)

=
(n+6)(n+4)(n+2)n(m+6)(m+4)(m+2)m

4nm(n+m+2)2

− 3.

(5) The mgf of Z is

MZ(t;n,m)(3.11)

=
1

Γ(n2 )Γ(
m
2 )

∞∑
k=0

Γ(n2 + k)Γ(m2 + k)(4t)k

k!
.

‖
Proof. (1) Using the moments of the chi-squared distribu-
tion with ν degrees of freedom, we immediately obtain the
k-th moment of Z ∼ G(n,m), given by (3.7).

(2) When n,m � 3 and n + m � 8, the density of Z is
unimodal. Let fZ(z;n,m) be the pdf of Z defined by (3.1).
The mode ω of fZ(z;n,m) is determined by

dfZ(ω;n,m)

dω
= 0.

Using the following differential property of Kv(z), i.e.,

dKv(ω)

dω
= −Kv−1(ω)−

v

ω
Kv(ω),

we immediately obtain (3.8).
(3) Let μ = E(Z) and σ2 = Var(Z), then

γ1 = E

(
Z − μ

σ

)3

=
EZ3 − 3μσ2 − μ3

σ3

=
4[(n+ 2)2 + (m+ 2)2 + 3nm+ 2(n+m)]√

2nm(n+m+ 2)
3
2

.

(4) Let μ4 = E(Z4), then

γ2 =
μ4

σ4
− 3
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=
(n+ 6)(n+ 4)(n+ 2)(m+ 6)(m+ 4)(m+ 2)

4nm(n+m+ 2)2
− 3.

(5) The mgf of Z is given by

MZ(t;n,m)

= E(etZ) = E

∞∑
k=0

(tZ)k

k!
=

∞∑
k=0

tkE(Z)k

k!

(3.7)
=

1

Γ(n2 )Γ(
m
2 )

∞∑
k=0

Γ(n2 + k)Γ(m2 + k)(4t)k

k!
.

Remark 3. The built-in R function uniroot(H(ω), c(a, b))
can be used to find the solution to the equation (3.8), where
(a, b) is the isolation interval such that H(a) × H(b) < 0.
By this way, we can obtain the mode of the density of Z ∼
G(n,m) provided that it exists. ‖

4. THE DISTRIBUTION OF THE RATIO OF
TWO INDEPENDENT G RANDOM

VARIABLES

Motivated by Issues 3–4 in Section 1, in this section we
study the distribution of the ratio of two independent G
random variables.

Definition 2. (RG distribution). Let Z1 ∼ G(n1,m1), Z2 ∼
G(n2,m2), and Z1 ⊥⊥ Z2. The distribution of the ratio V =
Z1/Z2 is called RG distribution with (n1,m1) and (n2,m2)
degrees of freedom, denoted by V ∼ RG(n1,m1;n2,m2). ‖

Let V ∼ RG(n1,m1;n2,m2), then the RG distribution
has the following properties:

(1) RG(m1, n1;m2, n2) = RG(n1,m1;n2,m2);
(2) V −1 ∼ RG(n2,m2;n1,m1); and

(3) V
d
=

(
n1m1

n2m2

)
W1 ×W2, where W1 ∼ F (n1, n2), W2 ∼

F (m1,m2), and W1 ⊥⊥ W2.

(4) V
d
= U1 × U2, where U1 ∼ IBeta(n1/2, n2/2), U2 ∼

IBeta(m1/2,m2/2), and U1 ⊥⊥ U2.

Pham-Gia and Turkkan [10] investigated the distribution
of the product of two independent generalized-F random
variables. Since the inverted beta distribution is a special
case of the generalized-F distribution, from the formula (9)
in Pham-Gia and Turkkan [10], the pdf of V is given by

fV (v)(4.1)

=
B(m1+n2

2 , n1+m2

2 )

B(n1

2 , n2

2 )B(m1

2 , m2

2 )
v−(

n2
2 +1)

× F
(2)
D

(
m1 + n2

2
;
n1 + n2

2
,
m1 +m2

2
;

n1 + n2 +m1 +m2

2
; 1− 1

v
, 0

)
, v > 0,

where F
(2)
D is Appell’s first hypergeometric function, which

can be calculated by the R package appell.

5. STATISTICAL INFERENCES ON MTBFS

In this section, we address Issues 1–4 arisen in Section 1.

5.1 Issue 1: shortest confidence interval for
the MTBF M(xn)

From (1.3) and the definition of the G distribution, we
obtain

(5.1) Z =̂W ×S =
4n(n− r + 1)M̂(xn)

M(xn)
∼ G(2n−2r, 2n).

Let [L1, L2] be a (1− α)100% CI of M(xn), then we have

1− α = Pr{L1 � M(xn) � L2}(5.2)

= Pr

{
4n(n− r + 1)M̂(xn)

L2
� Z

� 4n(n− r + 1)M̂(xn)

L1

}
.

To derive the shortest CI of M(xn), we can in general use
one of the three methods: The Lagrange multiplier method,
the quantile-based method, and the sampling-based method.

5.1.1 The Lagrange multiplier method

In (5.2), let a = 4n(n− r+ 1)M̂(xn)/L2 and b = 4n(n−
r + 1)M̂(xn)/L1, then

[L1, L2] =

[
4n(n− r + 1)M̂(xn)

b
,
4n(n− r + 1)M̂(xn)

a

]

with width L(a, b) = 4n(n − r + 1)M̂(xn)(1/a − 1/b). We
want to minimize L(a, b) subject to (5.2), i.e.,

∫ b

a

fZ(z; 2n− 2r, 2n) dz = 1− α,

where fZ(z; 2n−2r, 2n) denotes the pdf of Z defined in (5.1).
To use the Lagrange multiplier method, we define

l(a, b) = L(a, b) + λ

{∫ b

a

fZ(z; 2n− 2r, 2n) dz − 1 + α

}
.

