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Search for risk haplotype segments with GWAS
data by use of finite mixture models*

FADHAA ALI AND JIAN ZHANGT

The region-based association analysis has been proposed
to capture the collective behavior of sets of variants by test-
ing the association of each set instead of individual variants
with the disease. Such an analysis typically involves a list of
unphased multiple-locus genotypes with potentially sparse
frequencies in cases and controls. To tackle the problem of
the sparse distribution, a two-stage approach was proposed
in literature: In the first stage, haplotypes are computation-
ally inferred from genotypes, followed by a haplotype co-
classification. In the second stage, the association analysis
is performed on the inferred haplotype groups. If a haplo-
type is unevenly distributed between the case and control
samples, this haplotype is labeled as a risk haplotype. Un-
fortunately, the in-silico reconstruction of haplotypes might
produce a proportion of false haplotypes which hamper the
detection of rare but true haplotypes. Here, to address the
issue, we propose an alternative approach: In Stage 1, we
cluster genotypes instead of inferred haplotypes and esti-
mate the risk genotypes based on a finite mixture model.
In Stage 2, we infer risk haplotypes from risk genotypes
inferred from the previous stage. To estimate the finite mix-
ture model, we propose an EM algorithm with a novel data
partition-based initialization. The performance of the pro-
posed procedure is assessed by simulation studies and a real
data analysis. Compared to the existing multiple Z-test pro-
cedure, we find that the power of genome-wide association
studies can be increased by using the proposed procedure.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62P10.
KEYWORDS AND PHRASES: Region-based association anal-
ysis, Genotype mixture models, Odds ratios, Genome wide
association studies, Expectation-maximization algorithm.

1. INTRODUCTION

The advanced genotyping technology has made it possi-
ble to conduct genome-wide association studies (GWAS) on
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complex diseases in recent years [3, 19]. Genome-wide associ-
ation studies systematically analyze genetic variation across
the genome by its effects on phenotypic traits. The early
landmark study using these technologies was the Wellcome
Trust Case Control Consortium (WTCCC), which reported
genetic association results for over 500,000 single nucleotide
polymorphisms (SNPs) in seven disease sample sets of 2000
individuals each and 3000 control individuals [23]. Most of
these studies were based on the so-called common-disease-
common-variant hypothesis that the variants being sought
are common to many individuals with the disease. To date,
these studies have identified hundreds of signposts associ-
ated with disease. But the search for causative variants de-
rived from them has been remarkably less successful, with
only a handful of causative variants discovered in follow-
up sequencing studies. The so-called winner’s curse, where
the detected effect is likely stronger in the GWAS sample
than in the general population, is one of factors underpin-
ning this phenomenon [28; 26]. On the other hand, many of
the variants found have had only a weak effect on the risk
of disease and therefore explained only a small proportion
of the risk. Moreover, the signals in these studies might not
always be pointing to a few common genetic variants but in-
stead to many rare variants, each of which causes relatively
few cases [14, 8]. The rapid increase in the number and the
volume of GWAS provides an unprecedented opportunity
to examine effects of rare variants on disease susceptibility.
This also gives rise to a challenging problem of search for
multiple variant sets in a high-dimensional genotype space.
A popular strategy, suggested by the block-like structure of
the human genome, is to segment each chromosome into a
list of genetically meaningful regions. The multilocus hap-
lotype, the ordered allele sequences on a chromosome, pro-
vides a unit of analysis for capturing linear and non-linear
correlations among variants [15, 25, 22, 7]. In general, if a
particular haplotype of a pre-specified group of SNPs is un-
evenly distributed between the case and control samples,
this haplotype is highlighted as a risk haplotype. Identify-
ing risk haplotypes is an important but hard task in genet-
ics, because haplotypes are often unknown and sparsely dis-
tributed. In practice, what we can observe are genotypes not
haplotypes. As each genotype is made up by two unknown
haplotypes, the underlying haplotypes have to be inferred.
Direct, laboratory-based haplotyping to infer the unknown
phase are expensive ways to obtain haplotypes. So, people
prefer to infer haplotypes from observed genotypes by us-
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ing the computational software such as PHASE [18, 16].
Many existing procedures suffers from the problem caused
by sparsely distributed genotypes, where the resulting hap-
lotype can also be sparsely distributed. To deal with the hap-
lotype distribution sparsity, a number of haplotype cluster-
ing methods have been developed in literature [10, 20, 2, 27]
and in references therein. However, computational inferred
haplotypes may contain both true and false haplotypes, re-
sulting in a high false discovery rate of risk haplotypes. This
paper aims to improve over PHASE to achieve a more pre-
cise classification of haplotypes and subsequently improve
the power of identifying risk haplotypes.

We first propose a finite mixture model for directly clus-
tering genotypes on the basis of their prospective frequen-
cies. The main advantage of the proposed model over the
other existing methods is that it can reduce haplotyping-
error effects on grouping rare haplotypes. Moreover, using
the estimated prospective frequencies derived from a retro-
spective study to estimate genotype (and haplotype) dis-
ease odds ratio is known to be asymptotically consistent
even though the prospective frequency estimators may not
be [12]. The rationale behind the proposal is as follows. We
assume that haplotypes of a specific chromosome segment
can be classified as risk or non-risk (neutral and protec-
tive) and that the corresponding genotypes can be grouped
into three categories v = 0,1,2, where in category v, the
genotypes contain v risk haplotypes. Given the total num-
ber of individuals with genotype j and risk category v, we
further split the number into the accounts of individuals
with disease or without disease. This gives rise to the geno-
type frequency contingency table, where rows stand for the
disease status (case or control) and columns for genotypes.
We can directly assess whether two genotypes belong to the
same group by their column similarity in the table. For-
mally, given its risk category, we regard each genotype ac-
count in cases as a random variable following a binomial
distribution. Then, integrating over its risk category, each
genotype account in cases can be viewed as a random vari-
able following a three-component binomial mixture model.
So, we fit each column in the above contingency table by
a binomial distribution with the disease-penetrance as the
success probability and infer the grouping of these columns
through use of three-component binomial mixtures. The fit-
ted mixture model is then utilized to decide whether or not
a specific genotype belong to a risk group. Consequently,
the number of potential risk genotypes to be examined fur-
ther is substantially reduced. This helps us reduce the error
of identifying risk haplotypes in the haplotype thresholding
stage.

We employ the expectation-maximization (EM) algo-
rithm to calculate the maximum likelihood estimator for the
proposed mixture model. The EM algorithm can guarantee
monotone convergence to a local maximum. On the other
hand, it needs to choose initial values in order to reach a
local maximum which is close to the global maximum. The
existing methods for initialization include: multiple random
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initializations, initially grouping the data and among others
[6]. In this paper, we propose a new initialization proce-
dure by grouping the estimated genotype frequencies. We
conduct simulation studies on the proposed method in both
prospective and retrospective design settings, showing that
our method can outperform the approach of Zhu et al. [27]
in most cases. We also apply both the proposed method and
the method of Zhu et al. [27] to the Coronary Artery Disease
(CAD) and Hypertension (HT) data in the Wellcome Trust
Case Control Consortium (WTCCC), identifying potential
risk haplotypes for each pre-specified chromosomal region.

The rest of the paper is organized as follows. The pro-
posed methodology is introduced in Section 2. The simu-
lation studies and real data applications are presented in
Sections 3 and 4. Discussions and conclusion are made in
Section 5. The details on the haplotype reconstruction soft-
ware PHASE and the EM algorithm can be found in the
Appendices.

