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Nonlinear censored regression models with
heavy-tailed distributions
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In the framework of censored nonlinear regression models,
the random errors are routinely assumed to have a normal
distribution, mainly for mathematical convenience. How-
ever, this method has been criticized in the literature due to
its sensitivity to deviations from the normality assumption.
In practice, data such as income or viral load in AIDS stud-
ies, often violate this assumption because of heavy tails. In
this paper, we establish a link between the censored non-
linear regression model and a recently studied class of sym-
metric distributions, which extends the normal one by the
inclusion of kurtosis, called scale mixtures of normal (SMN)
distributions. The Student-t, Pearson type VII, slash and
contaminated normal, among others distributions, are con-
tained in this class. Choosing a member of this class can be
a good alternative to model this kind of data, because they
have been shown its flexibility in several applications. We de-
velop an analytically simple and efficient EM-type algorithm
for iteratively computing maximum likelihood estimates of
model parameters together with standard errors as a by-
product. The algorithm uses nice expressions at the E-step,
relying on formulae for the mean and variance of truncated
SMN distributions. The usefulness of the proposed method-
ology is illustrated through applications to simulated and
real data.

Keywords and phrases: Censored nonlinear regression
model, EM-type algorithms, Scale mixtures of normal dis-
tributions, Outliers.

1. INTRODUCTION

Nonlinear (NL) regression models with censored depen-
dent variable (hereafter NLCR models) are applied in many
fields, like econometric analysis, clinical essays, medical sur-
veys, engineering studies, among others. For example, in
medical surveys, the relationship between the survival time
and the age of a patient who has received a given treat-
ment is often nonlinear, and the survival time is subject
to right censoring because the patient may decide to leave
the study. As such, he/she may die due to another cause
than the disease from which he/she suffers, or the study
itself can be stopped. In AIDS research, the viral load mea-
sures may be subjected to some upper and lower detection

∗Corresponding author.

limits, namely below or above which they are not quantifi-
able. As a result, the viral load responses are either left
or right censored depending on the diagnostic assays used
(Vaida and Liu, 2009).

In general, for mathematical tractability reasons, it is as-
sumed that the random errors in nonlinear models have
a normal distribution, see Wei and Tanner (1990) and
Heuchenne and Van Keilegom (2007). However, it is well-
known that several phenomena are not always in agree-
ment with this assumption, yielding data with a distribution
with heavier tails. The problem of longer-than-normal tails
(or outliers) can be circumvented by data transformations
(namely, Box–Cox, etc.), which can render approximate nor-
mality with reasonable empirical results. However, some
possible drawbacks of these methods are: (i) transformations
provide reduced information on the underlying data gen-
eration scheme; (ii) component wise transformations may
not guarantee joint normality; (iii) parameters may lose in-
terpretability on a transformed scale and (iv) transforma-
tions may not be universal and usually vary with the data
set. Hence, from a practical perspective, there is a neces-
sity to seek an appropriate theoretical model that avoids
data transformations, yet presenting a robustified “Gaus-
sian” framework.

To deal with the problem of atypical observations in
NL regression models, proposals have been made in the
literature to replace normality with more flexible classes of
distributions. For instance, Cysneiros and Vanegas (2008)
studied the symmetrical NL regression model and performed
an analytical and empirical study to describe the behavior of
the standardized residuals. Vanegas and Cysneiros (2010)
proposed diagnostic procedures based on case-deletion
model for symmetrical NL regression models. Cancho et al.
(2010) introduced the skew-normal (Azzalini, 1985) NL
regression model and presented a complete likelihood based
analysis, including an efficient EM algorithm for maximum
likelihood (ML) estimation. A common feature of these
classes of nonlinear models is that the Gaussian nonlinear
model is a particular member of the class. Although there
are some proposals that overcome the problem of atypical
observations in NL regression models, there are no studies
taking into account, at the same time, censored responses
and observational errors modeled by a distribution in the
scale mixture of normal (SMN) class, which is, maybe,
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the most important family of symmetric distributions.
The SMN distributions are extensions of the normal
one, while incorporating kurtosis. The Student-t (T),
Pearson type VII (PVII), slash (SL), power exponential
(PE), contaminated normal (CN) and, obviously, the
normal (N) distributions are included in this class. Com-
prehensive surveys are available in Fang and Zhang
(1990), Liu (1996), Meza et al. (2012), among
others.

In this paper, we extend the NLCR model, called the
SMN-NLCR model, by assuming a SMN distribution for
the errors. A computationally feasible EM-type algorithm
is carried out for ML estimation. We show that the E-step
reduces to computing the first two moments of certain trun-
cated SMN distributions. The general formulas for these
moments were derived in closed form by Genç (2013). The
likelihood function and the asymptotic standard errors are
easily computed as a by-product of the E-step and are used
for monitoring convergence and for model selection using
the Akaike information criterion (AIC) or the Bayesian in-
formation criterion (BIC). The theoretical justification of
the proposal rests on the facts that the SMN class stochas-
tically attributes varying weights to each subject, i.e., lower
weight for outliers and thus controls the influence of atypical
observations on the overall inference. Moreover, every mem-
ber of the SMN class tends to the normal case, for example,
as the Student-t degrees of freedom tends to the infinity, it
approaches normality.

The rest of the paper is organized as follows. Section 2
briefly outlines some preliminary properties of the SMN and
truncated SMN distributions. Section 3 discusses the speci-
fication of the SMN-NLCR model and presents the Expec-
tation Conditional Maximization Either (ECME) algorithm
(Liu and Rubin, 1994) for obtaining the ML estimates of pa-
rameters. In Section 4, we derive approximate standard er-
rors for the regression parameters of the SMN-NLCR model.
Section 5, presents a simulation study to compare the perfor-
mance of our methods with other normality-based methods.
In Section 6, advantages of the proposed methodology is il-
lustrated through the analysis of a real data set, previously
analyzed under normal errors. Section 7 concludes with a
short discussion on the issues raised by our study and some
possible directions for future research.

