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Generalized maximum entropy approach to

unreplicated factorial experiments

MUSTAFA MURAT ARAT AND SERPIL AKTAS*

In the initial stage of developing an industrial process,
experimental studies based on factorial designs are often
used to determine which factors among a number of fac-
tors have an effect on the response variable. A large num-
ber of factors somehow may arise and a number of runs
that grows exponentially with the number of factors to be
analyzed. Therefore, researchers often design unreplicated
factorial experiments. Furthermore, considering the cost of
experimentation, time, effort, and/or limitation of data re-
sources, unreplicated factorial designs can be adopted to re-
duce the number of runs. But, using ordinary least squares
method to analyze unreplicated experimental data results in
zero degrees of freedom for error term in regression analysis.
Generalized maximum entropy approach which is a method
of selecting among probability distributions to choose the
distribution that maximizes uncertainty or uniformity re-
maining in the distribution, subject to information already
known about the distribution, is an alternative way of ana-
lyzing the unreplicated experiments. In this paper, general-
ized maximum entropy approach is applied to an illustrative
data set and a real-world example and results are compared
to the alternatives with respect to their abilities to find ac-
tive effects.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62K15;
secondary 62J10.

KEYWORDS AND PHRASES: Design of experiments, Gener-
alized maximum entropy approach, Ordinary least squares,
Unreplicated factorial designs.

1. INTRODUCTION

Design of Experiment (DoE) is one of the most common
tools in statistics. It covers a wide range of applications from
household works like food preparation to technological in-
novation, science, agriculture and so forth. Experimentation
is used to comprehend and/or advance a system. It enables
researchers to explore what results in a response (output)
variable when the settings of the input variables in the sys-
tem, the variables that are supposed to affect this output,
are altered.

Managers and engineers of today’s modern industrial
world put an increased emphasis on achieving breakthroughs
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and improvements in productivity and quality of processes
and products through the application of DoE and other sta-
tistical techniques. DoE provides a theoretical basis for ex-
perimentation for these reasons and is exclusively convenient
for working simultaneously on several variables, in order to
ascertain the input variables with the greatest effect on an
output variable and the levels of these input variables, at
which they should be kept to improve process or product
performance. In factorial designs, the experimental runs are
often replicated to obtain an estimate of experimental er-
ror which can be used to construct statistical tests for as-
sessing factors’ significance. However, when experiments are
conducted in manufacturing facilities, the processes’ com-
plexity often makes the replication of physical experiments
prohibitive, if not, impossible considering the cost of experi-
mentation, time, effort, and/or limitation of data resources.
Consequently, unreplicated factorial designs play an impor-
tant role in process and product improvement.

Analysis of unreplicated factorial designs has been much
studied, however, it still constitutes an open and active re-
search field. As it was stated above, replication allows to es-
timate experimental error and as well as to increase power
to detect important effects by decreasing the variance of the
treatment effects estimates. When there is no estimate for
experimental error, the high order interactions are often sac-
rificed for the estimate of error term, which cannot always be
a good solution, assuming one of these interactions might be
statistically significant. The most popular tool for identify-
ing active effects in unreplicated factorial experimentations
is the normal or half-normal probability plot of the factorial
effects (Daniel (1959) [1]). Although several researchers are
aware of that their interpretations are somewhat informal
and subjective, these plot techniques have been applied to
identify the active effects. It is not easy to identify and clas-
sify as inactive the effects that fall along a straight line and
as active the ones that tend to “fall on the line”. Thus, ob-
jective methods are preferable and numerous competing al-
ternatives have been reported in the literature (Hamada and
Balakrishnan (1998) [2]). It is important to avoid empirical
practices and subjective analyses in experimental studies,
reinforcing one important message: efficient methods whose
interpretation is not subjective are more suitable and advis-
able, mainly for those who do not have enough background
in DoE.