2. METHODOLOGY

Consider a case-control sample with Ny controls and Ny
cases, typed at m SNP markers in a candidate region, yield-
ing unphased genotype set G. Suppose that G contains dis-
tinct genotypes G;,1 < j < J* with counts Nyj, Ni; in
controls and cases respectively. To tackle the issue of ex-
tremely rare genotypes, we first collapsed these genotypes
by defining the set
Noj

+ Ny
— =1 <0.001,
No+ Ny —

jl,...,J*},

where we say that G; is extremely rare if its prospective
frequency is less than 0.1%. A pilot simulation indicates
that the collapsing of extremely rare genotypes can im-
prove the accuracy of genotype co-classification (the data
are not shown here). By the term “extremely rare geno-
type”, we imitate the similar concept in the literature
[11], where an allele is called rare if its frequency is less
than 1%. With a slight abuse of notation, we still denote
these non-extreme genotypes as Gy, ..., Gy_1 with accounts
Nojs Nij,1 < 5 < J—1, and the set G. by G; with the
collapsed account Ny; and N7 in controls and cases respec-
tively. We write N = {(Ny;, N1;) : 1 < j < J} and rewrite
G = {G1,...,Gs}. Let H? denote all haplotype pairs recon-
structed from G by using the software PHASE [18]. A brief
introduction to PHASE can be found in the Appendix A.

G. = {Gj|Noj =0or Ny; =0or

2.1 Two-stage procedure

We introduce the following two-stage approach for find-
ing risk haplotypes. In Stage 1, genotypes are clustered and
risk genotypes are derived, whereas in Stage 2 the odds
ratio thresholding is employed to infer risk-haplotypes. As
the reconstructed haplotypes may contain errors, to reduce



the effect of hapolotying errors on clustering, we co-classify
genotypes instead of the inferred haplotypes in Stage 1. The
details are given below.

Stage 1 (genotype clustering): We assume that haplo-
types can be annotated by two categories: risk and non-risk,
where non-risk category include both neutral and protective
risk haplotypes. As each genotype consists of a haplotype
pair, the observed genotypes can be clustered into three cat-
egories according to the numbers of risk haplotypes which
they have. In light of the above fact, given genotype counts
(Noj, N1j) : 1 < j < J, we consider the following three-
component binomial mixture model:

F((Noj, N1y)'10) = mof((Noj, Nij) " lao)
+m1f((Nog, N1j) 1)
+m2f((Noj, N1;) " |g2),

where 6§ = (q07q1aQQ77T0,7717772)T with 0 S qv S 170 S Ty S
1,v=0,1,2,mg+m + 7 =1, and

f((Noj, N1j)"q) = (%i;

with N; = Ny; + Ni;. Note that qo,q1 and g2 are the un-
known disease penetrances for genotypes which contain 0,
1, and 2 risk haplotypes respectively.

The (incomplete) likelihood of 6 given data N can be
calculated by

) Ny (1 q,) Moy =0,1,2

J
L(A|N) :H (Noj, N1;)T16).

We take the maximum likelihood estimator (MLE) 6 to es-
timate the unknown parameter §. We employe the so-called
expectation-maximization (EM) algorithm [9] to calculate

0. To this end, we introduce the following complete log-
likelihood

J 2
[OIN, I) ZZ vilog [m f((Noj, Nij)Tlan)] s

where I = {(Ioj,llj,lgj)T 01 S ] S J}and (Ioj,]lj,fgj)T
are unknown group membership indicators defined by

L
Il/j = { 0,

The further details on the EM algorithm can be found in
the Appendix B.

Let the prospective frequencies of G; in the controls and
cases be estimated by

NOj
Noj + ]\/vlj7

if G in the group v

otherwise v=0,1,2.

Noj + Nlj

Poj = p1j =
respectively. Note that under the null hypothesis that
the j-th genotype is not risk to the disease, then X =
(No;j + N1j)p1; approximately follows a binomial distribu-

tion f((Noj, N1;)T|do) which can be further approximated
by the Normal distribution with mean ¢y and variance
Go(1 — o)/ (No; + Nij). In light of this fact, we can de-
termine the risk status of genotype G; by checking whether
the value of the following Z-test statistic is larger than the
critical value p;, i.e.,

(515 — do)/+/do(1 = do)/ (Nos + N1j) > ;.

Therefore, the risk-genotype group (which consists of geno-
types with at least one risk haplotype) can be estimated
by

r = {GJ Zﬁlj > wj,j = 1,...,J},

where

wj = o+ i\ Jdo(1 — do)/(No; + No,)

and p; is determined by

(1)

with € being a pre-specified constant. In the simulation stud-
ies later, around 100 different genotypes will be involved
in each dataset. Using the Bonferroni correction, we set
e = 0.05/100 so that the total probability of type I errors in-
volved in the thresholding is less than 0.05. Similarly, in the
real data analysis section below, we will use the Bonferroni
correction to set a different value of e.

Stage 2 (haplotype thresholding): We introduce the
following approach for identifying risk haplotypes, where
only genotypes identified as in risk groups in Stage 1 are
subject to further analysis. Let H2 be all haplotype pairs
corresponding to G,., which are derived from H? directly
by taking advantage that G, is a subset of G. Let H, =
(h1,...,hx)T be all the distinct haplotypes in H? with ac-
counts ngx and nqg, k = 1,..., K in controls and cases re-
spectively. For each k, we define

noE == E not, TLU; == E N1t

t#k t#k

P(X > (N()j +N1j)wj) <eg,

Note that H, may contain non-risk haplotypes when G,
carries genotypes of a risk haplotype paired with a non-
risk haplotype. For example, in the so-called dominant in-
heritance mode, risk haplotypes are often paired with non-
risk haplotypes in producing genotypes. Therefore, to find
risk haplotypes, we need to further threshold H,. It is well-
known that the prospective frequency-based penetrance es-
timators with case-control data can be biased. However, the
odds ratio estimator based on the prospective frequencies
is asymptotically unbiased [12]. So, we use the odds ratio
to judge whether a haplotype is risk or not. Here, non-risk
haplotypes are defined as haplotypes which are neutral or
protective to the disease. The technical details are described
as follows.

We first calculate the odds ratio between hy and H, —

{h&} by
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(n1x + 0.5)(ng; + 0.5)
(nox + 0.5)(nyz +0.5)’

where adding 0.5 to the OR for the continuity correction
was suggested by Agresti [1]. By simulations, Agresti [1]
showed that in finite sample settings, the above estimator
performed much better than the estimator without continu-
ity correction. Note that under the null hypothesis in which
the underlying odds ratio is one, the distribution of the esti-
mated odds-ratio ORy is asymptotically Normal distributed
as

(2)

ORy =

log(ORy) ~ N (0, ¢(nok, nik, noi, m15)°),

where

(3) d(nok, Nk, nog nag)” = Uk,

with
1 Lo, 1
nor+0.5  np+05 nop +0.5  ngp+ 0.5

See [1]. Then, based on the above asymptotic distribution,
we calculate the risk haplotype set H, by

(4)
where ¢y is a pre-specified critical value.

2.2 Multiple testing method

To compare the proposed method to the multiple test-
ing procedure of Zhu et al. [27], we briefly describe their
procedure as follows. In their procedure, a subsample A
containing N\® and N individuals are randomly chosen
from the controls and cases respectively. These individuals
are used in the screening stage and the remaining forms a
validation subsample B to be used in the validation stage.
Suppose that there are K different haplotypes inferred from
A by using the PHASE. Let (r(()(,lc)mgi)), 1 <k < K be
their retrospective frequencies in controls and cases respec-
tively.

Screening stage: We perform a respective frequencies-
based screening by calculating an estimated risk haplotype
set as follows:

H, = {hk cH,:0R; > exp(clUk{ﬂ)},

S = {hy: 4 > 0,1 <k < K},

where ¢y is a pre-specified constant (¢p = 1 in our later
simulations) and

Dty

Vi (= )/ N

Validation stage: The S(® is refined by performing
Fisher’s exact test based on subsample B for each haplo-
type in S(®. This gives a final risk haplotype set denoted
by S®).

