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Understanding heterogeneity in phenotypical characteris-
tics, symptoms manifestations and response to treatment of
subjects with psychiatric illnesses is a continuing challenge
in mental health research. A long-standing goal of medi-
cal studies is to identify groups of subjects characterized
with a particular trait or quality and to distinguish them
from other subjects in a clinically relevant way. This paper
develops and illustrates a novel approach to this problem
based on a method of optimal-partitioning (clustering) of
functional data. The proposed method allows for the simul-
taneous clustering of different populations (e.g., symptoms
of drug and placebo treated patients) in order to identify
prototypical outcome profiles that are distinct from one or
the other treatment and outcome profiles common to the
different treatments. The clustering results are used to dis-
cover potential treatment effect modifiers (i.e., moderators),
in particular, moderators of specific drug effects and placebo
response. A depression clinical trial is used to illustrate the
method.
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Mixed models, Partitioning, Personalized medicine, Placebo
response.

1. INTRODUCTION

Diagnosing and determining effective treatments for men-
tal illnesses has been and remains a very difficult problem.
There is a broadening recognition that the promise of tack-
ling these problems may lie with stratified psychiatry: a one-
size-fits-all strategy is insufficient while application of a per-
sonalized medicine tailored to individuals is not feasible on
a large scale. In between these two extremes is stratified
medicine with the goal to “... stratify a broad-illness pheno-
type into a finite number of treatment-relevant subgroups”
[10, page 3].

A natural approach to these problems from a statistical
perspective is to use methods associated with optimal strat-
ification (or clustering), whereby the goal is to estimate a
partition of a population or distribution into homogeneous
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subgroups, an approach that has a long history in statistics
[e.g. 3].

The problem addressed in this paper is to determine an
optimum partitioning of a population that is comprised of
two or more well-defined sub-populations. In particular, the
method focuses on how to partition outcome data from two
or more treatments with the acknowledgement that there
will be substantial overlap between the outcomes in the dif-
ferent treatments, but also that there may be sets of out-
comes that are typical for one of the treatments but not to
the others. The motivation comes from randomized clinical
trials where it is useful to identify outcomes that are spe-
cific to only one treatment. In a trial comparing an active
treatment to a placebo, there will often be drug and placebo
treated subjects with similar outcomes. However, if there are
specific drug effects, one can expect there would exist areas
in the outcome space that are primarily populated by drug-
treated subjects. Thus, the goal of this paper is to determine
a stratification procedure that optimally distinguishes spe-
cific (drug) outcomes from non-specific (placebo) outcomes.
Another potential application is the problem of making a
diagnosis in situations where a clear demarcation does not
exist between different illnesses. For instance, it is difficult
and controversial to classify a child with Attention Deficit
Hyperactivity Disorder (ADHD) or Autism Spectrum Dis-
order (ASD) if the child exhibits symptoms common to both
illnesses [e.g., 6, 1].

Clustering algorithms can be used to estimate an optimal
stratification by partitioning a data set into non-overlapping
strata. Perhaps the most used algorithm for clustering is the
k-means algorithm [e.g. 7, 11]. The utility of the k-means al-
gorithm is that it determines a partition resulting in bound-
aries in the outcome space that can be used from a clin-
ical perspective for making treatment decisions. However,
when data is available from two or more treatment arms,
it is not immediately clear how one would implement tradi-
tional clustering algorithms. One can cluster the data from
each arm separately, but a single partitioning of the pooled
data may be desired. A natural approach to the problem is
to employ a k-means clustering algorithm on data pooled
across different treatments [e.g. 16]. This approach can be
improved because it does not directly address the problem
of finding strata in the partition that are homogeneous as
possible with respect to the different treatment groups.
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The k-means algorithm is a special case of convexity-
based clustering [2]. This paper examines a convexity-based
clustering approach where the objective function is given in
terms of a likelihood ratio that can be used to partition the
outcomes pooled across treatment arms. Convexity-based
clustering incorporates the strengths of classical discrimi-
nant analysis (which is a supervised learning method, since
the treatment labels are known) and applies these strengths
to the unsupervised learning problem of cluster analysis.
Convexity-based clustering is reviewed in Section 2. In a
supervised learning setting, training data is available from
distinct groups with labels indicating group membership,
which can be employed for estimating a discriminant func-
tion and this function is then used to classify future unla-
beled observations to one group or the other. In Section 3,
the convexity-based clustering is utilized to generalize dis-
criminant analysis to the realm of unsupervised learning.
Section 4 provides a one-dimensional example to illustrate
convexity-based clustering. The convexity-based clustering
is then applied to data from a depression clinical trial in
Section 5. The results of the convexity-based clustering are
employed to evaluate baseline predictors as moderators of
treatment effect in Section 6 and the paper is concluded in
Section 7.