Let 0 = ∂l(a, b)/∂a = ∂l(a, b)/∂b, we obtain

(5.3) a2fZ(a; 2n− 2r, 2n) = b2fZ(b; 2n− 2r, 2n).

On the other hand, a = G(α1; 2n−2r, 2n) and b = G(1−α+
α1; 2n− 2r, 2n) for any α1 ∈ [0, α], where G(α; 2n− 2r; 2n)
denotes the α-th quantile of the G(2n−2r, 2n) distribution.
In Remark 2, we discussed the computation of G(α; 2n −
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2r; 2n). It is now clear that (5.3) is a one-dimensional non-
linear equation with argument α1 ∈ [0, α]. Therefore, the
solution α∗

1 to (5.3) can be obtained by, e.g., the bisection
method. Hence, the shortest CI of M(xn) with confidence
level 1− α is given by

[L1, L2](5.4)

=

[
4n(n− r + 1)M̂(xn)

G(1− α+ α∗
1; 2n− 2r; 2n)

,
4n(n− r + 1)M̂(xn)

G(α∗
1; 2n− 2r; 2n)

]
.

The Lagrange multiplier method involves the computation
of both the quantile and pdf of the G(2n− 2r, 2n) distribu-
tion. To avoid the computation of the pdf, we could consider
the quantile-based method in the next subsection.

5.1.2 The quantile-based method

Note that (5.2) is equivalent to

α1 = Pr{Z � G(α1; 2n− 2r; 2n)} and

1− α+ α1 = Pr{Z � G(1− α+ α1; 2n− 2r; 2n)}

for any α1 ∈ [0, α]. Therefore, we obtain

[L1, L2](5.5)

=

[
4n(n− r + 1)M̂(xn)

G(1− α+ α1; 2n− 2r; 2n)
,
4n(n− r + 1)M̂(xn)

G(α1; 2n− 2r; 2n)

]
.

In particular, when α1 = α/2, (5.5) reduces to the (1 −
α)100% equal-tail CI of M(xn). By using the grid method,
we can numerically find

(5.6) α∗
1 = arg min

0�α1�α
L(α1),

where

(5.7)

L(α1) = 4n(n− r + 1)M̂(xn)

{
1

G(α1; 2n− 2r, 2n)

− 1

G(1− α+ α1; 2n− 2r, 2n)

}

denotes the width of the CI (5.5). Hence, the shortest CI
of M(xn) with confidence level 1− α is given by (5.5) with
α1 = α∗

1.
We note that when the grid method is applied to (5.6),

the optimization is rather time-consuming because the ex-
plicit expression for the quantile of the G(2n − 2r, 2n) dis-
tribution is not available. To avoid computing the quantile
of the G distribution, we could consider the sampling-based
method in the next subsection.

5.1.3 The sampling-based method

The random samples from a G distribution or an inverse
G distribution can be easily obtained by sampling from two

independent chi-squared distributions. From (5.1) and the
definition of an inverse G distribution, we obtain
(5.8)

T =̂
1

W × S
=

M(xn)

4n(n− r + 1)M̂(xn)
∼ IG(2n− 2r, 2n).

We rewrite (5.2) as

1− α = Pr{L1 � M(xn) � L2}

= Pr

{
L1

4n(n− r + 1)M̂(xn)
� T

� L2

4n(n− r + 1)M̂(xn)

}
.

The sampling-based method for constructing the shortest
CI of M(xn) is as follows:

Step 1. To generate {W (j)}Jj=1
iid∼ χ2(2n−2r) and indepen-

dently generate {S(j)}Jj=1
iid∼ χ2(2n). Let T (j) =

1/[W (j)S(j)] for j = 1, . . . , J , then {T (j)}Jj=1
iid∼

IG(2n− 2r, 2n).
Step 2. Based on {T (j)}Jj=1, to construct the (1− α)100%

shortest CI [L′
1, L

′
2] for the quantity T =

M(xn)/[4n(n− r + 1)M̂(xn)].
Step 3. The (1−α)100% shortest CI ofM(xn) is then given

by

[L1, L2] =
[
4n(n− r + 1)M̂(xn)L

′
1,

4n(n− r + 1)M̂(xn)L
′
2

]
.

It is noted that Step 2 is a crucial step for the sampling-
based method. We wrote an R code to implement Step 2,
which is illustrated as follows. For the purpose of demon-
stration, let J = 1,000 and α = 0.05. We first sort
the i.i.d. samples {T (j)}Jj=1 to obtain the order statistics

{T(j)}Jj=1. Next, we have 50 CIs for the quantity T with
95% confidence level, i.e.,

[T(j), T(950+j)], j = 1, . . . , 50.

The 95% shortest CI for the T is [T(j∗), T(950+j∗)], where

(5.9) T(950+j∗) − T(j∗) = min
1�j�50

{T(950+j) − T(j)}.

In fact, the 95% equal-tail CI for the quantity T is given by
[T(25), T(975)].

Remark 4. (i) When J → ∞, the (1−α)100% shortest CI
[L′

1, L
′
2] for the quantity T tends to the (1− α)100% equal-

height CI for the T . (ii) In particular, when the central area
1 − α → 0 (i.e., α → 1), the corresponding shortest CI
[L′

1, L
′
2] approaches to a point, i.e., the mode of the density

of the IG(2n− 2r, 2n) distribution. ‖
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5.2 Issue 2: testing hypotheses on M(xn)

Consider to test the null hypothesis H0 against the alter-
native hypothesis H1 specified by (1.4). From (5.1), we know
that Z is a pivotal quantity. The test statistic is defined by

(5.10) Z0 =̂
4n(n− r + 1)M̂(xn)

M0
.

When H0 is true, we have Z0 = Z ∼ G(2n − 2r, 2n). The
critical region approach and the p-value approach will be
employed.