2. PRELIMINARIES

Throughout this paper, X ∼ N(μ, σ2) denotes that a ran-
dom variable X follows the normal distribution with mean
μ and variance σ2; φ(·|μ, σ2) stands for its probability den-
sity function (pdf); φ(·) and Φ(·) represent the pdf and the
cumulative distribution function (cdf) of the standard nor-
mal distribution, respectively. Moreover, we follow the tra-
ditional convention to indicate a random variable (or a ran-
dom vector) by an upper case letter and its realization by
the corresponding lower case. Random vectors and matrices

are denoted by boldface letters. The symbol X� means the
transpose of X and ‘X⊥Y ’ indicates that the random vari-
ables X and Y are independent. We start by defining the
SMN distributions and its hierarchical formulation and then
introduce some further properties. A random variable X is
said to follow a SMN distribution with location parameter μ
and scale parameter σ2 > 0 if it has the following stochastic
representation:

(1) X = μ+ U−1/2Z, Z⊥U,

where Z ∼ N(0, σ2) and U is a positive random variable with
cdf H(·|ν). We use the notation X ∼ SMN(μ, σ2,ν). When
μ = 0 and σ2 = 1, we have the so-called standard SMN
distribution. Note from (1) that X|U = u ∼ N(μ, u−1σ2).

fSMN

(
x|μ, σ2,ν

)(2)

= (2πσ2)−1/2

∫ ∞

0

u1/2 exp
{
−(u/2σ2)(x− μ)2

}
dH (u|ν) ,

where −∞ < x < ∞. The form of the SMN distribution is
determined by the distribution of U . Herein, U is called the
scale factor and H(·|ν) is called the mixture distribution.

It is important to notice that there exists a relationship
between the SMN and the elliptical distributions. We say
that the random variable X has a univariate elliptical dis-
tribution with location parameter μ and scale parameter σ2,
when its density is given by

(3) f(x) = σ−1g (z) ,

where z = (x − μ)2/σ2 and g : R → [0,∞) satisfies∫∞
0

z−1/2g(z)dz < ∞. It is easy to see that (2) has the
form of (3). To obtain the standard errors of the regression
parameters, the relation between SMN and elliptical distri-
butions will be used in Section 4. Let X ∼ SMN(μ, σ2,ν)
and a < b such that P (a < X < b) > 0. A random vari-
able Y has a truncated SMN distribution within the interval
(a, b). In this case, we write Y ∼ TSMN(a,b)(μ, σ

2,ν) if it
has the same distribution as X|X ∈ (a, b). Thus, the density
of Y is

fTSMN(y|μ, σ2,ν; (a, b))(4)

= fSMN (y|μ, σ2,ν)

×
[
FSMN

(
b− μ

σ

)
− FSMN

(
a− μ

σ

)]−1

,

where a < y < b and fTSMN(y|μ, σ2,ν; (a, b)) = 0 other-
wise, and FSMN (·) denotes the cdf of the standard SMN
distribution. Next, we establish the following proposition,
which is crucial for the development of our proposed the-
ory. This proposition is a natural extension of Theorem 1
(and Corollary 1) of Genç (2013). The proof is given in Ap-
pendix A.
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Proposition 1. Let X ∼ SMN(0, 1) with scale factor U
and mixture distribution H(·|ν). Then, for a < b,

E [Ur|X ∈ (a, b)] =
1

FSMN (b)− FSMN (a)

× [EΦ (r, b)− EΦ (r, a)] ;

E [UrX|X ∈ (a, b)] =
1

FSMN (b)− FSMN (a)

×
[
Eφ

(
r − 1

2
, a

)
− Eφ

(
r − 1

2
, b

)]
;

E
[
UrX2|X ∈ (a, b)

]
=

1

FSMN (b)− FSMN (a)

×
[
EΦ (r − 1, b)− EΦ (r − 1, a) + aEφ

(
r − 1

2
, a

)
− bEφ

(
r − 1

2
, b

)]
,

where

Eφ (r, h) = E
[
Urφ

(
hU1/2

)]
,(5)

and

EΦ (r, h) = E
[
UrΦ

(
hU1/2

)]
.(6)

When the distribution of U is available, this proposi-
tion gives closed form expressions for the expected values
E[UrXs|X ∈ (a, b)], where s = 0, 1, 2 and r ≥ 1. Next,
we compute the quantities Eφ(r, h) and EΦ(r, h) for some
elements of the SMN family. They are useful in the imple-
mentation of the ECME algorithm.

• Pearson type VII distribution: Consider U ∼
Gamma(ν/2, δ/2), with ν > 0 and δ > 0, where
Gamma(a, b) denotes the Gamma distribution with
mean a/b. From (1), the density of X takes the form of

(7) fPV II(x|ν, δ) =
1

B (ν/2, 1/2)
√
δ

(
1 +

x2

δ

)− ν+1
2

,

where x ∈ R, and δ > 0 and ν > 0 are shape parameters
and B(a, b) represents the beta function. We use the
notation X ∼ PV II(0, 1; ν, δ) to denote X has density
(7). Moreover, we obtain

EΦ (r, h) =
Γ
(
ν+2r

2

)
Γ
(
ν
2

) (
δ

2

)−r

FPV II(h|ν + 2r, δ) and

Eφ (r, h) =
Γ
(
ν+2r

2

)
Γ
(
ν
2

)√
2π

(
δ

2

)ν/2 (
h2 + δ

2

)− (ν+2r)
2

where Γ(a) is the Gamma function and FPV II(·) is the
cdf of the Pearson type VII distribution. Note that the
Pearson type VII distribution reduces to the Student-t
distribution with ν degrees of freedom when δ = ν and
the Cauchy distribution when δ = ν = 1.

• Slash distribution: Consider U ∼ Beta(ν, 1) with pos-
itive shape parameter ν. It follows from (1) that the
density of X is given by

(8) fsl(x|ν) = ν

∫ 1

0

uν−1φ(x
√
u)du, x ∈ R.

The notation X ∼ SL(0, 1; ν) indicates X has density
(8). Moreover, we have

EΦ (r, h) =

(
ν

ν + r

)
FSL(h|ν + r) and

Eφ (r, h) =
ν√
2π

(
h2

2

)−(ν+r)

Γ

(
ν + r,

h2

2

)
,

where Γ(a, b) =
∫ b

0
e−tta−1dt is the incomplete gamma

function, see Lemma 6 in Genç (2013), and FSL(·) is
the cdf of the slash distribution.

• Contaminated normal distribution: Let U be a discrete
random variable taking one of two states 1 or γ. In this
case, the probability function of U is

h(u|ν, γ) = νIγ(u) + (1− ν)I1(u), ν, γ ∈ (0, 1),

where IB(·) is the indicator function of the set B. It
follows immediately that the density of X is

fCN (x|ν, γ) = νφ(x|0, γ− 1
2 ) + (1− ν)φ(x).

It follows that

EΦ (r, h) = γrFCN (h|ν, γ) + (1− γr) (1− ν) Φ (h) and

Eφ (r, h) = νγrφ (h
√
γ) + (1− ν)φ (h) ,

where FCN (·) is the cdf of the contaminated normal
distribution.

As a direct consequence of Proposition 1, we present an
important corollary in Appendix. It is useful for parameter
estimation in SMN-NLCR models via the ECME algorithm.