2. CONVEXITY-BASED CLUSTERING

This section reviews the basics of convexity-based cluster-
ing presented in the work of [2]. The convexity-based clus-
tering represents generalization of the well-known k-means
clustering [e.g. 8, 9, 11], which is reviewed first. Given a ran-
dom variable X, the goal is to partition the support X of X
in terms of a given optimality criterion. Here, the support of
X can be arbitrary (e.g. �, �p, the set of square-integrable
functions on an interval C, L2[C], etc.).

2.1 k-means clustering

k-means clustering is one of the best known non-
hierarchical clustering algorithms. Given a data set and an
initial set of k cluster means, the basic algorithm forms clus-
ters by assigning each data point to the cluster to which the
point is closest, where closeness is typically measured as the
Euclidean distance to the cluster mean. Once data points
have been assigned to clusters, the cluster means are up-
dated by computing the mean of the points assigned to each
cluster. The algorithm iterates between assigning points to
clusters based on nearest cluster distance and updating the
cluster means until convergence.

The k-means algorithm is an example of a self-consistency
algorithm [12], which in principal can be applied not only
to an empirical distribution defined by a data set, but also
directly to theoretical probability distributions [15]. Since
the k-means algorithm iterates by assigning points based on
a minimal distance to cluster means, the optimality criterion
for the algorithm is to form a partition of the support of X
that minimizes the within cluster variances, i.e. to find most

homogeneous clusters. The goal of k-means clustering is to
find a set of k distinct points {ξ1, . . . , ξk} in X that minimize

(1) E[min
j

‖X − ξj‖2],

over all sets of k distinct points. Such a set of points is
called the k principal points of X [4]. For X = �p, any set
of k points determines a partition of �p, say {B1, . . . , Bk},
where x ∈ Bj if ‖x− ξj‖2 < ‖x− ξh‖2, h �= j. It is easy to
see that the solution to the k-means problem requires the
cluster means ξj to be the centroids over the respective sets
forming the partition [e.g., 5]:

ξj = E[X|X ∈ Bj ].

From this it follows that the k-means criterion is equivalent
to finding a partition that maximizes

(2)

k∑
j=1

P (Bj)‖E[X|X ∈ Bj ]‖2,

for a given k, where P (Bj) is just P (X ∈ Bj). If we let φ(x)
denote the convex function φ(x) = ‖x‖2, then (2) can be
written

(3)

k∑
j=1

P (Bj)φ(E[X|X ∈ Bj ]).

The idea behind convexity-based clustering is to allow φ to
be other convex functions besides the squared norm func-
tion.

2.2 A general convexity-based clustering

Let φ(x) denote a convex function and define the tangent
support plane at point z by

(4) t(x; z) = φ(z) +∇φ(z)′(x− z),

where ∇ is the gradient operator. Given a partition
{B1, . . . , Bk} and a set of support points {z1, . . . , zk}, the
volume between φ and the approximating support hyper-
planes can be computed as

(5)

k∑
j=1

∫
Bj

(φ(x)− t(x; zj)) dF (x),

where F is the distribution function under consideration. To
avoid complications, assume F is continuous and φ is differ-
entiable everywhere. The goal is to find an optimal partition
and a set of support points that provides the best approx-
imation by minimizing the volume (5) between the surface
defined by φ(x) and the piecewise function defined by the
support tangent hyperplanes over the partition B1, . . . , Bk.
The optimal partition that minimizes this volume will equiv-
alently maximize [see 2, Corollary 2.2]
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Figure 1. An illustration of a tangent support plane using
k = 3 points for a convex function φ(x).