5.2.1 The critical region approach

Since α = α1 + α2 = Pr(Z0 � k1|H0) + Pr(Z0 � k2|H0),
the critical region is given by

(5.11) C = {(xr, . . . , xn): Z0, obs � k1 or Z0, obs � k2},

where Z0, obs denotes the observed value of the test statistic
Z0 specified by (5.10),
(5.12)
k1 = G(α1; 2n−2r, 2n) and k2 = G(1−α+α1; 2n−2r, 2n).

It is clear that finding k1 and k2 is equivalent to finding α1.
In what follows, two methods are used to determine the α1

or the k1 and k2.

(a) The density-based method. We first consider the
density-based method. Again, let fZ(z; 2n − 2r, 2n) denote
the pdf of the G(2n− 2r, 2n) distribution. The equal-height
approach means that k1 and k2 should satisfy fZ(k1; 2n −
2r, 2n) = fZ(k2; 2n− 2r, 2n), so α1 should satisfy

fZ(G(α1; 2n− 2r, 2n); 2n− 2r, 2n)(5.13)

= fZ(G(1− α+ α1; 2n− 2r, 2n); 2n− 2r, 2n).

Using the grid method, we can find the solution α1 to the
equation (5.13) as demonstrated in Section 5.1.2.

(b) The sampling-based method. Alternatively, the
sampling-based method for finding k1 and k2 can be de-
scribed as follows:

Step 1. To generate {W (j)}Jj=1
iid∼ χ2(2n − 2r) and in-

dependently generate {S(j)}Jj=1
iid∼ χ2(2n). Let

Z(j) = W (j)S(j) for j = 1, . . . , J , then {Z(j)}Jj=1
iid∼

G(2n− 2r, 2n).
Step 2. Based on {Z(j)}Jj=1, to compute the (1 − α)100%

shortest (or equal-height) CI [k1, k2] for the quan-
tity Z = 4n(n− r + 1)M̂(xn)/M(xn).

5.2.2 The p-value approach

As shown in Figure 7, the p-value for testing H0 versus
H1 in (1.4) can be calculated by

(5.14) p = p1 + p2 = Pr(Z0 � b1|H0) + Pr(Z0 � b2|H0),

where Z0|H0 ∼ G(2n−2r, 2n), b1 or b2 is the observed value
Z0, obs of the test statistic Z0 specified by (5.10), and b1 and
b2 satisfy

(5.15) fZ(b1; 2n− 2r, 2n) = fZ(b2; 2n− 2r, 2n).

In what follows, two methods are used to determine b1 and
b2.

(a) The density-based method. We first consider the
density-based method. Let ω denote the mode of the pdf of
G(2n− 2r, 2n). If Z0, obs < ω, let b1 = Z0, obs (see Figure 7).
Then, we can determine b2 by solving (5.15) subject to b2 >
ω. If Z0, obs > ω, let b2 = Z0, obs. Then, we can determine b1
by solving (5.15) subject to 0 < b1 < ω.

(b) The sampling-based method. Next, we consider
the sampling-based method. Based on the i.i.d. samples
{Z(j)}Jj=1 from G(2n − 2r, 2n), we can find an estimated
density of the true density fZ(z; 2n−2r, 2n) by a kernel den-
sity smoother, denoted by f̃Z(z; 2n− 2r, 2n). If Z0, obs < ω,
let b1 = Z0, obs. Then, we can determine b2 by solving

(5.16) f̃Z(b1; 2n− 2r, 2n) = f̃Z(b2; 2n− 2r, 2n)

subject to b2 > ω. The p-value in (5.14) can be approxi-
mated by
(5.17)

p = p1 + p2 ≈ 1

J

J∑
j=1

I(Z(j) � b1) +
1

J

J∑
j=1

I(Z(j) � b2),

where I(·) is the indicator function. Similarly, we can deal
with the case of Z0, obs > ω.

It is noted that the key for the sampling-based method is
how to find the mode ω based on the i.i.d. samples {Z(j)}Jj=1

and find the b2 from the equation (5.16). We wrote an R code
to find the ω, b2 and the p-value in (5.17), which is illustrated
as follows.

• First, using the built-in R function
density({Z(j)}Jj=1,K), we can obtain K pairs
of x- and y-coordinate of the estimated density
f̃Z(·; 2n−2r, 2n), denoted by {ds$xk, ds$yk}Kk=1, where
K is the number of equally spaced points at which the
density is to be estimated. Usually, K is a power of
two and the default value is 512.

• Second, we can find the index k∗ such that ds$yk∗ =
max1�k�K ds$yk. Thus, the mode ω ≈ ds$xk∗ .

• Third, we can find the index k1 (k1 < k∗) such that
ds$xk1 is the nearest x-coordinate to b1 and the in-
dex k2 (k2 > k∗) such that ds$yk2 is the nearest y-
coordinate to ds$yk1 . Thus, b2 ≈ ds$yk2 .

5.3 Issue 3: shortest confidence interval for
M2(ym)/M1(xn)

From (1.3), we have

4n(n− r1 + 1)M̂1(xn)

M1(xn)
∼ G(2n− 2r1, 2n),
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4m(m− r2 + 1)M̂2(ym)

M2(ym)
∼ G(2m− 2r2, 2m),

and they are independent. According to the definition of the
RG distribution, we obtain

(5.18) V =̂
cM2(ym)

M1(xn)
∼ RG(2n− 2r1, 2n; 2m− 2r2, 2m),

where

(5.19) c =
n(n− r1 + 1)M̂1(xn)

m(m− r2 + 1)M̂2(ym)
.

The pdf of V has the form of (4.1). Since the pdf (4.1)
involves Appell’s first hypergeometric function, it is rather
difficult in practice to compute its quantiles. As we saw in
Section 5.1, both the Lagrange multiplier and the quantile-
based methods involve the computation of quantiles, there-
fore, only the sampling-based method is considered to con-
struct the shortest CI for M2(ym)/M1(xn).