After the entropy concept is developed as a measure of
uncertainty by Shannon (1948) [3], the maximum entropy
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principle was formulated by Jaynes (1957) [4] as a method
for estimation and inference particularly for ill-posed and/or
ill-conditioned problems. More recently, Golan et al. (1996)
[5] develop the generalized maximum entropy (GME) esti-
mator in the context of non-normal disturbances. Eruygur
(2005) [6] compared the GME estimator of unknown pa-
rameters of the general linear models with the ordinary
least squares (OLS) estimator by Monte Carlo simulations
and concluded that the performance of the GME estima-
tor is substantially good, especially when the sample size
is small. Ciavolino and Al-Nasser (2009) [7] compared the
GME estimator with the partial least squares estimator in
the presence of missing data, outliers and multicollinear-
ity by simulations and showed that the empirical results of
GME outperform the partial least squares in the terms of
mean squared error. All these papers pointed out that the
GME method has several advantages over the traditional
maximum likelihood and least squares formulations. Some
of the most commonly cited advantages are that it is more
efficient specifically whenever convergence rate is consid-
ered necessary, avoids strong parametric assumptions, works
pretty well in small sample sizes, and uses prior information.

In this article, we use the GME estimation method for
modelling unreplicated factorial designs and compare its
ability to find the active effects with some well-known and
mostly-used methods and some recent techniques, objec-
tively selected from the literature. The use of the approach
can be found in the session on the ENTROPY procedure
of the SAS/ETS 9.3 User’s Guide (2011) [18] and in Ying-
Chao (2010) [15]. Ying-Chao (2010) [15] describes results of
simulation studies and comparisons of the generalized max-
imum entropy approach and Lenth’s method for analyzing
unreplicated factorial designs. Since the thesis from the Chi-
nese University may be a difficulty reading for many, other
references on the use of entropy for analyzing experimental
designs are Koukouvinos et al. (2011) [17] and Balakrishnan
et al. (2012) [16].

The present study is structured into five chapters and
organized as follows. In the following section we introduce
GME approach in details, which has not been applied to un-
replicated factorial effects, so far. Section 3 briefly discusses
competing methods. In Section 4 and 5, we perform GME
approach and all other methods on an illustrative example
and a real-life experiment data set respectively, and active
effects are obtained, and a discussion is given in the last
section.

2. GENERALIZED MAXIMUM ENTROPY
ESTIMATION

Let Y be N x1 dependent variable vector, X be the N x K
known matrix that contains data on the explanatory vari-
ables. The linear regression model can be written as follows:

(1)
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Y=XB+c¢

where 3 is the K x 1 vector of unknown parameters and
¢ is the N x 1 vector of unknown errors (also called noise
or disturbances). The standard least squares estimation of
B vector of parameters is the solution of the following opti-
mization problem:

N
ming {Z 512, g =Y, — X;0, Vl}
i=1

Here, the objective is to minimize the quadratic sum of
squares function for 8. The maximum entropy approach is
based on the entropy objective function H(p) instead of
quadratic sum of squares objective function given in Equa-
tion (2). In order to use Jaynes’ maximum entropy principle
for the estimation of regression parameters, the unknown
parameter vector [ should be written in terms of proba-
bilities because of the fact that the arguments of the Shan-
non’s maximum entropy function are probabilities. Each un-
known parameters [ is reparameterized for M > 2 as fol-
lows (Golan et al. (1996) [5]):

(2)

M
Bk = Z ZkmPkm k= 1727"'7K7
m=1
Let us define Z as K x KM block diagonal matrix of
support points and p® as KM x 1 vector of probabilities or
weights on support points. Now we can rewrite 8 in Equa-
tion (1) as,

3)
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where 2, = [2k1, 2k2, - - -, zkae) and P = [pr1, Pr2s - - -, Pemt]
are M-dimensional vector of equally distanced discrete
points (support space) and associated M-dimensional vector
of proper probabilities, respectively. The implementation of
the maximum entropy formalism allowing for unconstrained
parameters starts by choosing a set of discrete points by re-
searcher based on his a priori information about the value
of parameters to be estimated (Eruygur (2005) [6]). If the
researcher has no prior information about the sign and mag-
nitude of the unknown Sy, support space should be defined
uniformly symmetric around zero with end points of large
magnitude. For instance, for M = 5 and for a scalar C,
z, = [-C,—C/2,0,C/2,C].