3. THE SMN CENSORED NONLINEAR
REGRESSION MODEL

3.1 The model

Consider a nonlinear regression model where the re-
sponses are observed with errors which are independent and
identically distributed according to the SMN distribution.
The model considered is written as

(9) Yi = η(xi,β) + εi, εi
iid∼ SMN(0, σ2,ν), i = 1, . . . , n,

where the Yi is the response, η(xi,β) is an injective and
twice differentiable function with respect to the vector of
regression parameters β = (β1, . . . , βp)

�, the derivative ma-
trix Diβ = ∂ηi(β)/∂β has rank p (p < n) and xi is a vec-
tor of explanatory variable for subject i. It follows from (1)
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that Yi
ind∼ SMN(η(xi,β), σ

2,ν), for i = 1, . . . , n. We call
(9) the SMN nonlinear regression (SMN-NLR) model. Fol-
lowing Vaida and Liu (2009), we consider the case in which
the response Yi is not fully observed for all i. Thus, let the
observed data for the i-th subject be (Vi, Ci), where Vi

represents the uncensored reading (Vi = V0i) or censor-
ing interval (Vi = (V1i, V2i)), and Ci the censoring indica-
tors:

(10) V1i ≤ Yi ≤ V2i if Ci = 1, and Yi = V0i if Ci = 0,

so that the SMN-NLCR model is defined. Let θ =
(β�, σ2,ν)� be the vector containing all unknown param-
eters in the SMN-CR model; V = (V�

1 , . . . ,V
�
n )

� and
C = (C1, . . . , Cn)

�. Supposing that there are (possibly)
m censored values of the characteristic of interest, we can
partition the observed sample yobs in two subsamples of m
censored and n − m uncensored values, such that yobs =
(C�,V�) = {V1, . . . ,Vm, ym+1, . . . , yn}. Then, the log-
likelihood function is given by

�(θ|yobs) =

m∑
i=1

log

[
FSMN

(
V2i − η(xi,β)

σ

)
(11)

− FSMN

(
V1i − η(xi,β)

σ

)]
+

n∑
i=m+1

log
[
fSMN (yi|η(xi,β), σ

2,ν)
]
.

To estimate the parameters of the SMN-NLCR model,
maximizing this log-likelihood function directly prevents
the possibility of analytical solutions. One alternative is
to maximize the complete likelihood using the EM algo-
rithm (Dempster et al., 1977) or some other extensions like
the ECM (Meng and Rubin, 1993) or the ECME algorithm
(Liu and Rubin, 1994). We exploit the ECME algorithm for
conducting ML estimation of the SMN-NLCR model be-
cause it is computationally more efficient than both EM and
ECM algorithms. The Newton-Raphson procedure is not
recommended for the implementation of the SMN-NLCR
model because it is difficult to converge if the initial values
are not very close to the ML estimates.

3.2 The ECME algorithm for the
SMN-NLCR model

We develop an efficient ECME algorithm for maximum
likelihood estimation of the parameters in the SMN-NLCR
model. In so doing, we need a representation of the model
in terms of missing data. In light of (1), the SMN-NLCR
model has the following hierarchical representation:

(12) Yi|Ui = ui ∼ N
(
η(xi,β), u

−1
i σ2

)
; Ui ∼ H(·|ν).

If the observation i is censored, yi can be viewed
as a realization of the latent unobservable variable

Yi ∼ SMN(η(xi,β), σ
2,ν), i = 1, . . . ,m. The key

to the development of ECME algorithm is to consider
the complete-data z = {yobs, y1, . . . , ym, u1, . . . , un} =
{y1, . . . , yn, u1, . . . , un}. From (12), the log-likelihood based
on complete-data z is

�c(θ|z) ≈− n

2
log

(
σ2

)(13)

+
1

2

n∑
i=1

log (ui)−
1

2σ2

n∑
i=1

ui(yi − η(xi,β))
2

+

n∑
i=1

log (h(ui|ν)) .

In what follows the superscript (k) indicates the estimate
of the related parameter at iteration k. In the E-step of the
algorithm, we compute the Q-function, defined as

Q(θ|θ(k)) = Eθ(k) [�c (θ|Z) |yobs] ,

where Eθ(k) [Y |X] denotes the conditional expectation of Y

given X evaluated at θ = θ(k). It follows from (13) that the
E-step involves the calculation of the following conditional
expectations:

Esi(θ(k)) = Eθ(k) [UiY
s
i |yobsi ], Eθ(k) [log (Ui) |yobsi ] and

Eθ(k) [log(h(Ui|ν))|yobsi ] for s = 0, 1 and 2.

Thus, dropping terms which are unrelated parameters,
the Q-function takes the form of

Q(θ|θ(k)) =− n

2
log

(
σ2

)
− 1

2σ2

n∑
i=1

[
E2i(θ(k))

(14)

− 2E1i(θ(k))η(xi,β) + E0i(θ(k))η(xi,β)
2
]

+
1

2

n∑
i=1

Eθ(k) [log (Ui) |Vi, Ci]

+

n∑
i=1

Eθ(k) [log (h(Ui|ν)) |Vi, Ci].

At each step, the conditional expectations Esi(θ(k)) can be
easily derived from the results given in Proposition 1. Thus,

• for an uncensored observation i, we have

(15) Esi(θ(k)) = ysiEθ(k) [Ui|yi],

where Eθ(k) [Ui|yi] can be obtained using results in
Osorio et al. (2007). Thus, for example,

– If Yi ∼ PV II(η(xi,β), σ
2, ν, δ), we have

Eθ(k) [Ui|yi] = (ν + 1)/(δ + d(θ(k), yi)),
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– If Yi ∼ SL(η(xi,β), σ
2, ν), we have

Eθ(k) [Ui|yi] =
Γ
(
ν + 1.5, d(θ(k), yi)/2

)
Γ
(
ν + 0.5, d(θ(k), yi)/2

)
– If Yi ∼ CN(η(xi,β), σ

2, ν, γ), we have

Eθ(k) [Ui|yi] =

(
1− ν + νγ1.5e0.5(1−γ)d(θ(k)

,yi)
)

(
1− ν + νγ0.5e0.5(1−γ)d(θ(k)

,yi)
) ,

where d(θ(k), yi) = (
yi−η(xi,β

(k)
)

σ(k) )2,
• for an interval censored observation i, we have Yi ≤ κi,

so that

(16) Esi(θ(k)) = Eθ(k) [UiY
s
i |Vi1 ≤ Yi ≤ Vi2],

which can be obtained by using Proposition 1 along
with the results of (5) and (6) with r = 1.