Let [L3, L4] be a (1 − α)100% CI of M2(ym)/M1(xn),
then we have

1− α = Pr

{
L3 � M2(ym)

M1(xn)
� L4

}
= Pr(cL3 � V � cL4).

The sampling-based method for constructing the shortest
CI of M2(ym)/M1(xn) is as follows:

Step 1. To generate {Z(j)
1 }Jj=1

iid∼ G(2n−2r1, 2n) and inde-

pendently generate {Z(j)
2 }Jj=1

iid∼ G(2m− 2r2, 2m).

Let V (j) = Z
(j)
1 /Z

(j)
2 for j = 1, . . . , J , then

{V (j)}Jj=1
iid∼ RG(2n− 2r1, 2n; 2m− 2r2, 2m).

Step 2. Based on {V (j)}Jj=1, to construct the (1− α)100%
shortest CI [L′

3, L
′
4] for the quantity V =

cM2(ym)/M1(xn).
Step 3. The (1−α)100% shortest CI of M2(ym)/M1(xn) is

[L3, L4] = [L′
1/c, L

′
4/c].

5.4 Issue 4: testing hypotheses on
M2(ym)/M1(xn)

Consider to test the null hypothesis H ′
0 against the al-

ternative hypothesis H ′
1 specified by (1.6). From (5.18), we

know that V is a pivotal quantity. The test statistic is de-
fined by

(5.20) V0 =̂ cρ0,

where c is defined by (5.19). When H ′
0 is true, we have V0 =

V ∼ RG(2n − 2r1, 2n; 2m − 2r2, 2m). The critical region
approach and the p-value approach will be employed.

5.4.1 The critical region approach

Since α = α1 + α2 = Pr(V0 � k1|H ′
0) + Pr(V0 � k2|H ′

0),
the critical region is given by

C = {(xr1 , . . . , xn; yr2 , . . . , ym): V0, obs(5.21)

� k1 or V0, obs � k2},

where V0, obs denotes the observed value of the test statis-
tic V0 specified by (5.20). The sampling-based method for
finding k1 and k2 can be described as follows:

Step 1. To generate {V (j)}Jj=1
iid∼ RG(2n − 2r1, 2n; 2m −

2r2, 2m).
Step 2. Based on {V (j)}Jj=1, to compute the (1 − α)100%

shortest (or equal-height) CI [k1, k2] for the quan-
tity V = cM2(ym)/M1(xn).

5.4.2 The p-value approach

As shown in Figure 12, the p-value for testing H ′
0 versus

H ′
1 in (1.6) can be calculated by

(5.22) p = p1 + p2 = Pr(V0 � b1|H ′
0) + Pr(V0 � b2|H ′

0),

where V0|H ′
0 ∼ RG(2n − 2r1, 2n; 2m − 2r2, 2m). Based on

the samples

{V (j)}Jj=1
iid∼ RG(2n− 2r1, 2n; 2m− 2r2, 2m),

we can compute the mode ω of the density and obtain an ap-
proximate density of the distribution RG(2n−2r1, 2n; 2m−
2r2, 2m) similar to the process as shown in Section 5.2.2. We
denoted the approximate density by f̃V (v; 2n−2r1, 2n; 2m−
2r2, 2m).

If V0, obs < ω, let b1 = V0, obs. Then, we can determine b2
by solving

f̃V (b1; 2n− 2r1, 2n; 2m− 2r2, 2m)(5.23)

= f̃V (b2; 2n− 2r1, 2n; 2m− 2r2, 2m)

subject to b2 > ω. The p-value in (5.22) can be approxi-
mated by

(5.24) p ≈ 1

J

J∑
j=1

I(V (j) � b1) +
1

J

J∑
j=1

I(V (j) � b2).

If V0, obs > w, let b2 = V0, obs. Then, we can determine b1
by solving (5.23) subject to 0 < b1 < ω. The corresponding
p-value is still given by (5.24).

6. ILLUSTRATIONS

In this section, we illustrate the proposed statistical
methods for Issues 1–4 based on the developed properties
for G and related distributions by two real data sets.
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Table 1. The equal-tailed and shortest CIs for M(xn) = M(x40) = M(8063)

Method Type of CI α1 Lower bound Upper bound Width

Quantile-based Equal-tailed CI 0.02500 202.4210 501.0324 298.6187
Shortest CI 0.01084 188.4262 476.7423 288.3161

Sampling-based Equal-tailed CI 0.02500 202.5701 501.4049 298.8348
Shortest CI 0.01090 188.6817 477.2435 288.5618

Figure 3. The lower and upper bounds of 95% CIs for M(xn)
obtained by the quantile-based method versus α1. The

equal-tailed and shortest CIs are denoted by the dotted and
dashed lines, respectively.

6.1 Engine failure data

Yu, Tian and Tang [18] proposed likelihood-based infer-
ence and prediction methods for a NHPP with incomplete
observations. The engine failure data set described by Zhou
and Weng ([19], p. 51–52) is used to illustrate their method-
ologies. A total of 40 failure times in the time interval (0,
8063 h] for some engine undergoing development testing
were reported as follows: ∗, ∗, ∗, 171, 234, 274, 377, 530,
533, 941, 1074, 1188, 1248, 2298, 2347, 2347, 2381, 2456,
2456, 2500, 2913, 3022, 3038, 3728, 3873,4724, 5147, 5179,
5587, 5626, 6824, 6983, 7106, 7106, 7568, 7568, 7593, 7642,
7928, 8063 h, where the symbol ∗ represents that the exact
failure time of the failure is unknown. With a goodness-of-
fit testing method, Yu, Tian and Tang [18] showed that the
data are coming from a NHPP with power law intensity
function (1.1) at the 0.95 confidence level. Now, n = 40 and
r = 4. The MLE of the achieved MTBF at x40 = 8, 063 is
M̂(8063) = 298.15.