Similarly, the unknown error vector ¢ is reparameterized
for J > 2 as follows (Jaynes (1957) [4]):

J
(5) 5t:zvtjptjv t:1,27...,T.
j=1

Define V as T x T'J block diagonal matrix of support
points and p® as T'J x 1 vector of probabilities or weights
on support points. Now we can rewrite £ in Equation (1) as
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where UQ = ['Utlavt2a cee 7UtJ] and p; = [pthptz, cee ,th]/ are

J-dimensional vector of support space and associated J-
dimensional vector of probabilities, respectively.

In practice, discrete support spaces for both parame-
ters and errors, supplied by the researcher, are based on
economic or other prior information. The support space
of errors is defined according to Chebyshev’s inequality
(—vo,+vo). Golan et al. (1996) [5] suggested using the
“three-sigma rule” to establish bounds on the error com-
ponents: the lower bound is taken as —3o0, and the up-
per bound is taken as 30, there, oy is the standard de-
viation of the dependent variable. For example, if J = 5,
then v; = [-30,, —1.504,0,1.50,, 30,] is used. With the as-
sumption that unknown weights on the parameters and the
error support for linear regression model are independent,
the unknown parameters and errors are obtained by solv-
ing the constrained optimization problem maxH (pﬁ, pe) =
—p# InpP — p¥' Inp subject to Y = XB+e = X ZpP + Vpe.

The data constrained GME estimator of the linear re-
gression model is defined by the following maximum entropy
problem (Golan et al. (1996) [5]):

(7)
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Solution by the help of Lagrange multipliers (Eruygur
(2005) [6]), we get the GME estimators of of 8 and &; as
follows:

M
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(12) Zﬁi§GME vy, t=1,2,...,T

Under the conditions that support space is uniformly
symmetric around zero and errors are independent, GME
estimator is consistent and asymptotically normal (Joshi et
al. (2010) [8]). In order to obtain the estimates of BSME and

eGME over Equations (11) and (12), numerical optimization

techniques should be employed.
For the entropy problem, the estimate of asymptotic vari-
ance of the parameters is given by

) (BGME)
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and v is the Lagrange multiplier associated with the tth
row of the Vp® constraint matrix. Also,
(15)
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3. METHODS FOR IDENTIFYING THE
SIGNIFICANT EFFECTS IN
UNREPLICATED FACTORIAL DESIGNS

In this study, some popular methods utilized for analyz-
ing unreplicated factorial designs are compared. In this sec-
tion, we briefly discuss these methods.

The first method is based on the projection property of
factorial designs, i.e., such designs can be projected into
smaller designs by the significant factors. It was proposed by
Angelopoulos et al. (2010) [9] and it is a two-step procedure.
The authors proposed determining firstly a set of inactive
effects in order to take advantage of the projective property
and project the factorial design in those factors that appear
to be active and use the classical ANOVA techniques to per-
form tests. Suppose that A is a set of all factorial effects of
a factorial design with k main effects and P;,i = 1,...,k be
the k sets of all factorial effects obtained after projecting the
unreplicated design into all possible choices of k — 1 factors.
FEach projection design can be viewed as a new experiment
that can be analyzed since there are 2°~1 degrees of freedom
left to estimate the experimental error. Using classical anal-
ysis we can identify the active and inactive effects in each
P;. If a factorial effect is found to be active in any projec-
tion design analysis, then it appears to be a potential active
effect for the original unreplicated design and vice versa.
The authors also suggested that experimental errors should
be controlled at a desired level and thus, the critical values
should be selected following their procedure.