A0
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3. SIMULATION STUDIES

In this section, via simulations we will examine the perfor-
mance of the proposed methods in terms of the estimated L,
bias and the average of sensitivity and specificity under var-
ious scenarios. Here, we suppose that the disease-penetrance
of a genotype depends only on the number of risk haplotypes
contained in that genotype. As each genotype consists of two
haplotypes, we have three types of penetrance:

fo = P(disease|HrHr),
fo = P(disease|H,.H,),

where H, and H; stand for risk and non-risk haplotypes re-
spectively. Denote the relative risk measures by A1 = f1/fo
and A = fo/ fo. Let 6 be the estimator of f, and H, and H;
the estimated true risk and non-risk haplotype sets respec-
tively. Let T, and T be the true risk and non-risk haplotype
sets. Then, by the L, bias we mean the L; distance between
6 and 6. By the sensitivity and specificity of H,. and Hz, we
mean the positive discovery rate and the negative discovery
rate:

f1 = P(disease|H,.H;),

sen = 7|HT N, and spe = LI? N
|Tr| ‘Tf| '

We take the average AVSS = (sen + spe)/2 to assess the
performance of a haplotype classification procedure.

3.1 Performance of the proposed data
partition-based initialization

To compare the proposed data partition-based initializa-
tion (Method 2) to the random initialization (Method 1)
in the Appendix B, we generated 30 genotype datasets on
10 single nucleotide polymorphisms (SNPs), each dataset,
containing Ny controls and Nj cases, was obtained by the
following two steps: In the step 1, we used the software MS
[5] to simulate 2(Np + N;) haplotypes with a mutation rate
of 2. We randomly chose m,. of these haplotypes and labeled
them as risk haplotypes. To save the space, we considered
only Ny + N7 = 5000 and m, = 10. The results for other
values of Ng+ N7 and m,. were similar. In the step 2, the dis-
ease states of the above genotypes were simulated from the
multiplicative inheritance model with ¢o = 0.1 and A = 3.
Note that the number of genotypes depends on the mutation
rate and was varying across 30 datasets.

The comparison was based on the log-likelihood, the run
time, estimated bias and classification error rate (CER). The
estimated bias can be calculated by sum all the absolute val-
ues of the differences between 6 and the true 6. Note that
genotypes in each dataset could be divided into three (true)
groups, say G,, v = 0,1,2 as we knew the number of risk
haplotypes which each genotype contained in the simulation.
We pretended that we did not know which haploypes were
risk (therefore, we did not know the group memberships of
these genotypes). We then inferred their memberships by fit-
ting a three-component binomial mixture model to each of
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Figure 1. Performance of two initialization methods. Methods
1 and 2 denote the random initialization and the data
partition-based methods. From the left to the right, the
panels show the box-whisker plots of the estimated biases in
estimating 0, the CERs, the attained log-likelihoods, and the
time-costs for Methods 1 and 2 respectively.

30 datasets. By using the estimated posterior probabilities,
Tvj, v = 0,1,2, of group memberships derived from the EM
algorithm, we assigned the j-th genotype to the group G,
v=0,1,2if 1,; = max; 7;. Here, we labeled three estimated
groups according to the ordered penetrances §op < ¢1 < Ga.
This is a computationally simple approach to solving the so-
called label switching problem in finite mixture models [13].
Our experience indicates it is effective for estimating our bi-
nomial mixture model. More advanced but time-consuming
approach can be found in [17]. The accuracy of three esti-
mated groups was evaluated by the CER defined as

CER =" (1 |G”mG”|>,

G|

where we counted the total number of misclassified geno-
types divided by the total number of the genotypes. The
results were summarized in Figure 1 in terms of the box-
whisker plots of the estimated biases, the CERs, likelihood
values, and time-costs over 30 datasets for Methods 1 and 2
respectively. The result shows that Method 2 substantially
outperformed Method 1. Therefore, we decided to initial-
ize the EM algorithm by use of Method 2 in the remaining
simulations as well as the real data analysis below.

3.2 Performance of the proposed two-stage
method

Note that the proposed two-stage method is based on
the prospective likelihood model although real data were
obtained from retrospective studies. By the simulations be-
low, we addressed whether the proposed method could out-
perform the multiple-testing procedure of Zhu et al. [27] in
both prospective (i.e., cohort) and retrospective (i.e., case-
control) studies.

Setting 1 (cohort design): We generated 30 datasets,
each with Nj case-genotypes and Ny control-genotypes.

They were obtained by the following steps. In the first two
steps, we adopted the same approach for generating No+ Ny
genotypes which contained m,. risk haplotypes as we did
before. In the third step, we simulated the disease status
of each genotype by sampling from a Bernoulli distribu-
tion. The Bernoulli distribution took g, or Ai1qp, or Ago
as a success probability according to whether the genotype
contained zero, one or two risk haplotypes, where the rel-
ative risk measure A is specified as follows. For the reces-
sive inheritance mode, Ay = 1. For the multiplicative inher-
itance mode, \; = V. For the dominant inheritance mode,
A1 = A. We coded the inheritance modes by IM = 1,2,3
respectively for the multiplicative, the dominant, and the
recessive. Note that the values of (Ny, N1) may vary across
different datasets. We considered various combinations of
(No+ N1, m,., IM, go, \), where Ny + N1 = 3000, 5000, m, =
5,10,20,IM =1,2,3,90=0.1, A =1,14,1.8,2.2,2.6, 3,3.4,
and 3.8 respectively.

For each scenario, we applied both the proposed method
and the multiple testing method to 30 datasets and calcu-
lated their AVSS values respectively. For each of the three
inheritance modes, we plotted the means of these AVSS val-
ues over 30 datasets against A. The results displayed in
Figure 2 show that on the cohort data, the proposed two
stage method performed substantially better than the mul-
tiple testing method in all the scenarios defined above. The
improvement was achieved by using model-based genotype
clustering. This is not surprising, because Yeung et al. [21]
has already showed that the model-based clustering is often
superior over non-model based clustering.

Setting 2 (case-control design): We generated 30
datasets, each of which were simulated by the following two
steps. In Step 1, to generate Ny case-genotypes, we first drew
2N; haplotypes by using the software MS with mutation
rate of 2, of which m, haplotypes were labeled as risk hap-
lotypes. We then randomly paired these haplotypes to form
N, case-genotypes. Let G;, 1 < j < J be all the different
genotypes contained in the Ny cases and r1;,1 < j < J be
the retrospective frequencies. These case-genotypes formed
three groups according to the number of risk haplotypes
which each genotype contained: Each genotype in Groups
0, 1 and 2 contained two non-risk haplotypes, only one risk-
haplotype, and two risk haplotypes respectively. In Step 2,
we generated Ny control-genotypes, which also had geno-
types G;, 1 < j < J but with population retrospective fre-
quencies qp;,1 < j < J. We first let gg;,1 < j < J depend
on the pre-specified constant d by

r1(1 = d/r1g,),

Qoj = r1;(1 = 0.5d/r14,),
le(l + 1.5d/’l"1go),

G belongs to Group 2
G; belongs to Group 1
G; belongs to Group 0

where 114, = che Group, " for kK = 0,1,2, and d is a
parameter to reflect the effects of risk haplotypes on geno-
type frequencies. We simulated Ny control-genotype counts
from the multinomial model MN(Ny, (go1, ---, g0s)T) and cal-
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Figure 2. Performances of the proposed two-stage method
with Bonferroni adjustment and the multiple testing method
on the cohort-design data with multiplicative or dominant or
recessive inheritance modes. In these plots, the red and the

blue solid curves show means of the AVSS values (i.e., the
values of (specificity and sensitivity)/2) over 30 datasets are
plotted against the values of X for the proposed method and

the multiple testing method respectively. The two red dash
curves are one standard deviation up and down from the red
mean curves. Similarly, the two blue dash curves are one
standard deviation up and down for blue mean curves. The
plots in the columns from the left to the right are for the
cases where there were 5, 10, and 20 risk haplotypes in the
underlying haplotypes. The top two rows, the middle two
rows and the bottom two rows are the results for (N, N1) =
(2000, 1000) and (3000, 2000) under the multiplicative, the
dominant and the recessive inheritance modes respectively.
(Color figure online)

culated the corresponding retrospective frequencies rp;,1 <
7 < J. We considered the cases where d = 0,0.05,0.1,0.1,
0.15,0.2,0.25,0.3, and 0.35 respectively.