Figure 4. The width of 95% CIs for M(xn) obtained by the
quantile-based method versus α1.

6.1.1 Shortest confidence interval for MTBF M(xn)

We first use the quantile-based method introduced in
Section 5.1.2. The 95% equal-tailed and shortest CIs for
M(xn) = M(x40) = M(8063) are reported in the second
and third rows of Table 1. Figure 3 shows lower and upper
bounds of 95% CIs for M(xn) versus α1. Figure 4 shows the
width of 95% CIs for M(xn) versus α1. When α1 = 0.01084,
the width of the corresponding 95% CI for M(xn) is the
shortest.

Next, we use the sampling-based method by drawing
i.i.d. samples {T (j)}Jj=1 from IG(72, 80) as shown in Step 1
of Section 5.1.3, where the sample size is J = 10,000,000.
The 95% equal-tailed CI and shortest CIs for M(8063) are
shown in the fourth and fifth rows of Table 1. From Ta-
ble 1, we found that the results derived by the quantile-
and sampling-based methods are almost identical. Figure 5
shows lower and upper bounds of 95% CIs for M(xn) ver-
sus α1. Figure 6 shows the estimated density function of the
IG(72, 80) distribution and the 95% equal-tailed and short-
est CIs for M(xn) obtained by the sampling-based method.
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Figure 5. The lower and upper bounds of 95% CIs for M(xn)
obtained by the sampling-based method versus α1. The

equal-tailed and shortest CIs are denoted by the dotted and
dashed lines, respectively.

When α1 = 0.01090, the width of the corresponding 95% CI
for M(xn) is the shortest.

6.1.2 Testing hypothesis on M(xn) by the critical region
approach

Consider to test the null hypothesis
(6.1)

H0: M(xn) = M0 = 200 against H1: M(xn) �= M0

by the density-based method presented in Section 5.2.1(a)
at the 0.05 level of significance. Using the grid method,
from (5.13), we obtain α1 = 0.011397. From (5.12), we have
k1 = 3251.067 and k2 = 8360.43. Since Z0, obs = 8825.24 >
8360.43 = k2, from (5.11), we reject the null hypothesis H0

at the 0.05 level of significance.
Now, we consider the same hypothesis testing problem in

(6.1) by the sampling-based method. With J = 10,000,000,
we generate i.i.d. samples {Z(j)}Jj=1 from G(72, 80). From
Step 2 in Section 5.2.1(b), we obtain k1 = 3321.5815072
and k2 = 8422.4377422 with α1 = Pr(Z0 � k1|H0) ≈
(1/J)

∑J
j=1 I(Z

(j) � k1) = 0.01409. Therefore, the null hy-
pothesis H0 is rejected at the 0.05 level of significance.

6.1.3 Testing hypothesis onM(xn) by the p-value approach

We consider the same hypothesis testing problem in (6.1)
by the density-based method presented in Section 5.2.2(a)
at the 0.05 level of significance. By solving the equation
(3.8), we can obtain the mode of the density function of
the G(72, 80) distribution, i.e., ω = 5386.71. In addition, we

Figure 6. The estimated density function of the IG(72, 80)
distribution and the 95% equal-tailed and shortest CIs for

M(xn) obtained by the sampling-based method.

observe that Z0, obs = 8825.24 > ω. Hence, b2 = 8825.24.
From (5.15), we have b1 = 3145.1847 < ω. From (5.14), we
have

p = p1 + p2

= Pr(Z0 � 3145.1847|H0) + Pr(Z0 � 8825.24|H0)

≈ 0.008028815 + 0.02175188 = 0.0297807 < 0.05,

which implies that the H0 must be rejected. Figure 7
shows the density function of G(72, 80) and p-value for the
hypothesis testing problem in (6.1) by the density-based
method.

Now, consider the same hypothesis testing problem in
(6.1) by the sampling-based method presented in Sec-
tion 5.2.2(b). Based on the i.i.d. samples {Z(j)}Jj=1 from
G(72, 80) with J = 10,000,000, we find the mode ω =
5346.6732799 < 8825.24 = Z0, obs. Let b2 = 8825.24, we
can determine b1 by solving (5.16) subject to 0 < b1 < ω
and obtain b1 = 3142.0088478. Thus, from (5.17), we have
p = p1 + p2 ≈ 0.0079030 + 0.0217985 = 0.0297015 < 0.05,
implying that the H0 must be rejected. Figure 8 gives the
estimated density function of G(72, 80) and p-value for the
hypothesis testing problem in (6.1) by the sampling-based
method.

6.2 Electron failure data

The following life data from two electron systems are
given by Crow [2] and Bain [1]. Assume that the two sys-
tems are observed in the time interval (0, 200 h], and their
successive failure times are
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Table 2. The equal-tailed and shortest CIs for M2(ym)/M1(xn) = M2(190.8)/M1(197.2)

Type of CI α1 Lower bound Upper bound Width

Equal-tailed CI 0.02500 0.1793489 1.926728 1.747379

Shortest CI 0.00221 0.1004948 1.620268 1.519774

Figure 7. The density function of the G(72, 80) distribution
and the p-value for the hypothesis testing problem in (6.1)

obtained by the density-based method.

System 1: 4.3, 4.4, 10.2, 23.5, 23.8,
26.4, 74.0, 77.1, 92.1, 197.2;

System 2: 0.1, 5.6, 18.6, 19.5, 24.2,
26.7, 45.1, 45.6, 75.7, 79.7,
98.6, 120.1, 161.8, 180.6, 190.8.