When the M-step turns out to be analytically intractable,
it can be replaced with a sequence of conditional maxi-
mization (CM) steps. The resulting procedure in known as
the ECM algorithm (Meng and Rubin, 1993). The ECME
algorithm (Liu and Rubin, 1994) is a faster extension of
EM and ECM algorithm by maximizing the constrained Q-
function with some CM-steps that maximize the correspond-
ing constrained actual marginal likelihood function, called
the CML-steps. In summary, the ECME algorithm for es-
timating the parameters of the SMN-NLCR model can be
proceeded in the following way:

E-step: Given θ = θ(k), for i = 1, . . . , n;

– If observation i is uncensored, then for s = 0, 1, 2, com-
pute Esi(θ(k)) given in (15);

– If observation i is censored, then for s = 0, 1, 2, compute
Esi(θ(k)) given in (16).

CM-step: Update θ(k) by maximizing Q(θ|θ(k)) over θ,
which leads to the following expressions:

β̂
(k+1)

(17)

= argminβ(τ
(k) − η(β,x))�Û(k)(τ (k) − η(β,x)),

σ̂2
(k+1)

=
1

n

n∑
i=1

[
E2i(θ(k))− 2E1i(θ(k))η(xi,β

(k+1))(18)

+ E0i(θ(k))(η(xi,β
(k+1)))2

]
.

CML-step: Update ν(k) by maximizing the actual marginal
log-likelihood function, obtaining

ν(k+1) = argmaxν

{
m∑
i=1

log

[
FSMN

(
V2i − η(xi,β

(k+1))

σ(k+1)

)(19)

− FSMN

(
V1i − η(xi,β

(k+1))

σ(k+1)

)]

+

n∑
i=m+1

log[fSMN (yi|η(xi,β
(k+1)), σ2(k+1)

,ν)]

}
,

where η(β,x) = (η(β,x1), . . . , η(β,xn))
�, Û(k) =

Diag(E01(θ(k)), . . . , E0n(θ(k))) and τ̂ (k) = (τ̂1
(k), . . . , τ̂n

(k))�

is the corrected observed response with τ̂
(k)
i =

E1n(θ(k))/E0n(θ(k)). Given a set of suitable initial val-

ues θ̂
(0)

described in the next subsection, the ECME
procedure is performed iteratively until some distance
involving two successive evaluations of the actual log-
likelihood �(θ|yobs), like ||�(θ(k+1)|yobs) − �(θ(k)|yobs)||
or ||�(θ(k+1)|yobs)/�(θ

(k)|yobs) − 1||, is small enough. We
have adopted this strategy to update the estimate of
ν by directly maximizing the marginal log-likelihood.
In this way, we circumvent the cumbersome problem of
computing Eθ(k) [log(Ui)|yobsi ] and Eθ(k) [log(h(Ui|ν))|yobsi ].
Upon convergence, the ML estimates of θ is denoted by
θ̂ = (β̂, σ̂2, ν̂).

3.3 Notes on implementation

It is well known that ML estimation in nonlinear mod-
els may face some computational hurdles in the sense that
the method may not give maximum global solutions when
the starting values are far from the true parameter values.
Thus, the choice of starting values for the EM algorithm in
the non-linear context plays an important role in param-
eter estimation. In our example we consider the following
procedure for the SMN-NLCR.

• Compute the estimates β̂
(0)

and (σ̂2)(0) using the non-
linear least squares (NLLS) method, which can be com-
puted through the R function nls(). These values
should be computed by considering the complete data,
that is, censoring is not present in the data.

• We use the NLLS estimates of the regression parame-
ter and scale parameters as initial values for the cor-
responding parameter under the N-NLCR, T-NLCR,
SL-NLCR and the CN-NLCR models.

• In order to estimate the mixture parameter ν, we as-
suming 3, 3, and (0.1, 0.1) as initial values for the
T-NLCR, SL-NLCR and CN-NLCR respectively.

Notice that all the computational procedures were coded
and implemented using the statistical software package R
(R Core Team, 2013). The computer programs are available
from the first author upon request.

4. STANDARD ERRORS ESTIMATES

Standard errors of the ML estimates can be approximated
by the inverse of the observed information matrix, but there
is generally no closed form, see Meilijson (1989) and Lin
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(2010). Writing θ = (β, σ2,ν), the empirical information
matrix is defined as

Ie (θ|yobs) =

n∑
i=1

w (yobsi |θ)w� (yobsi |θ)

− 1

n
W (yobs|θ)W� (yobs|θ) ,

where W�(yobs|θ) =
∑n

i=1 w(yobsi |θ). It is noted from the
result of Louis (1982) the individual score can be determined
as

w (yobsi |θ) =
∂�(θ|yobsi)

∂θ
= E

[
∂�c(θ|zi)

∂θ
|yobsi ,θ

]
.(20)

Substituting the ML estimates θ in (20), Ie(θ|yobs) is re-
duced to

Ie

(
θ̂|yobs

)
=

n∑
i=1

ŵiŵ
�
i ,(21)

where ŵi = (ŵβi
, ŵσ2i, ŵνi) is an individual score vector

and

ŵβi = E

[
∂�c(θ|zi)

∂β
|yobsi , θ̂

]
=

1

σ2
Diβ

(
E1i(θ̂)− E0i(θ̂)η(xi, β̂)

)
,

ŵσ2i = E

[
∂�c(θ|zi)

∂σ2
|yobsi , θ̂

]
= − 1

2σ̂2
+

1

2σ̂4

(
E2i(θ̂)− 2E1i(θ̂)η(xi, β̂)

+ E0i(θ̂)η(xi, β̂)
2
)
,

and

ŵνi = E

[
∂�c(θ|zi)

∂ν
|yobsi , θ̂

]
(22)

= E

[
∂ log (h(Ui|ν))

∂ν
|yobsi , θ̂

]
where �c(θ|zi) be the log-likelihood formed from the sin-
gle complete observation zi = (yobsi , yi, ui)

�, Diβ̂ =

∂ηi(β̂)/∂β and Esi(θ(k)) = Eθ(k) [UiY
s
i |yobsi ]. It is impor-

tant to notice that the values of Equation (22) depend of
the distribution of U . Thus for example:

• For the Student-t distribution: We consider U ∼
Gamma(ν/2, δ/2), with ν > 0, then

ŵνi = −ψ

(
ν̂

2

)
+

1

2

(
log

(
ν̂

2

)
+ 1

)
+

1

2

(
E
[
log (Ui) |yobsi , θ̂

]
− E0i(θ̂)

)
where ψ(x) represents the digamma function of x.

• For the Slash distribution: We consider U ∼ Beta(ν, 1)
with positive shape parameter ν, then

ŵνi =
1

ν̂
+ E

[
log (Ui) |yobsi , θ̂

]
.