(6)

k∑
j=1

P (Bj)φ(E[X|X ∈ Bj ]),

which is the same criterion as the k-means algorithm (3).
The notion of a tangent support plane for a convex function
φ is illustrated in Figure 1 with k = 3 support points.

[2] (Theorem 2.1) showed that given a partition
{B1, . . . , Bk}, the minimal volume problem and equivalently
the problem of maximizing (6), the support points zj must
satisfy

(7) zj = E[X|X ∈ Bj ].

Alternatively, given support points {z1, . . . , zk}, in order to
maximize (6), the partition must satisfy

(8) Bj = {x ∈ X : t(x; zj) = max
h

t(x; zh)}.

Equations (7) and (8) suggest an iterative algorithm for
convexity-based clustering: given an initial set of support
points, use (8) to determine the corresponding partition;
given the partition, update the support points using (7);
iterate between these two steps until convergence.

A useful generalization of the convexity-based clustering
algorithm considered by [2] that we shall implement, is to
consider a pre-specified function λ : X → �q instead of x
directly. The support points and the sets in the partition in
this general framework are given by

wj = E[λ(x)|x ∈ Bj ]

and

Dj = {λ(x) : t(λ(x);wj) = max
h

t(λ(x);wh)}.

This induces a partitioning of X as

Bj = λ−1(Dj) = {x ∈ X : λ(x) ∈ Dj}.

The partitioning algorithm described above can be formu-
lated in this more general setting as follows:

Generalized Convexity-Based Clustering Algorithm

0. Start with an initial partition B1, . . . , Bk of X .
1. Calculate the support points

(9) wj = E[λ(x)|x ∈ Bj ].

2. Determine a minimum support plane partition

(10) Dj = {λ(x) : t(λ(x);wj) = max
h

t(λ(x);wh)}

for j = 1, . . . , k.
3. Update the partition by Bj ← λ−1(Dj).
4. Repeat steps 1–3 until a convergence criterion is met.

3. CONVEXITY-BASED CLUSTERING:
FROM DISCRIMINANT ANALYSIS TO

PARTITIONING

Consider the case where a population consists of T sub-
populations or classes. For the sake of discussion (and for the
illustrations below) we shall focus on the case of T = 2 with
two sub-populations, say I and II. In the supervised learning
setting of discriminant analysis, each observation in the data
comes with a class label indicating to which sub-population
the observation belongs. Using this information, a discrim-
inant function can be defined for classifying new unlabeled
observations to one or the other class. Suppose the densities
in each sub-population are f1 and f2 with prior probabilities
π1 and π2. Then the optimal rule for classification in terms
of minimizing the probability of misclassification is Bayes’
rule, where an observation x is classified to the population
I if

(11)
π1f1(x)

π1f1(x) + π2f2(x)
>

π2f2(x)

π1f1(x) + π2f2(x)
,

and it is classified to population II otherwise. If f1 and f2
are multivariate normal densities, then Bayes’ rule coincides
with Fisher’s linear discriminant function when each group
has the same covariance matrix, and it coincides with a
quadratic discriminant function if the covariance matrices
differ.

Write

(12) f(x) = π1f1(x) + π2f2(x)
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for the mixture density in the denominator of (11). If the
right-hand side of (11) is subtracted from the left-hand side,
then the magnitude of this squared difference for an obser-
vation x is a measure of the strength in how well the obser-
vation can be classified to one or the other sub-populations:(

π1f1(x)

f(x)
− π2f2(x)

f(x)

)2

.