Crow [2] showed that the two life data sets obey the same
NHPP with the intensity function (1.1). The numbers of
the failures for the first and second systems are n = 10 and
m = 15, respectively. Since these observations are complete,
we have r1 = r2 = 1. The MLE of the achieved MTBF for
the first system at x10 = 197.2 is M̂1(x10) = 38.77768 and
the MLE of the achieved MTBF for the second system at
y15 = 190.8 is M̂2(y15) = 25.01278.

6.2.1 Shortest confidence interval for M2(ym)/M1(xn)

We first generate i.i.d. samples {V (j)}Jj=1 with J =
10,000,000 from RG(18, 20; 28, 30) as shown in Step 1
of Section 5.3. Figure 9 shows the histogram of the
samples {V (j)}Jj=1, indicating that the density of the
RG(18, 20; 28, 30) distribution is unimodal.

Based on the i.i.d. samples {V (j)}Jj=1, the 95%
equal-tailed and shortest CIs for the MTBF ratio
M2(ym)/M1(xn) = M2(190.8)/M1(197.2) are reported in
Table 2. Figure 10 shows lower and upper bounds of 95%
CIs for M2(ym)/M1(xn) obtained by the sampling-based
method versus α1. Figure 11 shows the estimated density

Figure 8. The estimated density function of the G(72, 80)
distribution and the p-value for the hypothesis testing

problem in (6.1) obtained by the sampling-based method.

function of RG(18, 20; 28, 30), the equal-tailed and short-
est CIs for M2(190.8)/M1(197.2). When α1 = 0.00221, the
width of the corresponding CI for M2(190.8)/M1(197.2) is
shortest, as shown in Figures 10 and 11.

6.2.2 Testing hypothesis onM2(ym)/M1(xn) by the critical
region approach

Consider the following hypothesis testing problem

(6.2) H ′
0:

M2(ym)

M1(xn)
= ρ0 = 1 against H ′

1:
M2(ym)

M1(xn)
�= ρ0

by the critical region approach with the sampling-based
method introduced in Section 5.4.1 at the 0.05 level of sig-
nificance. With J = 10,000,000, we generate i.i.d. samples
{V (j)}Jj=1 from RG(18, 20; 28, 30), and obtain k1 =
0.1004626 and k2 = 1.6224078 with α1 = Pr(V0 � k1|H ′

0) ≈
(1/J)

∑J
J=1 I(V

(j) � k1) = 0.00219. We calculate the ob-
served value of the test statistic V0 as V0, obs = 0.6890287.
Since k1 < V0, obs < k2, we cannot reject the null hypothe-
sis H ′

0.

6.2.3 Testing hypothesis on M2(ym)/M1(xn) by the p-
value approach

Now, we consider the same hypothesis testing prob-
lem in (6.2) by the p-value approach with the sampling-
based method introduced in Section 5.4.2 at the 0.05 level
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Figure 9. Histogram of the i.i.d. samples {V (j)}Ji=1 with J =
10,000,000 from RG(18, 20; 28, 30).

Figure 10. The lower and upper bounds of 95% CIs for
M2(ym)/M1(xn) obtained by the sampling-based method
versus α1. The equal-tailed and shortest CIs are denoted by

the dotted and dashed lines, respectively.

of significance. Based on the i.i.d. samples {V (j)}Jj=1 with

J = 10,000,000 from RG(18, 20; 28, 30), we find mode as

ω = 0.4350391. Since V0, obs = 0.6890287 > ω, we let

b2 = 0.6890287. Then, we can determine b1 by solving (5.23)

subject to 0 < b1 < ω and obtain b1 = 0.2494748. From

Figure 11. The estimated density function of the
RG(18, 20; 28, 30) distribution, the 95% equal-tailed and

shortest CIs for M2(ym)/M1(xn) obtained by the
sampling-based method.

Figure 12. The estimated density function of the
RG(18, 20; 28, 30) distribution and the p-value obtained by

the sampling-based method.

(5.24), the p-value is given by p = p1 + p2 ≈ 0.4119490 +
0.0751200 = 0.4870690 > 0.05. Hence, the H ′

0 cannot be
rejected. Figure 12 gives the estimated density function of
RG(18, 20; 28, 30) and p-value obtained by the sampling-
based method.
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Table 3. The average CP, average CIW and time of computation for the equal-tailed and shortest CIs of M(xn) by the
quantile-based and sampling-based methods

(α, β) = (0.5, 1) Method Type of CI CP CIW Time

(n, r) = (20, 1)
Quantile-based

Equal-tailed CI 0.9385 2.7969
57139.502

Shortest CI 0.9357 2.6201

Sampling-based
Equal-tailed CI 0.9398 2.9249

40225.770
Shortest CI 0.9331 2.7381

(n, r) = (30, 4)
Quantile-based

Equal-tailed CI 0.9393 2.2449
58532.575

Shortest CI 0.9354 2.1428

Sampling-based
Equal-tailed CI 0.9420 2.3369

39820.835
Shortest CI 0.9363 2.2295

(n, r) = (40, 2)
Quantile-based

Equal-tailed CI 0.9484 1.8498
61583.070

Shortest CI 0.9465 1.7888

Sampling-based
Equal-tailed CI 0.9467 1.7995

38481.816
Shortest CI 0.9440 1.7394

(α, β) = (0.2, 0.8) Method Type of CI CP CIW Time

(n, r) = (20, 1)
Quantile-based

Equal-tailed CI 0.9354 29.2953
55266.837

Shortest CI 0.9294 27.4425

Sampling-based
Equal-tailed CI 0.9400 27.2867

40835.591
Shortest CI 0.9331 25.5442

(n, r) = (30, 4)
Quantile-based

Equal-tailed CI 0.9390 24.0813
63615.449

Shortest CI 0.9337 22.9880

Sampling-based
Equal-tailed CI 0.9389 24.8602

40654.883
Shortest CI 0.9325 23.7186

(n, r) = (40, 2)
Quantile-based

Equal-tailed CI 0.9426 22.3758
60419.262

Shortest CI 0.9406 21.6385

Sampling-based
Equal-tailed CI 0.9478 22.0755

40077.030
Shortest CI 0.9437 21.3385

NOTE: CP = Average coverage probability; CIW = Average confidence interval widths; Time = The “elapsed time” in R in
seconds.