It is important to stress that the standard error of ν depends
heavily on the calculation of E[log(Ui)|yobsi , θ̂], which relies
on computationally intensive Monte Carlo integrations. In
our analysis, we focus solely on comparing the standard er-
rors of β and σ2.

5. SIMULATION STUDIES

In order to study the performance of our proposed model
and algorithm, we present three simulation studies. The first
part of this simulation study shows that the parameter esti-
mates based on the ECME algorithm from the SMN-NLCR
models provides good asymptotic properties. The goal of the
second part is to show the consistency of the standard errors
for the fixed effects. The performance of the parameter esti-
mates in the presence of outliers on the response variable is
presented in the third simulation study. The computational
procedures were implemented using the R software (R Core
Team, 2013).

5.1 Asymptotic properties

The goal of this simulation study is to evaluate the finite-
sample performance of the parameter estimates using the
ECME algorithm developed in the Subsection 3.2. We per-
formed a Monte Carlo simulation study with the nonlinear
growth-curve model defined by,

(23) Yi =
β1

1 + exp(β2 + β3xi)
+ εi, i = 1, . . . , n,

where εi ∼ SMN(0, σ2, ν). Following Labra et al. (2012),
the variable xi is a sequence of equally spaced values rang-
ing from 0.1 to 20. These values were used throughout the
simulations. The true values of the regression parameters
were taken as β1 = 330, β2 = 6.5, β3 = −0.7 and σ2 = 3.

We generated 500 artificial samples from the SMN-NLCR
model with censoring level p = 10% (i.e., 10% of the obser-
vations in each data set were censored). The sample sizes are
n = 30, 50, 100, 150, 200, 300, 400, 500, 700 and 800. The
main purpose here is the evaluation of bias (Bias) and mean
square error (MSE). For βi (i = 1, 2, 3), these quantities are
defined, respectively, by

Bias (βi) =
1

500

500∑
j=1

(
β̂
(j)
i − βi

)
and

MSE (βi) =
1

500

500∑
j=1

(
β̂
(j)
i − βi

)2

,

where β̂
(j)
i is the estimate of βi for the j-th sample. Ob-

serving Figure 1, we found that the bias and MSE tend to
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Figure 1. Simulation data. Bias and MSE from the parameter
estimates considering p = 10%.

approach to zero when the sample size n increases. As a
general rule, the results indicate that the ML estimates of
the model do provide good asymptotic properties. Simula-
tions are also conducted under two higher censoring rates
(p = 30% and 45%) and the patterns of convergence still
behave well. See Figures 4 and 5 in Appendix B.

5.2 Consistency of the estimates of the
standard errors for the fixed effects

The design considered in this simulation study is the
same that we used in Subsection 5.1. In the study, we ex-
amine the consistency of the approximation method sug-
gested in Section 4 for the standard errors (SE) of the
MLE of the regression parameters θ∗ = (β, σ2). We gen-
erated 1,000 samples of size n = 150 from four differ-
ent SMN-NLCR models, including N-NLCR, T-NLCR with
ν = 4, SL-NLCR with ν = 3 and CN-NLCR with ν =

(0.1, 0.1). For each sample, eight different censoring levels
(0%, 5%, 10%, 15%, 20%, 30%, 45% or 55%) were consid-
ered.

For each setup, we compute the MLE’s of θ∗ along
with the associated SE estimates and the 95% normal-
approximation confidence intervals. Table 1 presents the
sample standard errors of θ̂∗i

MC SE =
1

999

1000∑
j=1

(
θ̂∗

(j)

i − θ̂∗i

)2

, where

θ̂∗i =
1

1000

1000∑
j=1

θ̂∗
(j)

i ,

which are calculated using the average values (across 1000
samples) of the standard errors computed using the infor-
mation method (IM MC SE) and the percentage coverage
of the resulting 95% confidence intervals (COV MC). It can
be observed from Table 1 that the COV MC for β is quite
stable, but the COV MC of σ2 tend to be lower than the
nominal level (95%).

5.3 Performance evaluation

The goal of this simulation study is to compare the per-
formance of the parameter estimates for the SMN-NLCR
regression models in the presence of outliers on the response
variable. We considered a two-parameter Michaelis-Menten
model, presented by Vanegas et al. (2012)

(24) Yi =
β1xi

β2 + xi
+ εi, i = 1, . . . , n,

where εi ∼ SMN(0, σ2, ν). True regression parameter val-
ues were taken as β1 = 3, β2 = 0.5 and σ2 = 1. Sample size
was n = 300 and the censoring level was fixed at p = 8%.
Covariates were generated from uniform distribution in (0,1)
and those values were kept constant through the experiment.
The number of Monte Carlo replications was 500.

To assess how much the EM estimates are influenced by
the presence of outliers, we adopted six different levels (ϑ =
1%, 2%, 3%, 4%, 5% and 10%) of outliers present on the
data sets. The outliers are created replacing the uncensored
observations yi chosen randomly by yi + 2Sd(y), where Sd
represents the standard deviation of the data set.

Following Fagundes et al. (2013), the performance assess-
ment of the parameter estimates is based on the mean mag-
nitude of relative error (MMRE), defined as

MMRE =
1

3

{∣∣∣∣ β̂1(ϑ)− β̂1

β̂1

∣∣∣∣+ ∣∣∣∣ β̂2(ϑ)− β̂2

β̂2

∣∣∣∣+ ∣∣∣∣ σ̂2
2(ϑ)− σ̂2

2

σ̂2
2

∣∣∣∣},
where θ̂i(ϑ) is the MLE of θi after the contamination ϑ, with
θ = β1, β2, σ

2.
Table 2 shows the values (across 500 samples) of aver-

age and standard deviation of the MMRE obtained for the
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Table 1. Simulation data. MC SE, IM MC SE and COV MC of θ̂∗
i