This expression can be written as

φ(λ(x))

where φ is the convex function

(13) φ(λ) = (1− 2λ)2

and

(14) λ(x) =
π2f2(x)

f(x)
,

which is just the posterior probability that an observation
x belongs to population II. The criterion to be maximized
by the k-means algorithm (3) in this setting is

(15) C =
k∑

j=1

P (Bj)φ(E[λ(X)|X ∈ Bj ]),

where the expectation is taken with respect to the mixture
density (12). Let

P1(Bj) =

∫
Bj

f1(x)dx

denote the probability a random observation from the pop-
ulation I lies in Bj (similarly for P2) and let

P (Bj) = π1P1(Bj) + π2P2(Bj).

Then the criterion (15) to be maximized becomes

C =

k∑
j=1

P (Bj)φ(E[λ(X)|X ∈ Bj ])

=

k∑
j=1

P (Bj)(1− 2E[λ(X)|X ∈ Bj ])
2

=

k∑
j=1

P (Bj)

(
1− 2

P (Bj)

∫
Bj

λ(x)f(x)dx

)2

=
k∑

j=1

P (Bj)

(
1− 2

P (Bj)

∫
Bj

π2f2(x)dx

)2

=

k∑
j=1

(π1P1(Bj)− π2P2(Bj))
2

P (Bj)
.(16)

Thus, the goal of the convexity-based clustering criterion is
to find a partition with strata Bj that are maximally homo-

geneous with respect to one or the other sub-populations I
and II. Equation (16) is similar to the φ-divergence between
distributions used to maximize the power of a goodness-of-
fit test of the null hypothesis that a distribution equals some
specified distribution (see [2] for references).

The convexity-based clustering described here will be par-
ticularly suitable when the two sub-populations overlap sub-
stantially. If the two populations do not overlap (or overlap
just negligibly), then the convexity-based clustering will not
be very advantageous. For instance, if there exists a parti-
tion {B1, . . . , Bk} where either P1(Bj) = 0 or P2(Bj) = 0
for every j, then the support of the two sub-populations
do not overlap at all and an optimal partition can be ob-
tained simply using k = 2 with strata {f1(x) > 0} and
{f2(x) > 0} and the criterion (16) obtains the maximum
value of 1.

The generalized convexity-based clustering algorithm de-
scribed in the previous section can be derived by computing
the tangent function t(λ;w) for (13). In particular, given an
ordered set w1 < · · · < wk, or support points, it follows after
some straightforward algebra that the sets Dj given by (10)
are determined by the midpoints of the wj . Using the known
treatment labels (populations I and II), the convexity-based
clustering algorithm for generalizing the usual discriminant
analysis becomes:

Semi-Supervised Discriminant Clustering Algo-
rithm

0. Start with an initial partition B1, . . . , Bk of X .
1. Calculate the support points (9) as

(17) wj =
π2P2(Bj)

P (Bj)
.

2. Determine a minimum support plane partition

(18) Dj = {λ ∈ � : ‖λ− wj‖ < ‖λ− wh‖, h �= j}

for j = 1, . . . , k,.
3. Update the partition by Bj ← λ−1(Dj), whereby if

λ(x) =
π2f2(x)

f(x)
∈ Dj , then x → Bj .

4. Repeat steps 1–3 until a convergence criterion is met.

This algorithm can be naturally generalized to accom-
modate T > 2 groups or treatments. In this more general
setting, λ and w become vector-valued and the convex func-
tion φ generalizes to

φ(x1, . . . , xT ) =

T∑
h=1

(1− 2xh)
2.

Additionally, using a similar derivation as above, the setsDj

in (18) in the case of more than two groups define a Voronoi
partition in �T−1 in this more general setting.
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Figure 2. A univariate illustration of the convexity-based clustering. In the left panel the convexity-based clustering is applied
to a two component mixture of N(0, 1) and N(2, 1) with equal mixing weights using k = 3. In the right panel, the algorithm

is applied using k = 4 to an equal mixture of N(0, 1) and N(0, 2) distributions. The convexity-based cluster means are
denoted by diamonds and for comparison, k-means cluster means are denoted by solid circles.