The second method used in this study is Lenth’s method,
which is one of the most popular tools, proposed by Lenth
(1989) [10]. Let 0y, ..., 6, denote p mutually orthogonal es-
timated factorial effects. Assuming that there are only a few
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active effects. Lenth used a pseudo standard error (PSE) to
estimated the standard deviation of 6;’s:

(16) PSE = 1.5 x median | _, 5. 0i]
where,
(17) s0 = 1.5 x median |6,

Lenth, then, obtained a margin error (ME) for contrasts.
Contrasts that exceed the ME in absolute value are deemed
active. Because with a large number of p contrasts, one can
expect one or two estimates of inactive contrasts to exceed
the ME leading to false conclusion, alternatively, one can
compute simultaneous margin of error (SME) to account for
this possibility. A contrast that extends beyond the SME is
clearly considered as an active effect. ME and SME can be
calculated as follows:

(18) MFE = t0'975;d x PSE
(19) SME =tyqx PSE
where,

(20) . (1+0.95'/7)

2

Here, tg.975;4 and t.;q are the 0.975th and the yth quan-
tiles of a t distribution on d degrees of freedom, respectively.

Dong (1993) [11] also defined an estimator of contrast
standard error as follows:

;Zgiz

Pinactive N
|9i ‘ <2.5s0

(21) Sbong =

where p is the number of factorial effects (contrasts),
PDinactive 15 the number of inactive contrasts characterized
by 16;] < 2.5s0, and sp = 1.5 - median |0;|. A contrast is
declared active if

(22) ‘91| > t’Wp'inacti'ue X SDOng
where,

1 0,971/T)inactive
(23) v (1+ )

2

Here, we choose 0.97 because it will make the actual a-
levels closer to those of Lenth’s.

Ye et al. (2001) [12] proposed a step-down version of
the Lenth’s method for controlling experimental error rate
(EER), which is the error rate of at least one inactive effect
being declared active. Let |é|(1) < |é\(2) <...< |é|(p) be
the order statistics of p absolute contrasts. Obtain the test
statistics;

0l
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Factors’ level combinations and the response
variable for the illustrative example

Run A BCDE y Run A B CDE y

1 - - - - - 811 2 + - - - - 793
3 -+ - - — 5.56 4 + + - - 5

5 - - + - = 577 6 + - + - - 747
7 - + + - - 5382 8 + + + - - 12.00
9 - - - 4+ - 917 10 + - - 4+ - 986
1 -+ - + - 780 12 + 4+ - + - 3.65
3 - -+ + - 323 14 + - + + - 640
B - + + + - 569 6 + + + + - 1161
7w - - - - + 882 8 + - - - + 1243
9 - 4+ - - 4+ 1423 20 + 4+ - - 4+ 17.55
21 - - 4+ - + 920 22 + - 4+ - 4+ 887
2 - + 4+ - + 894 24 + + + - + 2558
2 - - - 4+ 4+ 1149 26 + - - 4+ + 13.06
27 - 4+ - 4+ + 1149 280 + + - + + 18.83
29 - - + 4+ 4+ 625 30 4+ - + + + 11.78
31 - + + + + 912 32 + + 4+ + + 26.05

where PSFE; is the pseudo standard error of 9(1),9(2), cee
9(],), the signed contrasts corresponding to the absolute con-

trasts |é|(1), |é\(2), ce |é|(p). Let C! denote the critical value
at significance level a of the original Lenth method with p
contrasts. If t; > C¢ for all i > p—k, then the largest k fac-
torial effects are declared active. Values of C?, for i between
4 and 35 are obtained by simulation and listed in Ye et al.
(2001) [12]. The description of the simulation can be found
in Ye et al. (2000) [13].