For each dataset, the cumulative frequencies of Groups
0, 1, and 2 in controls are ry, 4+ 1.5d, r4, —0.5d, and ry, —d
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Figure 3. Performances of the proposed two-stage method
with Bonferroni adjustment and the multiple testing method
on the case-control data. The plots in the columns from the

left to the right are for the scenarios, where the underlying
number of risk haplotypes m,. = 5,10, and 20. The top row
stands for the cases, where (Ng, N1) = (2000, 1000), while

the bottom row stands for the cases, where (Ng, N1) =
(3000, 2000). In these plots, the red and the blue solid curves
show mean curves of the AVSS values over 30 datasets as
functions of d = 0,0.05,0.1,0.1, 0.15,0.2,0.25,0.3, and 0.35
for the proposed method and the multiple testing method
respectively. The dash curves are one standard error up or
down from the mean curves. (Color figure online)

respectively, whereas the corresponding frequencies in cases
are 74y, rg, and rg, respectively. It can be proved that the
odds ratios of Groups 1 and 2 to Group 0 are increasing in
the value of d.

We applied the proposed two-stage method and the mul-
tiple testing method to these case-control data. The mean
curves of the AVSS values with one standard error up and
down were plotted against the d values in Figure 3. The re-
sults again demonstrate that the proposed two-stage method
can be more powerful than the multiple testing method in
detecting risk haplotypes. However, the AVSS gain was de-
creasing in the number of risk haplotypes, m,., as well as
the underlying odds ratios in Groups 1 and 2. In particular,
the AVSS gain can be negative when there were many risk-
haplotypes presented in the data. This is due to the effect of
unbalanced case and control sample sizes in the finite sample
size setting, because our model in Stage 1 is a prospective
model.

4. REAL DATA ANALYSIS

We applied the proposed two-stage procedure to the
GWAS genotype datasets on coronary artery disease (CAD)
and hypertension (HT) obtained by Affymetrix 500K SNP
chips in the WTCCC study [23]. The data were downloaded
from the European Genotype Archive (EGA) with formal
data access permission of the WTCCC Data Access Com-
mittee. Each dataset contained 2000 unrelated cases as well



as 3000 unrelated controls. The controls came from two
sources: 1500 from the 1958 British Birth Cohort (58C) and
1500 from the three National UK Blood Services (NBS).
There were about 500600 SNPs across the human genome,
which are genotyped. We first pre-processed the data by ex-
cluding the SNPs which meet one of the following criteria:
(1) the p-value of Fisher test for Hardy-Weinberg equilib-
rium is less than 10~® in controls; (2) the p-value of the
chi-square test between 58C and NBS is less than 10~%; (3)
the minor allele frequency is less than 1%; (4) the calling
score is less than 95%. After the exclusion, around 4897746
SNPs remained for the analysis. To reduce the dimension
of the genotypes, we segmented the genome into regions of
8 SNPs according to their positions on the chromosomes,
obtaining 61218 regions and the corresponding genotype
datasets Gy, k = 1,2,...,61218. Note that the long region
will dilute the effects of risk SNPs and can result in many
rare genotypes, whereas the short region will miss interac-
tions between SNPs. The region length of 8 was chosen to
achieve a compromise between the above aspects by using
a pilot study. Also note that as we excluded the SNPs with
bad callings, the numbers of cases and controls are varying
across the different regions.

Note that {Gy : k = 1,...,61218} contained 1983537
genotypes in total for the CAD data and 2097111 geno-
types in total for the HT data respectively. The proposed
procedure includes two stages. In Stage 1, we obtained the
estimated risk genotypes, while in Stage 2, we further in-
ferred haplotype pairs from the estimated risk genotypes.
In Stage 1, we first fitted a three-component binomial mix-
ture model to each Gj and then thresholded the genotypes
based on the smallest penetrance in the three components.
The thresholding would involve 1983537 tests for the CAD
data and 2097111 tests for the HT data. So in equation
(1), we set € = 0.05/1983537 = 2.52 x 108 for the CAD
data and e = 0.05/2097111 = 2.38 x 10~® for the HT data.
In Stage 2, we employed the PHASE to infer the haplo-
types from the risk genotypes derived from the previous
stage. This gave rise to 201528 potential risk haplotypes out
of 1448586 in CAD data and 213578 potential risk haplo-
types out of 1463838 in HT data. We further conducted the
OR thresholding for these haplotypes. There would involve
201528 tests in the CAD case and 213578 tests in the HT
case. By using the Bonferroni adjustment, we set the corre-
sponding individual test level at 0.05/201528 = 2.48 x 10~7
and 0.05/213578 = 2.34 x 10~ 7 for the CAD and the HT re-
spectively. These individual test levels were then used to de-
termine the tuning constant ¢; in equation (4). This yielded
c1 = 5. After performing the proposed two-stage method
on the datasets, we obtained the estimated risk and non-
risk haplotype sets, H, and I:I;), for the CAD and the HT
respectively.

Finally, we carried out a genomic control on the above
results by taking advantage of the fact that there were two
sub-populations in controls. The genomic control can elim-
inate these false haplotypes generated by the PHASE and

population substructures from the selected list of risk haplo-
types. In the genomic control, we run the chi-square tests on
the association of two control sub-populations with each es-
timated risk haplotype. We eliminated these estimated risk
haplotypes with p-values for the above chi-square tests less
than < 30%. Here, 30% was chosen by the simulations, aim-
ing to filter out false risk haplotypes. The details are omitted
but can be obtained from the authors.

The genomic control gave the final risk-haplotype set
as displayed in Tables 1, 2, 3, and 4 below. In the ta-
bles, each haplotype has been assigned to a physically
closest gene on the basis of the information provided
the GWAS catalog and the genetic information from the
British 1958 Birth cohort. See [24] and the web page at
http://www2.le.ac.uk/projects/birthcohort/1958bc. In the
CAD case, we did rediscover the CAD risk genes TNIK
in chromosome 3, CDKN2B in chromosome 9, BTG1 in
chromosome 12, and A2BP1 in chromosome 16, which were
found by the previous study [24]. Among these genes, Zhu
et al. [27] identified only CDKN2B. In the HT case, we also
identified a number of variants which were potentially asso-
ciated with hypertension. Compared to the multiple testing
approach of Zhu et al. [27], where 7 CAD-associated genes
and 2 HT-associated genes were declared, our approach was
much powerful by finding more than 80 CAD-associated
haplotypes and 11 HT-associated haplotypes. However, we
were not able to confirm other existing discoveries in the lit-
erature [24]. A possible reason is that we set a very stringent
level for the odds ratio thresholding based on the Bonfer-
roni adjustment for multiple testing. It is well-known that
the Bonferroni adjustment is very conservative.