Cens level Measure N-NLCR T-NLCR

β̂1 β̂2 β̂3 σ̂2 β̂1 β̂2 β̂3 σ̂2

MC SE 0.260 0.024 0.002 0.349 0.305 0.028 0.003 0.430

0% IM MC SE 0.265 0.024 0.002 0.357 0.315 0.029 0.003 0.453

COV MC 96.0% 96.0% 96.0% 93.2% 94.6% 95.4% 95.8% 93.6%

MC SE 0.280 0.025 0.002 0.369 0.336 0.030 0.003 0.477

5% IM MC SE 0.276 0.025 0.002 0.363 0.321 0.030 0.003 0.470

COV MC 94.2% 95.4% 94.8% 92.8% 93.2% 95.4% 96.0% 93.0%

MC SE 0.308 0.026 0.002 0.471 0.347 0.031 0.003 0.508

10% IM MC SE 0.285 0.026 0.002 0.381 0.332 0.030 0.003 0.481

COV MC 93.4% 94.0% 94.0% 93.2% 93.0% 92.8% 94.6% 92.0%

MC SE 0.299 0.027 0.003 0.392 0.368 0.032 0.003 0.507

15% IM MC SE 0.293 0.027 0.003 0.388 0.341 0.031 0.003 0.496

COV MC 95.0% 94.0% 94.8% 93.0% 93.2% 94.6% 94.6% 94.0%

MC SE 0.300 0.027 0.003 0.391 0.391 0.033 0.003 0.573

20% IM MC SE 0.300 0.028 0.003 0.396 0.349 0.032 0.003 0.506

COV MC 94.2% 95.6% 96.0% 92.8% 92.2% 93.8% 94.2% 91.6%

MC SE 0.328 0.029 0.003 0.405 0.379 0.035 0.003 0.536

30% IM MC SE 0.322 0.030 0.003 0.429 0.373 0.035 0.003 0.537

COV MC 94.8% 95.0% 94.4% 92.4% 94.6% 94.0% 95.4% 91.0%

MC SE 0.435 0.034 0.003 0.590 0.512 0.042 0.004 0.621

45% IM MC SE 0.370 0.034 0.003 0.496 0.422 0.039 0.004 0.600

COV MC 94.2% 94.2% 94.0% 90.0% 90.8% 92.4% 92.6% 91.6%

MC SE 0.415 0.036 0.004 0.562 0.478 0.043 0.004 0.685

55% IM MC SE 0.409 0.039 0.004 0.550 0.473 0.044 0.004 0.681

COV MC 95.4% 95.8% 96.6% 91.0% 94.0% 95.0% 95.6% 90.6%

Cens level Measure SL-NLCR CN-NLCR

β̂1 β̂2 β̂3 σ̂2 β̂1 β̂2 β̂3 σ̂2

MC SE 0.303 0.027 0.003 0.368 0.445 0.043 0.004 0.538

0% IM MC SE 0.310 0.028 0.003 0.370 0.315 0.029 0.003 0.509

COV MC 94.2% 96.6% 96.2% 92.0% 96.6% 94.4% 94.8% 92.8%

MC SE 0.329 0.030 0.003 0.381 0.518 0.049 0.003 0.427

5% IM MC SE 0.316 0.029 0.003 0.382 0.420 0.039 0.003 0.417

COV MC 93.8% 94.2% 94.4% 92.6% 93.4% 93.2% 93.2% 91.4%

MC SE 0.360 0.029 0.003 0.436 0.594 0.043 0.004 0.537

10% IM MC SE 0.324 0.030 0.003 0.398 0.434 0.040 0.004 0.522

COV MC 92.4% 95.4% 95.8% 92.4% 91.6% 94.2% 94.6% 90.8%

MC SE 0.348 0.029 0.003 0.394 0.533 0.053 0.005 0.489

15% IM MC SE 0.333 0.031 0.003 0.402 0.437 0.041 0.004 0.419

COV MC 94.2% 95.8% 95.4% 93.8% 92.2% 90.4% 91.0% 91.8%

MC SE 0.358 0.031 0.003 0.383 0.578 0.054 0.005 0.472

20% IM MC SE 0.343 0.032 0.003 0.414 0.469 0.043 0.004 0.434

COV MC 94.0% 95.6% 95.8% 93.2% 92.0% 91.6% 91.4% 91.0%

MC SE 0.386 0.034 0.003 0.440 0.579 0.049 0.005 0.543

30% IM MC SE 0.373 0.034 0.003 0.445 0.466 0.043 0.004 0.517

COV MC 95.2% 94.6% 95.4% 91.6% 92.6% 92.8% 92.4% 90.8%

MC SE 0.493 0.038 0.004 0.642 0.747 0.060 0.006 0.615

45% IM MC SE 0.422 0.040 0.004 0.512 0.625 0.049 0.005 0.632

COV MC 93.6% 96.2% 96.2% 91.6% 90.8% 92.4% 92.8% 90.0%

MC SE 0.529 0.042 0.004 0.639 0.919 0.070 0.007 0.692

55% IM MC SE 0.470 0.044 0.004 0.577 0.597 0.057 0.006 0.658

COV MC 94.4% 95.0% 94.8% 93.6% 93.0% 92.8% 94.0% 90.2%
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Table 2. Simulation data. Average and standard deviation
(in parenthesis) of the MMRE

Outlier quantity Models

(%) N-NLCR T-NLCR

1 0.06052 (0.0296) 0.04578 (0.0314)

2 0.09498 (0.0406) 0.06933 (0.0413)

3 0.13238 (0.0495) 0.09428 (0.0464)

4 0.16531 (0.0584) 0.11085 (0.0580)

5 0.19635 (0.0718) 0.13419 (0.0690)

10 0.32163 (0.0763) 0.26046 (0.0965)

(%) SL-NLCR CN-NLCR

1 0.02517 (0.0336) 0.04797 (0.0481)

2 0.06085 (0.0497) 0.07034 (0.0471)

3 0.09012 (0.0521) 0.09613 (0.0648)

4 0.12058 (0.0716) 0.11725 (0.0723)

5 0.14844 (0.0724) 0.13914 (0.0814)

10 0.27139 (0.0764) 0.25357 (0.0814)

different SMN-NLCR models. In the the N-NLCR case, we
observe that influence increases when the different quantities
of outliers increases. In contrast, for the SMN-NLCR mod-
els with heavy tails, namely the T-NLCR, SL-NLCR and
CN-NLCR, the measures vary little, indicating that they
are more robust than the N-NLCR model in the ability to
accommodate discrepant observations.

6. APPLICATION

In this section, we apply the proposed techniques to ul-
trasonic calibration data previously analyzed by Lin et al.
(2009). These data are the result of the NIST study related
to ultrasonic calibration on 214 samples. The response vari-
able is the ultrasonic response (Y ) and the predictor vari-
able is metal distance (X). Following Lin et al. (2009), we
consider the following non-linear model:

Yi =
exp(−β1xi)

β2 + β3xi
+ εi, i = 1, 2, . . . , 214.

We utilize the same non-linear function to evaluate the
performance of SMN-NLCR models. To conduct experi-
mental studies, we choose randomly p = 8% (18 observa-
tions) as censoring interval level and replaced each observa-
tion chosen randomly, Yj , by the interval (YLj , YUj ) where
YLj = max(0, Yj − 1

4Sd(Y )), YUj = Yj +
1
4Sd(Y ) and Sd

is the Standard deviation of Y . Thus, the cases �13, �30,
�49, �50, �61, �74, �79, �106, �110, �118, �130, �137, �147,
�166, �185, �195, �204 and �213 were selected as censored,
see Figure 2 (panel a).