4. AN ILLUSTRATIVE EXAMPLE

The illustrative example is directly taken from An-
gelopoulos et al. (2010) [9]. For this example, SAS Base
programming [18] has been used to find GME estimators.
In this example, we will use a simulated example where five
factors are investigated in order to identify if they have an
effect on a response variable. The active effects are set to be
A, B,E, AB, AC, AE, BC, BE, ABC and ABE. The true
model under investigation will be y = 10+2A+1.8B+3FE +
1.2AB+12AC+1.5AE+BC+1.8BE+1.1ABC+1.1ABE.
The scenario is as follows: no prior knowledge exists for the
researcher, so all main effects and all interactions might
influence the response. The number of experimental runs
is limited to 32. So an unreplicated 2° full factorial de-
sign is employed. The experiment settings along with the
response for each experimental run are presented in Ta-
ble 1.

GME approach can directly estimate the full model with-
out having to rely upon the probability plot for insight into
which effects can be significant. The resulting GME esti-
mates, t-values and p-values are shown in Table 2. Note that
the parameter estimates associated with the A, B, E, AB,
AC, AE, BC, BE, ABC, ABE effects are all statistically-
significant.



Table 2. GME results for full design of the illustrative example

Factorial Estimate Approx. Std. t-value Approx.| Factorial Estimate Approx. Std. t-value Approx.
effect Error Pr > |t| | effect Error Pr > [t
A 1.272714 0.2299 5.5 <0.0001 ABD -0.00669 0.0123 -0.54 0.5896
B 0.702976 0.1621 4.34 0.0001 ABE 0.188356 0.0810 2.33 0.0265
C 0.000047 0.000480 0.10 0.9224 ACD 0.00166 0.00501 0.33 0.7426
D -2.59E-6 0.000069 -0.04 0.9703 ACE -0.00001 0.000204 -0.06 0.9488
E 2.170737 0.3159 6.87 <0.0001 ADE 0.019964 0.0239 0.83 0.4104
AB 0.257316 0.0949 2.71 0.0107 BCD 0.005263 0.0105 0.50 0.6206
AC 0.429341 0.1238 3.47 0.0015 BCE -0.01342 0.0189 -0.71 0.4823
AD 0.009015 0.0148 0.61 0.5463 BDE -0.00013 0.000934 -0.14 0.8906
AE 0.510293 0.1358 3.76 0.0007 CDE 0.009474 0.0152 0.62 0.5383
BC 0.395087 0.1185 3.33 0.0022 ABCD -0.00251 0.00657 -0.38 0.7048
BD -2.28E-7 0.000014 -0.02 0.9867 ABCE 0.023765 0.0265 0.90 0.3772
BE 0.748951 0.1681 4.46 <0.0001 ABDE 0.000654 0.00273 0.24 0.8120
CD -0.00294 0.00728 -0.40 0.6888 ACDE -0.00019 0.00122 -0.16 0.8760
CE -1.04E-7 8.191E-6 -0.01 0.9899 BCDE -0.00019 0.00120 -0.16 0.8777
DE -1.47E-8 2.248E-6 -0.01 0.9948 ABCDE -0.01612 0.0211 -0.76 0.4502
ABC 0.359115 0.1127 3.19 0.0032

Table 3. OLS estimates for reduced model of the illustrative

Table 4. GME estimates for reduced model of the illustrative

example example
Variable Estimate Std. Err. t-value Pr > |t GME-NM Variable Estimates
Intercept 10.18594 0.21988 46.33 <.0001 Approx. Approx.
A 2.19344 0.21988 9.98 <.0001 Variable Estimate Std. t-value Pr > f|
B 1.62156 0.21988 7.37 <.0001 Error
B 5 99406 0.91988 13.62 <0001 Imtercept  9.788072 0.4816 20.33 <.0001
AB 1.03281 0.21988 4.70 0.0001 A 1.229109  0.2156 5.70 <.0001
AC 1.29031 0.21988 5.87 <.0001 B 0.718196 0.1673 4.29 0.0002
AE 1.39531 0.21988 6.35 <.0001 E 2.05426 0.2816 7.30 <.0001
BC 124344 e 5 66 <0001 AB 0.307867 0.1185 2.60 0.0140
BE 167219 0.21088 7 61 <0001 AC 0.469957 0.1398 3.36 0.0020
ABC 119219 0.91988 5 49 <0001 AE 0.544113 0.1485 3.66 0.0009
ABE 0.90719 0.21988 413 0.0005 BC 0.438357  0.1360 3.22 0.0029
BE 0.759729 0.1715 4.43 0.0001
ABC 0.40482 0.1317 3.07 0.0043
ABE 0.239894 0.1078 2.22 0.0333