7. SIMULATION STUDIES

In this section, several simulation studies are performed
to compare the proposed methods.

7.1 Comparison of CIs for the MTBF
M(xn)

Let X1, . . . , Xn be the arrival times of the NHPP
with intensity function λ(t) specified by (1.1), denoted
by X1, . . . , Xn ∼ NHPP(α, β). Let x1, . . . , xn be the
corresponding realizations of X1, . . . , Xn. For the failure-
truncated case, the first r − 1 observations x1, . . . , xr−1

are missing, so the observed data are denoted by Y ft
obs =

{xr, . . . , xn}. Based on Y ft
obs, the MLE of the achieved MTBF

at xn is

(7.1) M̂(xn) = x1−β̂
n /(α̂β̂),

where (α̂, β̂) are MLEs of (α, β) given by (1.2), and the
resulting CIs of M(xn) can be obtained by using the pro-
posed three methods (Lagrange multiplier, quantile-based
and sampling-based). Since the Lagrange multiplier method
involves the computation of both the quantile and pdf, we
only compare the quantile-based method with the sampling-

based method introduced in Sections 5.1.2 and 5.1.3 for con-
structing the equal-tailed and shortest CIs of M(xn).

In the first experiment, we set (α, β) = (0.5, 1), (0.2, 0.8)
and (n, r) = (20, 1), (30, 4), (40, 2). For a given combination
of (α, β, n, r),

Step 1. We generate X1, . . . , Xn ∼ NHPP(α, β) and obtain
Y ft
obs = {xr, . . . , xn}. Based on Y ft

obs, we calculate

the MLEs (α̂, β̂) according to (1.2).

Step 2. We generate X∗
1 , . . . , X

∗
n ∼ NHPP(α̂, β̂) and ob-

tain Y ft∗
obs = {x∗

r , . . . , x
∗
n}. Based on Y ft∗

obs , we

calculate the MLEs (α̂∗, β̂∗) according to (1.2),
the MLE of the achieved MTBF at xn as
M̂∗(xn) = x1−β̂∗

n /(α̂∗β̂∗), and four CIs of M(xn) =
x1−β
n /(αβ).

Step 3. By repeating Step 2 for L (L = 100) times, we can
obtain the empirical coverage probability (CP) and
the average confidence interval width (CIW).

Step 4. Finally, by repeating Steps 1–3 for G (G = 100)
times, we can obtain the average CP and the aver-
age CIW.

The resulting average CP and average CIW are reported
in Table 3. From Table 3, we can see that the shortest CI
of M(xn) has a smaller coverage probability than the equal-
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Table 4. The average CP and average CIW and time of computation for the equal-tailed and shortest CIs of the MTBF ratio
M2(ym)/M1(xn) by the sampling-based method with (α1, β1;α2, β2) = (0.5, 1; 0.2, 1.5)

True values Method Type of CI CP CIW Time

(n, r1;m, r2) = (40, 3; 30, 2) Sampling-based
Equal-tailed CI 0.9356 0.5022

57997.121
Shortest CI 0.9330 0.4731

(n, r1;m, r2) = (30, 1; 30, 1) Sampling-based
Equal-tailed CI 0.9383 0.5658

58197.716
Shortest CI 0.9368 0.5310

NOTE: CP = Average coverage probability; CIW = Average confidence interval widths; Time = The “elapsed time” in R in
seconds.

tailed CI since the former has a narrower width. In most sit-
uations, the CIs calculated by the sampling-based method
have a relative larger coverage probability than those cal-
culated by the quantile-based method, while the quantile-
based method is much more time-consuming compared with
the sampling-based method.

7.2 Comparison of CIs for the MTBF ratio

Let X1, . . . , Xn ∼ NHPP(α1, β2), Y1, . . . , Ym ∼
NHPP(α2, β2), and they are independent. Let {xi}ni=1 be
the corresponding realizations of {Xi}ni=1 and {yj}mj=1 be
the corresponding realizations of {Yj}mj=1. For the failure-

truncated case, the first r1−1 observations {xi}r1−1
i=1 for Sys-

tem 1 are missing and the first r2 − 1 observations {yj}r2−1
j=1

for System 2 are also missing, so the observed data are de-
noted by Y ft

obs = {Y ft
obs,1, Y

ft
obs,2}, where Y ft

obs,1 = {xi}ni=r1
and

Y ft
obs,2 = {yj}mj=r2

. Based on Y ft
obs, the MLE of the MTBF ra-

tio M2(ym)/M1(xn) is M̂2(ym)/M̂1(xn), where
(7.2)

M̂1(xn) = x1−β̂1
n /(α̂1β̂1), M̂2(ym) = y1−β̂2

m /(α̂2β̂2),

and (α̂1, β̂1; α̂2, β̂2) are respective MLEs of (α1, β1;α1, β1)
given by (1.2) similarly. The resulting equal-tailed and short-
est CIs of the MTBF ratio M2(ym)/M1(xn) can be ob-
tained by using the proposed sampling-based method in Sec-
tion 5.3.

In the second experiment, we set (α1, β1;α2, β2) =
(0.5, 1; 0.2, 1.5) and (n, r1;m, r2) = (40, 3; 30, 2),
(30, 1; 30, 1). For a given combination of (α1, β1, n, r1;
α2, β2,m, r2),

Step 1. We generate X1, . . . , Xn ∼ NHPP(α1, β1) and in-
dependently generate Y1, . . . , Ym ∼ NHPP(α2, β2).
Based on Y ft

obs = {xr1 , . . . , xn; yr2 , . . . , ym}, we cal-
culate the MLEs (α̂1, β̂1; α̂2, β̂2) according to (1.2).