5. DISCUSSION AND CONCLUSION

We are currently at an era of extraordinary growth in
the data describing human genetic variation and its corre-
lation with complex traits. The recent development of bio-
technologies allows an international consortium of geneti-
cists to revolutionize genetic research through large scale
genome wide association studies (GWAS). Although these
studies have identified hundreds of loci at very stringent
levels of statistical significance across many different human
traits, these loci are only able to explain a small fraction of
the population risk. To address the issue, new models and
new hypotheses have been proposed, which pose challenges
to conventional statistics underlying much of our genetic
analysis. For example, GWAS analyses are most commonly
performed by testing the association of individual variants
with the disease, ignoring the potential interactions between
the variants. It is believed that the region or gene-based
analysis is more powerful in capturing the collective activ-
ity of sets of variants by testing the association of the group
instead of each component individually with the disease.

In this paper, we have adopted the region-based strategy
that segments the genome into 61218 regions with around 8
SNPs each. For each region, a list of distinct genotypes with
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Table 1. The predicted risk haplotypes for CAD by use of the WTCCC data. In the table, the p-values were derived from the
chi-squared test of the frequencies of H; against the collapsed frequencies of the estimated non-risk haplotypes

|Chr| Region | SNP range | Haplotype |P(Hi|case)|P(Hi|control)] OR | p-Value | Gene |
| 1 | 17921479 — 17955334 | rs11203219 — rs638425 |AATGCCGC| 0.04602 | 0.01388  |3.05038|4.1 x 10~ '?| ACTL8 |
| 1 | 75974016 — 76018681 | rs3806162 — rs5745391 |TCTATCAA| 0.05105 | 0.01954 |3.18049|1.2 x 10~'*| MSH4 |
| 2 | 49934439 — 50000082 | rs6736617 — rs17039375 | CCAAAGGT| 0.02347 | 0.00757  |3.08898|6.6 x 10~'°| NRXNIL |
| 2 | 81387425 — 81525659 | rs4401229 — rs2862499 |TTGCTCCA| 0.0451 | 0.02468  |2.54951|1.8 x 10~ '?|LOC442021|
| 2 |222486954 — 222527591| rs16863087 — 152392937 | CCAAACGG| 0.04059 | 0.02497  |2.09348|4.3 x 10~°%|LOC402120|
| 2 |230201571 — 230228527| rs6755403 — rs13391903 | AGTTTGCC| 0.1132 | 0.04164 [2.78377|2.3 x 10”%°| DNER |
| 2 ]239420300 — 239491966| rs4545955 — rs13008279 | TTCCAGGA| 0.05558 |  0.02584  |2.17494|1.3 x 10~ '?| FLJ43879 |
| 2 |241821720 — 241873661| rs4675991 — rs935262 |CGGGGTTT| 0.03735 | 0.01659  |2.32538|1.4 x 10~'°| PPPIR7 |
| 3| 4927181 — 5001898 |rs17041733 — rs11925620| CCTCCTCC| 0.04287 |  0.01795  [2.16999|1.2 x 10~°7| BHLHB2 |
| 3 | 14422977 — 14471151 | rs4684216 — rs9834629 | GATGATGC| 0.01815 | 0.00509 [3.63785|1.7 x 10”%?| SLC6A6 |
| 3 | 60586653 — 60641652 | rs7432576 — rs1716739 |CTATAAGC| 0.15989 | 0.11374 [1.55681]9.4 x 10~**| FHIT |
| 3 | 63365648 — 63390235 | rs17068494 — 151403700 | TCCTTCGG| 0.08979 |  0.04741  |2.04072|7.1 x 10~°°| SYNPR |
| 3 | 67509601 — 67525645 | rs9867659 — rs17046411 | ACGATGTT| 0.05192 | 0.03019  |1.95683|5.1 x 10~°°| SUCLG2 |
| 3 |103285842 — 103325614| rs7623627 — rs9844712 |GTCCCTAT| 0.02744 | 0.00999  [3.15138|1.6 x 10”%’| NFKBIZ |
| 3 |106353367 — 106411138| rs16850901 — 159846852 | TATCGAGA| 0.02931 |  0.0065  [4.87306|7.5 x 10~'*| ALCAM |
| 3 |144925558 — 144993828| 54330252 — rs12233446 | TGGGATAC| 0.02976 |  0.00733  [5.71824|1.8 x 107'°| SLC9A9 |
| 3 |145364476 — 145471873| rs9854202 — rs3925560 | AACGGACT| 0.37409 | 0.29638  |2.25725|5.5 x 10~>*| C3orf58 |
| 3 |172422863 — 172457251| rs954749 — rs16856054 | TTCTTACT | 0.12948 | 0.08707 [1.50219]2.2x 107%| TNIK |
| 3 192463499 — 192526004| rs7644510 — 5293871 |GACGCGTA| 0.04375 | 0.01075  |3.69505|1.3 x 10~'¥| UTS2D |
| 3 |197256495 — 197339533| rs6583286 — rs9834962 | TAGACTTA| 0.0498 | 0.02364 |2.27577|2.7 x 10~'°| TFRC |
| 4 | 3636361 — 3700212 |rs10025237 — rs16844722| GGGGAGGG| 0.22491 |  0.15492  |1.65607|1.9 x 10~°7| FLJ35424 |
| 5 |120487082 — 120547238|rs11956204 — rs17514347| ATTGGGAG| 0.02739 |  0.00735 | 3.8359 |1.5 x 10~ "*|LOC728682]
| 5 |166764561 — 166801933| rs6863935 — rs7724862 | CTATGTGT| 0.09145 | 0.05448 [1.69398|8.7 x 10| ODZ2 |
| 7| 4779368 —4930112 | rs2942566 — rs4320451 |CGGGTCAT| 0.10433 | 0.06243  [1.66428|5.5 x 10"°| RBAK |
| 7 | 10052046 — 10079446 |rs10225194 — rs11768931| GGTTCGCT| 0.04951 |  0.0245  |2.64149|9.4 x 10~ '°|LOC340268|
| 7 | 34178282 — 34260002 |rs17169771 — rs16878925| AGGTTGCG| 0.05229 | 0.02631  |2.71386|3.3 x 10~'%| AAAl1 |
| 7 | 42931717 — 42940671 | rs2024125 — rs2330742 | AGTGTAGA| 0.09745 |  0.0513  [1.90132]2.0 x 10~'°| HECW1 |
| 7 |153564509 — 153621369 rs869490 — rs6953905 |TCGTATCG| 0.0667 | 0.03524  |1.93779|6.6 x 10~ ''|LOC653748|
| 8 | 5482876 — 5498858 | rs2189889 — rs4875607 |CGGACCGA| 0.07873 |  0.0533  |1.64615|2.4 x 10~°%|LOC648237|
| 8 | 17486464 — 17509327 | rs2705093 — rs2588121 |CCTGCGAG| 0.05925 | 0.02338  |2.67404|1.6 x 10~'°| PDGFRL |
| 8 | 38345434 — 38449100 |rs16887343 — rs12677355| ACGTACCT| 0.09472 | 0.05661 [1.82381|7.0 x 10~"*| WHSCIL1 |
| 8 |104190450 — 104202402| rs2515173 — rs3019159 |GGCCATCT| 0.14195 | 0.08768  [1.62006|1.5 x 10”%°| BAALC |

their frequencies in cases and controls have been worked haplotypes from the genotypes and then cluster the haplo-
out. The problem facing us is of the sparse distribution of types into a number of groups. The association analysis is

these genotypes. To circumvent it, people often first infer
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Table 2. The continuation of Table 1