It is worth noting that GME approach identified the ac-
tive effects in the model. We also analyzed the same example
with other methods. Projection property method gave us the
same results. However, Lenth’s method identified only 7 out
of 10 true active effects, which are A, B, E, AC, AE, BC
and BFE. Dong’s method identifies as active effects A, B,
E, AC, AE, BE, meaning that it fails to identify four real
active effects. Additionally, step-down Lenth method could
identify as active effects A, B, E, BE, AE, AC, BC, ABC,
AB but not ABE.

Right after determining active effects, we perform regres-
sion analysis in order to find how OLS and GME estimates
of the parameters and their corresponding standard errors
change. OLS and GME results for reduced model are given
in Table 3 and 4 for both estimation methods.

As can be seen in these tables, GME estimation can pro-
duce markedly different standard errors. However, with OLS
estimation, we obtain the same standard error for each pa-
rameters in the regression model.

Note: GME-NM estimation refers to normed moment gener-
alized maximum entropy estimation method.

5. A REAL-LIFE EXAMPLE

Montgomery (2012) proposed a problem for understand-
ing the use and analysis of 2* factorial designs as it was
described in a paper published in Solid State Technology
(Orthogonal Design for Process Optimization and Its Ap-
plication in Plasma Etching, 1987, 127-132). This paper de-
scribes the application of factorial designs in developing a
nitride etch process on a single-wafer plasma etcher. The
process uses CyFg as a reactant gas. Four factors are of in-
terest: anode-cathode gap (A), pressure in reactor chamber
(B), CyoFg gas flow (C) and power applied to the cathode
(D). The response variable is the etch rate of silicon nitride.
A single replicate of 2% factorial design is run and the data
are shown in Table 5.
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Table 5. Factor’s level combinations and the response
variable for the real-life data set

Run A B C D y Run A B C D vy
1 — - - — 550 2 + - - — 669
3 - + - - 604 4 + 4+ - - 650
5 T 663 6 + - 4+ - 642
7 - + + - 601 8 + + 4+ - 642
9 - - — 4+ 1037 10 + - - + T49
11 -+ - 4+ 1052 12 + + - 4+ 868
13 — - 4+ 4+ 1075 14 + - 4+ + 860
5 - 4+ + + 1063 16 + + + + 729
Data Means

A B
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b2 C D
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Figure 1. Main Effects Plot.

Data Means

- B

A *——e >-—"
- — . - —a
B -

o O D e

Figure 2. Interactions Plot.

Before analyzing this unreplicated factorial design, we
can create factorial plots for main effects and interactions
to draw some preliminary conclusions, i.e., important fac-
tors and interactions and best setting, given in Figure 1 and
Figure 2, respectively.

From Figure 1 and Figure 2, we can subjectively conclude
that main effects, anode-cathode gap (A) and the power
(D), plus, interactions, anode-cathode gap/power (AD) and
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Figure 3. Half-normal plot of the effects.
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Figure 4. Normal plot of the effects.

pressure/gas flow (BC') might be important for the etch rate
of silicon nitride.

Secondly, half-normal and normal plots of this unrepli-
cated factorial design can be seen in Figure 3 and 4, respec-
tively.

In addition to factorial plots, from the half-
normal/normal plots above, we can see that the highest-
order interaction ABC'D might be statistically-significant.

GME approach can directly estimate the full model with-
out having to rely upon the probability plot for insight into
which effects can be significant. The resulting GME esti-
mates, t-values and p-values are shown in Table 6. Note that
the parameter estimates associated with the A, D, AD, BC,
ABCD effects are all significant.