3.1 Implementing the algorithm

Applying the semi-supervised discriminant clustering de-
scribed above requires estimating the densities f1 and f2.
A straightforward approach is to assume some parametric
family for the densities, say multivariate normal, and then
estimate the parameters of the densities using maximum
likelihood. Alternatively, nonparametric estimators of the
densities could be used. The prior probabilities π1 and π2

can be estimated as sample proportions, if the sample sizes
in each sub-population are random, or values for these priors
can be substituted if they are known.

The initial partition can be achieved by simply applying
the k-means algorithm on the pooled data from both sub-
populations. Once the densities are estimated, the function
λ from (14) can be computed for each data observation xi

as

(19) λ̂i := λ̂(xi) =
π̂2f̂2(xi)

f̂(xi)
.

A straightforward way of computing the wj in (17) of step
1 of the Semi-Supervised Discriminant Clustering algorithm
is via Monte Carlo simulation: if data can be simulated from
sub-populations I and II, say once the parameters of these
two distributions have been estimated, then the probabilities
in (17) can be well-approximated by sample means from a

very large data set simulated from the two sub-populations.
This procedure is illustrated in Section 5.

4. ONE-DIMENSIONAL ILLUSTRATIONS

To shed light on the mechanics behind convexity-based
clustering, here we present simple 1-dimensional illustra-
tions, where the algorithm is applied to a population defined
by two univariate normal distributions. These illustrations
use the convex function given by (13) in order to general-
ize Bayes’ classification rule from the realm of supervised to
unsupervised learning.

In the left panel of Figure 2, the convexity-based cluster-
ing algorithm was applied on a two component univariate
normal mixture (with equal mixing weights) with densities

f1(x) ∼ N(0, 1) and f2 ∼ N(2, 1)

which are plotted as dashed and dotted curves respectively
and the mixture density is potted as a solid gray curve. A
partition was formed using k = 3. In this case, the two
populations have the same variance, but different locations.
The three convexity-based cluster means are denoted by di-
amonds at the base of the density plot and a color-coding
is provided at the top to show the k = 3 strata. For the
sake of a comparison, the k = 3 principal points of the mix-
ture distribution [4] are also shown (denoted by the solid
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circles at the bottom). The principal points are the popu-
lation quantities that the cluster means from the k-means
algorithm are estimating. The partitioning that the princi-
pal points determine is not concerned with the purity of the
strata with respect to the mixing components. In this illus-
tration, however, the convexity-based cluster means and the
principal points are very similar to one another.

The right panel of Figure 2 shows another univariate
illustration with k = 4 for a population defined by a 2-
component normal mixture of densities N(0, 1) and N(0, 2).
In this case, the two populations share a common mean
(μ = 0) but they differ in spread (σ2 = 1 versus σ2 = 2).
The k = 4 strata are denoted by the color-coded bar along
the top of the density curves. In this case, the convexity-
based cluster means (diamonds) and the principal points
(solid circles) do not coincide at all, as was the case in the
previous illustration: here the convexity-based cluster means
all coincide at the origin (the common mean) whereas the
principal points are spread out. The strata formed by the
convexity-based clustering are not even convex sets whereas
clusters formed by k-means clustering will always be con-
vex sets. Initially, this may seem to be a weakness of the
convexity-based clustering approach and in some applica-
tions, non-convex clusters may not be useful. However, in
the right panel of Figure 2, note that the blue-colored stra-
tum covers the extreme left and right of the mixture distri-
bution and is comprised mostly of the more variable sub-
population. The black-colored stratum is mostly populated
by the less variable sub-population, and corresponds to the
region where the two populations most heavily overlap.