|Chr| Region | SNP range | Haplotype |P(Hi|case)|P(Hi|control)] OR | p-Value | Gene |
| 9 | 22088619 — 22120515 | rs2891168 — rs10965245 |GGTGCCAG| 0.34939 |  0.29298  |1.52609|1.0 x 10~°7| CDKN2B |
| 9 | 74180343 — 74241329 |rs10114124 — rs17081046| GTATTTAT | 0.21608 | 0.13046  [1.61055/1.2 x 10-°"| RORB |
| 9 |114777214 — 114805868 rs1322060 — rs10121268 | GAGCCTAA| 0.09498 |  0.06007  [1.56664/2.3 x 10~°°*| TNFSF8 |
| 9 |119506057 — 119537035 rs2191675 — rs10984648 | GTTGGCTA| 0.08762 | 0.03361  |2.41642(3.0 x 10~ '°| CDK5RAP2|
| 10 | 11879196 — 11924252 | rs6602535 — rs11257355 |[TCTGCCGG| 0.1694 |  0.12811  [1.41273|6.4 x 10°°°| C100rf47 |
| 10 | 64409674 — 64442476 | rs1509952 — rs2842286 |TTTCTTAC| 0.02299 |  0.0073  [4.03039|1.6 x 10~°’| NRBF2 |
| 11| 8165969 — 8200374 | rs4758310 — rs11041816 | ATAATGGG| 0.36298 |  0.3164 | 1.3306 |1.1 x 10~ %] LOC644497 |
| 11 | 21323965 — 21363331 | rs17233214 — rs1945444 | GGTAACAT| 0.08147 | 0.04232  |1.98043|8.6 x 10°"*| NELL1 |

11 | 69213458 — 69295251 | rs1192923 — rs3168175 |TCGTGGCA| 0.10225 0.05587  [1.98038(8.9 x 107'*|  FGF4
‘ ‘ ‘TTGTGGCA‘ 0.05213 ‘ 0.02803 ‘2401202‘5.6 x107% ‘
| 11 | 83230307 — 83256927 | rs1878266 — rs1878264 | TATATTCA| 0.03571 | 0.01807  [2.11905|2.5 x 10~°"| CCDCY0B |
| 12 | 90721177 — 90758721 |rs10745571 — rs17193868| GGGCTATA| 0.0351 | 0.00949  |3.88035/1.7 x 10°*°| BTGl |
| 12 114038450 — 114074493| rs1828384 — rs35346 |TGTACCCT| 0.03245 | 0.01341  |2.52817|2.3 x 10°°7| TBX3 |
| 12 127146384 — 127182360|rs10847535 — rs10773498| TTGTCGCG| 0.10562 | 0.07049  |1.50842|1.3 x 10~ 7| TMEM132C]|
| 12 |129086441 — 129129809| rs713149 — rs1027557 |AAAGCGGT| 0.18839 | 0.11206  |1.74867|4.4 x 10"*| FLJ31485 |
| 13 | 26845975 — 26875430 |rs11616513 — rs17085553| TACGCACA| 0.04431 |  0.02025  [2.30656|7.1 x 10~'°|  MTIF3 |
| 13 | 31414174 — 31438047 | rs17076954 — rs169410 |CCTCCCGT| 0.30306 | 0.29469 | 2.6188 [6.9 x 10~°%| LOC196549 |
| 13 | 48154476 — 48209065 | rs7330127 — rs9562843 |ACGATAGA| 0.02762 |  0.0048  |5.63922|2.7 x 10~'°| RCBTB2 |

14 | 25140850 — 25159405 | rs8020556 — rs1951062 | AGTACATA| 0.24934 0.2259  |1.41488|3.5 x 10~°%| LOC401767

AGTAAACT| 0.09084 0.02999  [3.87615(1.0 x 10~*'
GCTACATA| 0.04608 ‘ 0.01682  [3.50368]3.4 x 10~**

| 14 | 32591680 — 32606647 |rs12883961 — rs10140504| CATGGGAG| 0.03736 | 0.01879  |2.21665|1.1 x 10~°%| NPAS3 |
| 14 | 65343491 — 65401760 | rs3924222 — rs12896836 | TATAACTC| 0.0462 | 0.01904 |2.55404/5.2 x 10'*| FUT8 |
| 15 | 20592297 — 20610835 | rs4778334 — rs1991922 |[TAGCCCAT| 0.04494 | 0.01488  |2.75061|1.1 x 10~ '*| NIPA1 |
| 15 | 20624103 — 21246055 | rs7166056 — rs8024346 |GTGACGTG| 0.08093 | 0.04109  [2.10848|2.4 x 10~"°| NIPA1 |
| 15 | 21610088 — 21670901 | rs824163 — rs7181211 |TTTTCAAC| 0.22034 | 0.15435  |1.43864/4.9 x 107%°] MAGEL2 |
| 15 | 37962389 — 38014169 | rs11633436 — rs534757 |TTACAACC| 0.07798 | 0.03763  |1.99235|2.7 x 10~ ''| GPRI176 |
| 15 | 64637416 — 64669062 | rs1030986 — rs4776800 |CACGTCGT| 0.04575 | 0.01594  |2.65924|2.2 x 10°°| LCTL |
| 15 | 79193543 — 79223619 | rs1317059 — rs6495541 |CTCGGACC| 0.02813 |  0.00459  [6.34974|2.2 x 10~'°| C150rf26 |
| 15 | 90365510 — 90400043 | rs12906289 — rs992838 |ACGTAAGG| 0.07777 | 0.02342  [3.50153|1.1 x 10~*°| SLCO3AL1 |
| 15 | 91435452 — 91473401 | rs4778099 — rs17526830 | GATCCCTA| 0.07536 | 0.04084  |1.94917|1.7 x 10”°°| RGMA |

by using multiple Z-tests [27]. There is a drawback of the
above approach: The in-silico reconstruction of haplotypes
can generate a proportion of false haplotypes which may
hamper the finding of rare but true haplotypes. We have
proposed an alternative two-stage approach to the associa-
tion analysis with GWAS data. Our major contribution is

to develop a method for co-classifying genotypes in terms
of their penetrances to the disease. In Stage 1, we cluster
the genotypes through a finite mixture model, followed by
estimating the risk genotypes. In Stage 2, we infer the risk
haplotypes from the estimated risk genotypes by using the
software PHASE and the odds ratio thresholding. We have
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Table 3. The continuation of Table 2

|16] 6155489 — 6181184 | rs11642397 — rs1946127 | TTGGGTTG| 0.02433] 0.00883| 2.92587| 1.7x10°°7|  A2BP1 |
16| 46937666 — 47050362| rs11076564 — rs8054696 | AACGGGCC| 0.18717| 0.15302| 1.62027 | 1.1x 107°7|  LONP2

‘ ‘ TGAAGGC’T} 0.04224‘ 0.02781’ 2.01195‘ 2.3 x 10777 ‘
|16| 51239337 — 51264345 rs3112587 — rs4386133 | CCTATGAG| 0.07702| 0.0442| 1.68656 | 7.3 x 10~°°| LOC643714|
|16] 55207138 — 55253047| rs8055724 — rs12447986 | TTCTCCTC| 0.03044| 0.01113| 2.65805| 9.0 x 107°°|  MTIL |
[17| 73602775 — 73670122 rs16970811 — rs9909570 | CCCACTAG| 0.02022| 0.00446] 4.82821| 3.1 x 10~'*| TNRC6C |
|17| 74629176 — 74682195 rs2612793 — rs8072667 | CGAGGTTG| 0.06276] 0.03471| 1.95026 | 6.7 x 10-°°| FLJ21865 |
|18] 8212591 — 8279839 | rs10468776 — rs11876033] GGGACAAG| 0.02689] 0.00982| 2.86846| 1.7 x 10~'°| PTPRM |
|18| 8772147 — 8782163 | rs12606001 — rs8084401 | TCAGTGAC| 0.09539] 0.03649] 2.66938 | 1.3 x 10~'7| KIAA0802 |
[18] 60647495 — 60688045 rs1595904 — rs17678507 | CAGCGTGC| 0.08119] 0.04205] 2.1482 | 6.5x 107'°|  C18orf20 |
[19] 50064169 — 50153836 rs17561351 — rs204907 | AGGCAGAA| 0.05937| 0.02583| 2.35486| 5.1x10°"*| PVRL2 |
|19] 52946204 — 53026777 rs10402957 — rs4427918 | CATTCAGC| 0.0741| 0.04321| 1.87681| 1.7 x10~''| GLTSCR2 |
‘19‘ 59113663 — 59296006 rs7257613 — rs3760698 CCGGCCGC’ 0.06977‘ 0.0159’ 5.01246‘ 2.7x 107" CACNG?‘