Step 2. We generate X∗
1 , . . . , X

∗
n ∼ NHPP(α̂1, β̂1) and in-

dependently generate Y ∗
1 , . . . , Y

∗
m ∼ NHPP(α̂2, β̂2).

Based on Y ft∗
obs = {x∗

r1 , . . . , x
∗
n; y∗r2 , . . . , y

∗
m},

we calculate the MLEs (α̂∗
1, β̂

∗
1 ; α̂∗

2, β̂
∗
2) accord-

ing to (1.2), the MLE of the MTBF ratio as

M̂∗
2 (ym)/M̂∗

1 (xn) = α̂∗
1β̂

∗
1y

1−β̂∗
2

m /(α̂∗
2β̂

∗
2x

1−β̂∗
1

n ), and
two CIs of M2(ym)/M1(xn).

Step 3. By repeating Step 2 for L (L = 100) times, we can
obtain the empirical coverage probability (CP) and
the average confidence interval width (CIW).

Step 4. Finally, by repeating Steps 1–3 for G (G = 100)
times, we can obtain the average CP and the aver-
age CIW.

The resulting average CP and average CIW are reported
in Table 4. From Table 4, we can see that the shortest CI
of M2(ym)/M1(xn) has a smaller coverage probability than
the equal-tailed CI.

7.3 Comparison of p-values for testing
hypotheses on M(xn)

In Section 5.2, we developed both the critical region ap-
proach and the p-value approach to test H0: M(xn) = M0

against H1: M(xn) �= M0, where M0 is a given positive con-
stant. Since the p-value approach is more straightforward
than the critical region approach, we only consider the for-
mer and compare the corresponding p-values calculated by
the proposed density- and sampling-based methods.

Let X1, . . . , Xn ∼ NHPP(α, β) and the realizations
be x1, . . . , xn, where x1, . . . , xr−1 are missing. For each
combination of (α, β, n, r), we test H0: M(xn) = M0

(M0 = 20, 2, 50) by considering two cases. The correspond-
ing p-values calculated by the density-based method and
sampling-based method are summarized in Table 5.

Note that the p-values calculated via the sampling-
based method is very close to those calculated via the
density-based method, but the former is much more time-
consuming.

8. DISCUSSION

It is of considerable interest and practical significance to
construct the shortest CIs for the MTBF in a single re-
pairable system (whose failures follow a Weibull process)
and for the MTBF ratio in two independent repairable sys-
tems (whose failures follow the same Weibull process). In
addition, reliability engineers are also interested in establish-
ing a correct critical region by employing the equal-height
(instead of the equal-tail) method and in obtaining an ex-
act (rather than an approximate) p-value when a hypothesis
testing on MTBF or MTBF ratio is performed. In this paper,
we developed three methods (i.e., the Lagrange multiplier,
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Table 5. The p-values for testing H0: M(xn) = M0 against H1: M(xn) �= M0 by using the density-based and sampling-based
methods

H0: M(xn) = 20 against H1: M(xn) �= 20

(α, β, n, r) = (0.2, 0.8, 20, 2) Method p-value Time† Time‡

M̂(xn) = 26.20303
Density-based 0.166656 0.02 0.01
Sampling-based 0.166257 0.17 5.90

M̂(xn) = 16.85696
Density-based 0.955431 0.02 0.01
Sampling-based 0.966014 0.25 5.95

H0: M(xn) = 2 against H1: M(xn) �= 2

(α, β, n, r) = (0.5, 1, 30, 1) Method p-value Time† Time‡

M̂(xn) = 1.823796
Density-based 0.916960 0.02 0.01
Sampling-based 0.923513 0.26 5.88

M̂(xn) = 2.288272
Density-based 0.336492 0.01 0.01
Sampling-based 0.338066 0.29 5.84

H0: M(xn) = 50 against H1: M(xn) �= 50

(α, β, n, r) = (0.3, 0.6, 40, 4) Method p-value Time† Time‡

M̂(xn) = 76.80926
Density-based 0.020815 0.02 0.01
Sampling-based 0.020680 0.26 5.82

M̂(xn) = 97.83368
Density-based 0.000552 0.00 0.00
Sampling-based 0.000552 0.24 5.79

NOTE: Time† = The “elapsed time” in R in seconds; Time‡ = The “system time” in R in seconds.

quantile-based and sampling-based methods) to construct
the shortest CIs for the MTBF in a single repairable system
and for the MTBF ratio in two independent repairable sys-
tems; and also develop two methods (i.e., the density-based
and sampling-based methods) within the framework of the
critical region and p-value approaches to test hypotheses on
the MTBF and the MTBF ratio. The implementation of the
five methods involve the application of the G, inverse G and
RG distributions. Some important properties on the three
distributions have been studied in the paper. It is noted
that the developed sampling-based method is very useful to
practical users since it does not require the expressions of
the pdf, cdf and the mode of the relevant distributions.

In fact, the G distribution also finds its application in
wavelet analysis and wireless communication (Ge, [5]; Tsai,
[13]; Lee and Cho, [9]), where many quantities are the form
of product of two or more complex numbers. For example,
let Zk = Xk + iYk, k = 1, 2, be two complex random vari-
ables, whereX1, X2, Y1, Y2 are independent standard normal

random variables. Note that X2
1 + Y 2

1 , X
2
2 + Y 2

2
iid∼ χ2(2),

thus the squared magnitude of Z1Z2 defined by |Z1Z2|2 =
(X2

1 +Y 2
1 )(X

2
2 +Y 2

2 ) is the product of two independent chi-
squared random variables.

It is worthwhile to generalize the present paper from the
failure-truncated case to the time-truncated case. Finally, it
would be convenient to extend the frequentist methods to
those situations in which the prior knowledge on parameters
is available. R codes are available once requested.
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