5. EXAMPLE: IDENTIFYING SPECIFIC
DRUG RESPONDERS IN TREATING

DEPRESSION

The convexity-based clustering procedure was applied to
a 6-week longitudinal depression study where subjects were
randomized to be treated with Fluoxetine or a placebo. The
outcome (recorded at each weekly visit) was severity of de-
pression assessed with the Hamilton Rating Scale for De-
pression (HRSD) or sometimes known simply as the HAM-
D. Lower scores on this scale indicate lower levels of de-
pression. A mixed-effects model was fit separately to the
data from both arms using orthogonal-quadratic polyno-
mials, with random subject intercept, linear and quadratic
terms.

Other basis functions could have been used to fit the
longitudinal trajectories (e.g. Fourier basis functions or B-
splines). We choose to use orthogonal quadratic polynomi-
als for the following reasons. (i) Most clustering algorithms
are based on a minimal Euclidean distance. When the data
are curves in function space, the L2 distance between curves
corresponds to the usual Euclidean distance between regres-
sion coefficients when an orthonormal basis is used to fit the
curves. Additionally, differences in clustering that occur due
to the choice of the basis functions used to represent the

curves are minimized when using an orthogonal basis func-
tion representation [14]. (ii) Quadratic functions are easily
interpretable and provide a good fit to the data over this
relatively short longitudinal evaluation period (6 weeks). In
particular, with orthogonal quadratic polynomials, the co-
efficient of the linear polynomial corresponds to the average
quadratic slope of the parabola, which is an overall measure
of improvement throughout the trial [13, 18]. Also, the co-
efficient of the quadratic polynomial is a simple measure of
the trajectory’s curvature which has important interpreta-
tions in clinical settings, particularly when modeling placebo
response.

Figure 3 shows a scatterplot of the estimated quadratic
outcome trajectories for Fluoxetine-treated (left panel) and
placebo-treated (right panel) subjects. Figure 4 shows the
estimated coefficients (the linear and quadratic terms) for
individual subjects in the Fluoxetine (black) and placebo
(red) treated subjects along with contours of equal probabil-
ity for each distribution. As these two figures show, there is a
large degree of overlap between the parabolas of Fluoxetine-
and placebo-treated subjects, which makes the problem of
teasing out regions that are homogeneous with respect to
the two treatments difficult.

The distributions of the coefficients for the symptom tra-
jectories of subjects (intercepts, linear and quadratic terms)
were estimated from mixed effects models separately for the
Fluoxetine and placebo groups which were assumed to follow
a trivariate normal distributions in the maximum likelihood
estimation. As noted above, with orthogonal polynomials,
the coefficient of the linear function corresponds to the “av-
erage quadratic slope” [13], which is an overall measure of
improvement (or worsening) throughout the 6-week trial.
The convex clustering was applied to the bivariate distribu-
tion defined by the (average) slope and quadratic polynomial
(concavity) coefficients only since these two coefficients de-
termine the shape of the trajectory whereas the intercept
corresponds only to a vertical shift of the trajectories.

In order to apply the clustering algorithm, a large simu-
lated data sample (of size 50,000 for each treatment) was ob-
tained as follows. The mixed effects model can be expressed
as

(20) yi = Xi(β + bi) + ε,

where bi ∼ N(0,D) is the vector of random effects, assumed
independent of the error εi, and Xi is the design matrix for
the orthogonal polynomials over time for the ith subject.
The parameters of the distribution of the trajectories are
specified by their coefficient distribution

(21) β + bi ∼ N(β,D),

which can be estimated using maximum likelihood.
Once β and D were estimated for each treatment arm,

Monte Carlo simulation was used to generate a very large
sample to approximate the multivariate normal coefficient
distribution (21). Details of this approach are given in [17].
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Figure 3. Quadratic outcome trajectories for Fluoxetine (left panel) and placebo treated (right panel) subjects from a 6-week
study.

Figure 4. Contours of equal density for the joint distribution
of the average slope and concavity coefficients for Fluoxetine
and placebo treated subjects. The points (black for Fluoxetine
and red for placebo) are the individual coefficient (estimated

fixed effect plus predicted random effects).