CCGGCCAC| 0.12473] 0.08441| 1.69429 | 6.7 x 10~

|20] 5265473 — 5327486 | rs6085111 —rs6085143 | ACCAATCC| 0.04815] 0.02744| 1.83971] 1.3 x107"7| FLJ33544 |
|20 42465269 — 42498442  rs3181206 — rs6017342 | GGCTTCCA| 0.12685| 0.06245| 2.08814 | 3.0 x 10~'*| HNF4A |
|20 44639977 — 44681497|  rs376438 — rs847096 | AAGTCTGC| 0.09805| 0.04784| 1.90457 | 8.8 x 10~'?| SLCI3A3 |
|20] 49937544 — 50006641  rs6067996 — rs6021570 | ATTGGACA| 0.03133] 0.01165] 2.82133| 2.6 x10~""| SALL4 |
|20 51762764 — 51798874 rs4811452 — rs4811457 | GATGTTCA| 0.05611] 0.03099| 1.87441] 1.7x 107 ZNF217 |
|20] 57707915 — 57741702| rs12481511 — rs16984986| TGTACCAG| 0.0773| 0.0427| 1.95199| 1.2 x 10~°"| PHACTR3|
[21] 2015127 — 13517135 |  rs2847443 — SNPa | TACAAGAT| 0.10999] 0.09446] 1.65501| 24x107%| TPTE |
[22] 16871076 — 16895136]  rs8142200 — rs975826 | TCGGGAGG| 0.03219] 0.00253| 10.88401] 1.8 x 10| LOCT729269)
|22| 31354524 — 31372260 rs8139704 — rs5749480 | CGCTAGGG| 0.02584] 0.00524| 5.07641| 3.4 x107'°|  SYN3 |
[22| 35324014 — 35335429| rs7410412 — rs12160203 | TTTCAAGG| 0.17403| 0.10746] 1.67423| 1.3 x 107'°| CACNG2 |

proposed a novel data-partition-based initialization for the
associated EM algorithm.

We have examined the performance of the proposed pro-
cedure by simulations and applications to the CAD and HT
data generated from the WTCCC. Compared to the stan-
dard multiple Z-testing method, the proposed procedure has
been shown to be more powerful in terms of sensitivity and
specificity for detecting the true risk haplotypes. In the real
data analysis, we have rediscovered some existing risk gene
and haplotypes and identifying many more risk haplotypes
than did the multiple Z-test based approach. This is not sur-
prising as the simulations have already demonstrated that
the model-based clustering can perform better than the mul-
tiple Z-test. The Bonferroni adjustment for multiple testing
has been applied when multiple tests or thresholding are in-
volved. We note that the results may be further improved
if we use advanced multiple testing adjustment methods in
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Stage 2, although this may not be possible for Stage 1 as
the computation is too time-consuming to run on a PC. For
example, in Stage 2, we can apply Hochberg’s procedure to
adjusting and thresholding the individual p-values in two
steps as follows [4].

Step 1: We calculate the p-value for each haplotype
hy € H,. Note that under the null hypothesis in which
the underlying odds ratio is one, the distribution of the esti-
mated odds-ratio ORy, is asymptotically Normal distributed
as stated in the equation (2). Then, the p-value can be ap-
proximated by

Pk = 1-0 (log(OR](cO)/(b(nOka N1k, Mok nlk))) 9
where ®(-) is the standard normal distribution function and

d(nok, N1k, Nor, Nqj) 18 defined in the equation (3).
Step 2: We calculate the adjusted p-values by ordering



Table 4. The predicted risk haplotypes of hypertension by use of WTCCC data. In the table, the p-values were derived from
the chi-squared test of the frequencies of H; against the collapsed frequencies of the estimated non-risk haplotypes

|Chr| Region | SNP range | Haplotype |I:’(H¢|case) [:’(Hi|control)| OR ‘ p-Value | Gene |
| 1 |236986859 — 237020204|rs12137158 — r516840310| ATTTAGGG| 0.08733 | 0.05437  |1.69625]3.4 x 107'°| GREM2 |
| 4 | 3700382 — 3734797 | rsl77772 —rs12641338 |TACCGATT| 0.12978 | 0.08988  |1.59997|7.7 x 10~ '*| FLJ35424 |
| 4 |170032303 — 170061525| rs6822949 — rs17614553 | GAACGGAA| 0.0425 | 0.01579  |2.86663]|4.8 x 10~'°| PALLD |
6 152700181 — 152736079 rs7747166 — rs7776399 |CGGCTCCC| 0.52639 0.49931  |3.36065|2.7 x 107%*| SYNE1
‘ ‘ ‘CGGGTCCT‘ 0.04238 | 0.03768 ‘3.58962‘5.7 x 10~ ‘
| 11 | 69213458 — 69295251 | rs1192923 — rs3168175 |TTGTGGCA| 0.05532 | 0.02803  |2.12665]3.4 x 10~'°| FGF4 |
| 12 |116500495 — 116514298| rs10850852 — 151400593 | CTCTCTTC| 0.28748 | 0.26232  [2.46528|5.2x 10~'"| NOS1 |
| 14 | 21674996 — 21704333 | rs12050442 — rs1894369 | GGGGTTAC| 0.03075 | 0.00968 |3.28277]|1.8 x 10~ "'| TRAQ@ |
| 14 | 25140850 — 25159405 | rs8020556 — rs1951062 | AGTAAACT| 0.08475 |  0.02999  |2.94949]6.6 x 10~*"|LOC401767|
‘ 14 ’ 36411583 — 36421982 | rs10872897 — 152564848 ’TACCTCCC’ 0.02712 ‘ 0.01101 ‘2.63669‘1.4 x 107°%| SLC25A21 ’
ATCCACTT| 0.02299 0.00637  |3.84732|1.3 x 10~ "'
| 14 | 36969639 — 37032855 |rs10132119 — rs17106785| CTATGACA| 0.01914 | 0.00402  |5.57575]6.1 x 10~'°| MIPOL1 |
| 19 | 17595848 — 17649789 | rs10419511 — rs7252308 | TTGGTATG| 0.04536 | 0.01971  |2.16516]1.7 x 10~'°| UNC13A |

the p-values as p1) < p2) < -+ < Pm,), Where m, is the
size of H,. The adjusted p-values are then defined by

Py = . Iilén min(mqpey/k, 1).
We assign the corresponding haplotype to the risk group if
Py < 0.05.

We have applied the above modified procedure to both
simulated and real data, obtaining improved simulation re-
sults displayed in Figures 4-5 as well as the additional risk-
haplotypes identified from the real data analysis in Table 5.

APPENDIX A. PHASE

PHASE is a Bayesian haplotype reconstruction method
developed by Stephens et al. [18] to tackle the problem of
statistically inferring haplotypes from unphased genotype
data for a sample of unrelated individuals from a popu-
lation. Based on the so-called coalescent model, it treats
the unknown haplotypes as random quantities and combine
prior information on haplotypes with the data likelihood to
calculate the posterior distribution of the unobserved hap-
lotypes (or haplotype frequencies) given the observed geno-
type data. The haplotypes themselves can then be recon-
structed from this posterior distribution: for example, by
choosing the most likely haplotype reconstruction for each
individual.