To identify atypical observations and/or model misspeci-
fication, we follow Barros et al. (2010) approach to examine
the transformed martingale residual, rMTi , defined as

rMTi = sign(rMi)
√

−2 [rMi + δi log (δi − rMi)], i = 1, . . . , n

Figure 2. (a) Scatter-plot of the ultrasonic calibration data
with censoring. (b) Envelope of the martingale-type residuals,

rMTi , for the N-NLCR model.

Figure 3. Envelopes of the martingale-type residuals for the
SMN-NLCR models.

where rMi = δi + log(S(yi, θ̂)) is the martingale residual
(Ortega et al., 2003) with δi = 0, 1 indicating whether the
i-th observation is censored or not, respectively, sign(rMi)

denoting the sign of rMi and S(yi, θ̂) = Pθ̂(Yi > yi) rep-
resenting the survival function evaluated at yi. A more de-
tailed account of the martingale residual can be found in
Therneau et al. (1990). The plot of rMTi for the N-NLCR
model together with the 95% confidence envelopes are pre-
sented in Figure 3 (panel b). This Figure exhibits a heavy-
tailed behavior, suggesting that the normality assumption
might be inappropriate. In order to study the validity of
the hypothesized N-NLCR model, we perform the Shapiro-
Wilk normality test and obtained a p-value ≈ 0, which re-
jects the hypothesis of normality. The non-normality of the
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Table 3. Real data. EM estimates, estimated standard errors
(SE) and a confidence interval asymptotic (IC) for the
SMN-NLCR models. ∗ indicates parameter significance

N-NLCR

Estimate SE IC (95%)

β1 0.1953 0.0274 ( 0.1415; 0.2492 ) ∗

β2 0.0061 0.0003 ( 0.0055; 0.0067 ) ∗

β3 0.0103 0.0008 ( 0.0087; 0.0120 ) ∗

σ2 11.1801 0.7151 ( 9.7785;12.5817 ) ∗

T-NLCR

Estimate SE IC (95%)

β1 0.1803 0.0165 ( 0.1478; 0.2127 ) ∗

β2 0.0059 0.0002 ( 0.0054; 0.0064 ) ∗

β3 0.0111 0.0006 ( 0.0099; 0.0123 ) ∗

σ2 3.6470 0.5448 ( 2.5792; 4.7149 ) ∗

ν 2.4562 —– —–

SL-NLCR

Estimate SE IC (95%)

β1 0.1846 0.0173 ( 0.1507; 0.2186 ) ∗

β2 0.0060 0.0002 ( 0.0054; 0.0065 ) ∗

β3 0.0109 0.0006 ( 0.0097; 0.0121 ) ∗

σ2 2.1936 0.3080 ( 1.5897; 2.7974 )

ν 1.0100 —– —–

CN-NLCR

Estimate SE IC (95%)

β1 0.1868 0.0199 ( 0.1477; 0.2258 ) ∗

β2 0.0060 0.0002 ( 0.0054; 0.0066 ) ∗

β3 0.0108 0.0006 ( 0.0095; 0.0122 ) ∗

σ2 4.7709 0.52462 ( 3.7426; 5.7991 ) ∗

ν 0.2 —– —–

γ 0.2 —– —–

distribution gives an indication that some atypical obser-
vations or outliers might exist in the data. Consequently,
we revisited the censored ultrasonic calibration dataset with
the implementation of T-NLCR, SL-NLCR and CN-NLCR
models using the ECME algorithm described in Section 3.2.
Table 3 shows the parameter estimates together with the
corresponding SE and the 95% normal-approximation con-
fidence intervals. The SE obtained by T-NLCR, SL-NLCR
and CN-NLCR models are smaller than that of the N-NLCR
model. Note that the estimates of all the coefficients β are
significant for all the SMN-NLCR models since all 95% con-
fidence intervals of β do not include zero. Table 4 presents
some model selection criteria, together with the values of
the log-likelihood. The AIC (Akaike, 1974), BIC (Schwarz,
1978), EDC (Bai et al., 1989) and AICSUR (Liang and Zou,
2008) values indicate that the three models with longer than
normal tails do likely produce more accurate estimates. Fig-
ure 3 show the plots of rMTi for the T-NLCR, SL-NLCR
and CN-NLCR models along with their 95% confidence en-
velopes. Clearly, the SMN-NLCR models with heavy tails
contain fewer observations outside the envelopes, signifying
a better fit than the N-NLCR model. Moreover, the model

Table 4. Real data. Comparison between the SMN-NLCR
models

Models

Criteria N-NLCR T-NLCR SL-NLCR CN-NLCR

log-likelihood -520.783 -497.106 -497.683 -498.743

AIC 1049.566 1004.210 1005.367 1009.488

BIC 1063.030 1021.042 1022.197 1029.684

EDC 1053.269 1008.841 1009.996 1005.911

AICSUR 1049.972 1004.756 1005.911 1010.190

selection criteria shown in Table 4 indicate that the T-NLCR
presents the best fit, followed closely by SL-NLCR and CN-
NLCR models. The fit of N-NLCR is the worst, indicating a
lack of adequacy of normality assumptions for this dataset.
As suggested by a referee, the comparison process is con-
ducted for the ultrasonic calibration data without censored
observations. The T-NLCR still presents a better overall fit
than the other three models (see Table 5 in Appendix C).

7. CONCLUSIONS

We studied the nonlinear regression models with censored
responses based on scale mixtures of normal distributions,
called SMN-NLCR models. This class of distributions of-
fers a high degree of flexibility, allowing us to deal properly
with censored data in the presence of outliers. For param-
eter estimation, a computational efficient ECME algorithm
was developed using formulas for the moments of the trun-
cated SMN distribution. Simulation studies revealed that
our proposed method is quite robust against outlying and
influential observations. The consistency of the EM-based
estimator is also demonstrated. Experimental results show
that the use of SMN-NLCR models with heavy tails offer a
better fitting as well as a better protection against outliers
than the N-NLCR model.