GME approach identifies the active effects in the model
and seems to confirm the results of those obtained with fac-
torial plots and half-normal/normal plots. Analyzing the
same example with other methods, projection property
method gives the active effects as A, D and AD. Lenth’s
method similarly identified the active effects, which those
are A, D and AD. Dong’s method gives the same results



Table 6. GME results for full design of real-life data set

Factorial Estimate Approx. Std. t-value Approx.| Factorial Estimate Approx. Std. t-value Approx.

effect Error Pr > |t| | effect Error Pr > [t
A -34.4979 5.0007 -6.90 <0.0001 BD -0.00003 0.000914 -0.04 0.9724
B -0.00056 0.00616 -0.09 0.9284 CD -0.00126 0.0105 -0.12 0.9063
C 0.051531 0.1210 0.43 0.6758 ABC -0.44982 0.4646 -0.97 0.3437
D 146.3858 8.4137 17.40 <0.0001 ABD 0.009177 0.0392 0.23 0.8178
AB -0.06234 0.1370 -0.46 0.65528 ACD 0.023086 0.0719 0.32 0.7522
AC -1.58821 0.9359 -1.70 0.1091 BCD -1.6719 0.9621 -1.74 0.1015
AD -64.2565 6.8994 -9.31 <0.0001 ABCD -5.20849 1.7199 -3.03 0.0080
BC -6.4127 1.9130 -3.35 0.0040

Table 7. Parameter Estimates by GME Approach

GME-NM Variable Estimates

Approx. A
. . PPprox.
Variable Estimate Std. t-value P
r > |t
Error
Intercept 774.1117 9.0065 85.95 < .0001
A -34.538 5.0889 -6.79 < .0001
D 144.342 8.3330 17.32 < .0001
AD -62.5826 6.6303 -9.44 < .0001
BC -8.59879 2.8668 -3.00 0.0085
ABCD -7.36329 2.7155 -2.71 0.0154

Note: GME-NM estimation refers to normed moment gener-
alized maximum entropy estimation method.

with projection property method and Lenth’s method. How-
ever, step-down Lenth method could identify as active effects
A, D, AD and plus, BC.

The resulting GME estimates for reduced model are
shown in Table 7. Note that the parameter estimates as-
sociated with the A, D, AD, BC and ABCD effects are
still all statistically-significant.

6. CONCLUSION

It is attempted to compare the results of generalized max-
imum entropy estimation with traditional estimation meth-
ods in order to investigate the advantages of the generalized
maximum entropy approach for determining the active ef-
fects in unreplicated factorial design. For this reason, we use
two data sets. For both data sets, those who uses OLS esti-
mation method, id est, Lenth’s method, Dong’s method and
step-down Lenth method failed to determine the active ef-
fects. However, projection property method can identify the
variables with the greatest effect on response variable for
the illustrative example, albeit, it can not for the real-life
data set. Therefore, GME approach can find active effects
truly and efficiently for both.

In the literature, it has been shown that the GME es-
timator is more precise than the OLS, because GME com-
bines prior information with observed data. Moreover, us-
ing OLS method to analyze the unreplicated experimental

data gives zero degrees of freedom for error term. The half-
normal /normal plot method unlike other methods has disad-
vantages in terms of subjectivity. Whereas the OLS method
gives constant standard error for each parameter estimates,
the GME method gives distinct standard errors for each of
the parameters for the reduced model.

The main advantages of using GME estimation method
(Golan et al. (1996) [5], Eruygur (2005) [6]) can be summa-
rized as: The GME approach uses all the data information
and does not require any imposition on distributional error
assumptions. The GME is robust and may be used when the
sample is small. Therefore the GME works well in case of
ill-posed data such as unreplicated factorial designs. Conse-
quently, the GME estimator can be used as an alternative
method and our results show that it is worthwhile to con-
sider the idea of GME estimation method. Note that our
conclusions are merely based on the data sets, a further
study, in particular a simulation study can be conducted to
make more general inferences.
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