APPENDIX B. EM ALGORITHM

The EM algorithm consists of two steps.
E-Step: Given the current estimator #(*) and the data,
the conditional expectation of the complete log-likelihood

can be calculated by

Q(8,0)

E [1(9|N,1)|N, 9<t>}]

J 2
= Z Z T;E? log [ﬂ-l(/t)f((NOﬁ Nlj)T|q,(,t))] ’
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where the expectation is taken with respect to the distribu-
tion of I and the estimated posterior probability of the j-th

genotype being in the group v, 7
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M-Step: We update the current estimate () by maxi-
mizing @) with respect to 6. This is equivalent to solving the
following equations
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subject to mp + m1 + 2 = 1. For v = 0, 1,2, we obtain the

updated estimate ¢+ via
J @)
Z] 1 l/] Nl]

- S
J
S 7 (Noj + Nij)

The existing EM theory suggests that the value of the log-
likelihood function at the updated estimate is not decreasing
in the sense that 1(§¢+D|N) > 1(A®|N). We alternatively

t+1)

(t+1)
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Figure 4. Performances of the proposed two-stage method
with Hochberg's multiple testing adjustment and the multiple
testing method on the cohort-design data with multiplicative

or dominant or recessive inheritance modes. In these plots,

the red and the blue solid curves show means of the AVSS
values (i.e., the values of (specificity and sensitivity)/2) over
30 datasets are plotted against the values of \ for the
proposed method and the multiple testing method
respectively. The two red dash curves are one standard
deviation up and down from the red mean curves. Similarly,
the two blue dash curves are one standard deviation up and
down for blue mean curves. The plots in the columns from
the left to the right are for the cases where there were 5, 10,
and 20 risk haplotypes in the underlying haplotypes. The top
two rows, the middle two rows and the bottom two rows are
the results for (Ng, N1) = (2000, 1000) and (3000, 2000)
under the multiplicative, the dominant and the recessive
inheritance modes respectively. (Color figure online)

repeat the E- and M-steps until /(D |N) —1(6)|N) is less
than a pre-specified number 7, say n = 0.0001.

Choosing initial values for the EM algorithm is an impor-
tant step in finding a maximum of the likelihood. There are
various ways to do that such as random initialization and
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Figure 5. Performances of the proposed two-stage method
with Hochberg's multiple testing adjustment and the multiple
testing method on the case-control data. The plots in the
columns from the left to the right are for the scenarios, where
the underlying number of risk haplotypes m,. = 5,10, and 20.
The top row stands for the cases, where (Ny, N1) =
(2000, 1000), while the bottom row stands for the cases,
where (Ng, N1) = (3000, 2000). In these plots, the red and
the blue solid curves show mean curves of the AVSS values
over 30 datasets as functions of d = 0,0.05,0.1,0.1,
0.15,0.2,0.25,0.3, and 0.35 for the proposed method and the
multiple testing method respectively. The dash curves are one
standard error up or down from the mean curves. (Color
figure online)

data partition. See [6] for a review. Here, we consider the
following two methods to initialize the EM algorithm.

Method 1 (random initialization): We randomly choose g
initial values (say igp = 100) of 6 and run the EM algorithm
with each chosen initial value. We take the best one among
these runs in terms of maximizing the log-likelihood.

Method 2 (data partition): Note that as pointed out be-
fore, the prospective frequencies of G; in the controls and
cases can be estimated by

NOj

Noj + N1j’

p1j = Noj + N1j

Doj
respectively. We first exclude the outlying frequencies in
{p1j,Doj}, which have values of 0 or 1, to obtain ro-
bust means of a partition. Then, letting ¢ = (max; p1; —
min; py;)/3, we partition the frequencies into three sets as
follows:

So = {P1k : P1rx < min, p1j + ¢},
Sy = {p1x : ming p1; + ¢ < p1 < miny p1j + 2c¢},
and

Sy = {ﬁlk' D D1k > Hljinf)lj + 26}.

Note that the prospective frequency is increasing in the
number of risk haplotypes which it carries. So, we expect
that Sy, S; and Sy mainly contain the frequencies corre-
sponding the sets of genotypes with two risk haplotypes,



Table 5. The additional predicted risk haplotypes derived from our modified two-stage approached for CAD and HT by use of
the WTCCC data. In the table, the p-values were derived from the chi-squared test of the frequencies of H; against the
collapsed frequencies of the estimated non-risk haplotypes

|Chr| Region | SNP range | Haplotype |}5(Hi|case)|I:’(Hi|control)‘ OR ‘ p-Value | Gene |
| CAD |
| 1| SNPs—1786647 | rs1180966 — rs54908760 |GCGTCGAC| 0.0108 | 0.00089 |15.54545[9.7 x 107°°| Clorfl75 |
| 1| SNPs—4238771  [rs10789042 — rs56980458| GGTTCGTC| 0.23665 |  0.17127 | 1.52975 2.7 x 10~°°| Clorfl68 |
| 4 | SNP4—2043443 | 2352223 — 114179750 |TATCGCCC| 0.01136 | 0.00108 |10.38462]3.9 x 10~°°| LOC91431 |
| 4 |130622122 — 130672763 54975216 — rs17014667 | GCATCGGC| 0.00756 |  0.00104 | 8.81729 [4.5 x 10~°°|LOC391697|
4 |143705041 — 143731526| rs17715707 — rs9308152 | AAATGGGG| 0.09662 0.07696 | 2.30005 [4.4 x 10~°°| INPP4B
‘ ‘ ‘AAACGGAA‘ 0.0887 | 0.07524 ‘2.16017‘3.6>< 10-%° ‘
| 9 | 16944279 — 16951911 | rs7021242 — rs16935195 | GCGACCGA| 0.02571 | 0.01502 | 3.57182[25x 10" BNC2 |
| 10 |119397605 — 119419979| 75855994 — rs12572201 | AATATCTG| 0.03346 | 0.01532 | 2.13367 [3.7 x 10~°°| EMX20S |
12 116500495 — 116514298| rs10850852 — rs1400593 | CTCTTTTC| 0.51578 0.5 3.79043 |1.8 x 107°°|  NOS1
‘ ‘ ‘CTCTCTTC‘ 0.28034 ‘ 0.26232 ‘3.92754‘2.4“0*85 ‘
| 13 |108372995 — 108432811| 754773010 — rs3842945 |AGAGACCC| 0.27486 | 0.19222 | 1.40317 [3.0 x 10”%°| MYOI6 |
| 16 | 63792132 — 63847234 | rs1862709 — rs1423798 |CGGATACT| 0.21037 | 0.19685 | 2.2091 [2.3 x 10~°°|LOC283867|
| 17 | 13110258 — 13147203 |rs17565276 — rs17572446| GGGTTTGA| 0.0807 | 0.05399 | 1.53479 |2.8 x 10~°°| HS3ST3A1|
| 19 | 58535811 — 58602417 | 7510405660 — rs2061772 | ACAGCTGA| 0.04005 | 0.01282 | 2.67636 [1.8 x 107°°| ZNF765 |
| 20 | 45769577 — 45836335 | rs4407304 — rs2840278 |GTGTCTAC| 0.01675 | 0.00479 |3.59601 [1.3 x 10”°°| SULF2 |
| HT |
| 17| 6992193 — 7158208 | rs4558460 — rs6503013 |TCGCGTCG| 0.14256 |  0.10161 | 1.46353 [1.6 x 107°°| LLGL1 |

with one risk haplotype, and with no risk haplotypes respec-
tively. We choose the following initial values for estimating
q, and 7m,, v =0, 1:

(5]
(6]

0 ZP1J'GS,, plj

oo 5,1
NN

, and 70 = ,
m

(7]

where |S,| denotes the cardinality of S,,. (8]
Received 23 November 2014
9]
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