There are a number of possible extensions of the cur-
rent work. It is of interest to generalize the SMN-NLCR
model for a single response to the case of multiple responses
and make allowance of missing data. The non-identifiability
problem due to missing and censored data will be studied in
depth in our future work. Due to the popularity of Markov
chain Monte Carlo techniques, another potential work is to
pursue a fully Bayesian treatment in this context for pro-
ducing posterior inference. The methodology can also be ex-
tended to mixtures of nonlinear regressions with skewed and
heavy-tailed censored responses based on recent approaches
by Rossin et al. (2011), Da Silva Ferreira et al. (2011) and
Liu and Lin (2014).
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APPENDIX A. PROOF OF PROPOSITION 1

In what follows EX denotes an expectation relative to the
distribution of X and, for the sake of notation simplicity, we
denote all pdf’s by f . Thus, for example, f(u) denotes the
pdf of U , f(u, x) denotes the joint pdf of U and X and
f(u|X ∈ A) denotes the pdf of U given the event {X ∈ A}.
Let A = (a, b). From (1), we have

X|U = u ∼ N(0, u−1), X|X ∈ A ∼ TSMNA(0, 1) and

X|U = u,X ∈ A ∼ TNA(0, u
−1),

where TNA(0, u
−1) denotes the truncated normal distribu-

tion in A, being 0 and u−1 the mean and variance, respec-
tively, before truncation. We have that

E [UrXs|X ∈ A](25)

= EU [UrEX [Xs|U = u,X ∈ A] |X ∈ A]

=

∫ ∞

0

UrEX [Xs|U = u,X ∈ A] f(u|X ∈ A)du.

We have that

f(u|X ∈ A) =

∫
f(u, x|X ∈ A)dx

=

∫
f(u|X = x,X ∈ A)f(x|X ∈ A)

=
1

P (X ∈ A)

∫
f(u|X = x,X ∈ A)f(x)IA(x)(26)

=
1

FSMN (b)− FSMN (a)

∫
f (u, x) IA(x)dx(27)

=
1

FSMN (b)− FSMN (a)

∫
A
f (u)φ

(
x|0, u−1

)
dx

=
f (u)

FSMN (b)− FSMN (a)

∫
A∗

φ (z) dz

=
f (u) [Φ (b

√
u)− Φ (a

√
u)]

FSMN (b)− FSMN (a)
,

whereA∗ = (a
√
u, b

√
u). Equation (26) is obtained using the

pdf’s expression of X|X ∈ A. Equation (27) is consequence
of the fact that, if x ∈ A, then {X ∈ A, X = x} = {X = x},
implying that f(u, x) = f(u|X = x)f(x) = f(u|X = x,X ∈
A)f(x). If x /∈ A then IA(x) = 0 and the integrands in (26)
and (27) are equal to zero. By (25) and Lemma 1 given in
this Appendix, it follows that

• for s = 0,

E [Ur|X ∈ A] =

∫ ∞

0

Urf(u|X ∈ A)du

=
EU

[
UrΦ

(
b
√
U
)
− UrΦ

(
a
√
U
)]

FSMN (b)− FSMN (a)
.

• for s = 1,

E [UrX|X ∈ A]

=

∫ ∞

0

Ur 1

U1/2

(
φ
(
a
√
U
)
− φ

(
b
√
U
))

Φ
(
b
√
U
)
− Φ

(
a
√
U
)

× f(u|X ∈ A)(u)du

=
EU

[
Ur−1/2φ

(
a
√
U
)
− Ur−1/2φ

(
b
√
U
)]

FSMN (b)− FSMN (a)
.

• for s = 2,

E
[
UrX2|X ∈ A

]
=

∫ ∞

0

Urf(u|X ∈ A)

×

⎡⎣ 1

U
+

aU−1/2φ
(
a
√
U
)
− bU−1/2φ

(
b
√
U
)

Φ
(
b
√
U
)
− Φ

(
a
√
U
)

⎤⎦ du

=
1

FSMN (b)− FSMN (a)
EU

[
Ur−1Φ

(
b
√
U
)

− Ur−1Φ
(
a
√
U
)
+ aUr−1/2φ

(
a
√
U
)

− bUr−1/2φ
(
b
√
U
)]

.

The following Lemmas, provided by Kim (2008) and Genç
(2013), are useful for evaluating some integrals used in this
paper as well as for the implementation of the proposed
EM-type algorithm.

Lemma 1: If Z ∼ TN(a,b)(0, 1), then

(k + 1)E
[
Zk

]
− E

[
Zk+2

]
=

bk+1φ (b)− ak+1φ (a)

Φ (b)− Φ (a)
,

for k = −1, 0, 1, 2, . . . .

Proof. See Lemma 2.3 in Kim (2008).

Lemma 2: Let U be a positive random variable. Then
FSMN (a) = EU [Φ(a

√
U)], where FSMN (·) denotes the cdf

of a standard SMN random variable, that is, when μ = 0
and σ2 = 1.

Proof. See Lemma 3 in Genç (2013).

Lemma 3: For ν > 0,
∫ u

0
xv−1e−μxdx = μ−vγ(v, μu),

where γ(a, x) =
∫ x

0
e−tta−1dt is the incomplete gamma func-

tion.

Proof. See Lemma 6 in Genç (2013).

The following Corollary is a direct consequence of Propo-
sition 1 given in Section 2.
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Corollary: Let Y ∼ SMN(μ, σ2,ν) with scale factor U and
A = (a, b). Then, for r ≥ 1,

E [Ur|Y ∈ A] = E [Ur|X ∈ A∗]

E [UrY |Y ∈ A] = μE [Ur|X ∈ A∗] + σE [UrX|X ∈ A∗]

E
[
UrY 2|Y ∈ A

]
= μ2E [Ur|X ∈ A∗]

+ 2μσE [UrX|X ∈ A∗]

+σ2E
[
UrX2|X ∈ A∗] ,

where X ∼ SMN (0, 1,ν) and A∗ = (a∗, b∗), with a∗ =
(a− μ)/σ and b∗ = (b− μ)/σ.

APPENDIX B. SIMULATION 1

In this Appendix, we present the results of the simulation
study 1 for the levels censoring: p = 30% and p = 45%.

Figure 4. Simulation data. Bias and MSE from the parameter
estimates considering p = 30%.

Figure 5. Simulation data. Bias and MSE from the parameter
estimates considering p = 45%.

APPENDIX C. ULTRASONIC CALIBRATION
DATA WITHOUT
CENSORED DATA

In this Appendix, we present the comparison between the
SMN-NLCR models, considering the ultrasonic calibration
data set, without censored data.

Table 5. Ultrasonic calibration data without censored data.
Comparison between the SMN-NLCR models

Models
Criteria N-NLCR T-NLCR SL-NLCR CN-NLCR

log-likelihood -561.604 -531.526 -532.679 -561.505
AIC 1131.208 1073.053 1075.359 1135.011
BIC 1144.672 1089.883 1092.189 1155.207
EDC 1134.911 1077.682 1079.987 1140.565

AICSUR 1131.614 1073.597 1075.902 1135.713
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