This Monte Carlo sample can then be used to compute the
probabilities P1(Bj) and P2(Bj) needed in the iterations of
the clustering algorithm.

Various values of k were tried for the convexity-based
clustering and for illustration, we present the results for
k = 4 here. Figure 5 shows the estimated boundaries formed
by a k = 4 semi-supervised discriminant clustering partition
denoted by solid curves. (Results for k = 3 and k > 4 pro-
duced cluster partition patterns similar to those shown in

Figure 5. Convexity-based clustering partition for k = 4.

Figure 5.) The k-means algorithm was used to initialize the
algorithm and the algorithm essentially converged after only
about 5 iterations. The k = 4 strata are denoted C1 to C4.
The solid points on the figure correspond to the means of
the coefficient distributions for the outcome trajectories un-
der Fluoxetine (black) and placebo (red) treatment. It is
interesting to note that the center curve (between C2 and
C3) on Figure 5 coincides with the quadratic discriminant
boundary between the placebo and Fluoxetine populations.
As illustrated below, using k = 4 provides a more refined dif-
ferentiation between placebo and drug-treated subjects than
simply using a standard discriminant function. Estimating a
2-class discriminant function defined using the placebo and
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Table 1. Percent of Subjects Classified to Each Cluster

Fluoxetine, n = 196 Placebo, n = 162

% Non- % Non-
Cluster % Responders Responders % Total % Responders Responders %Total

1 29 6 35 5 0 5
2 31 14 45 24 4 28
3 4 12 16 10 31 41
4 0 4 4 0 26 26

Overall 64 36 100 39 61 100

drug arm labels in the study is not very useful because the
full extent of heterogeneity in the data is not captured com-
pletely by the two treatment arm labels, as can be seen in
Figure 3.

Table 1 shows a breakdown in percentages of Fluoxetine-
and placebo-treated subjects in the data that are classified
to the k = 4 clusters from the convexity-based clustering
(rounded to the nearest integer). The percentages also break
down as to whether a person was classified as a treatment
responder or non-responder by the end of the trial using the
clinical global impression (CGI) scale for improvement. Ac-
cording to this criteria, a subject is rated as a responder if
their CGI score was 1 (very much improved) or 2 (much im-
proved). Higher scores on this scale range from 3 (minimally
improved) to 7 (very much worse) and subjects with such
scores are rated as treatment non-responders.

As Table 1 shows, Cluster 1 consists primarily of Flu-
oxetine treated responders and very few placebo treated
subjects. The placebo treated subjects that were classified
to Cluster 1 were rated as responders. It is interesting to
note that of the 11 Fluoxetine-treated subjects rated as
non-responders and classified to Cluster 1, all but one were
dropouts with only observations up to visit 3 or 4. Thus,
Cluster 1 can be labeled as a “Drug Responder” cluster.

The primary motivation of the semi-supervised discrim-
inant clustering in this example is to identify subjects who
will benefit from the specific effects of the medication, not
just non-specific placebo effects. If this can be accomplished,
then treatment can be targeted towards patients who will
benefit from it. If a particular treatment is not going to be
very beneficial for a patient (for instance, if the patient’s re-
sponse to Fluoxetine is primarily a placebo response), then
these patients can be switched to a different medication that
may be more efficacious.

From the semi-supervised discriminant clustering results,
we can infer that subjects classified to Cluster 1 tend to ben-
efit from the specific effects of the drug. The reasoning here
is that subjects in Cluster 1 are almost all responders treated
with the active drug. Therefore, they must be mostly specific
drug responders. This does not rule out the possibility their
responses could also be partly due to placebo effects. How-
ever, if these responses were mostly due to placebo effects,
then this cluster would be populated by placebo-treated re-
sponders as well, but very few placebo treated responders

Figure 6. Drug-treated subjects classified to Cluster 1. Open
circles correspond to drug-treated subjects who were rated as
CGI non-responders (all but one of these subjects dropped

out).

are in Cluster 1. The curve coefficients for drug-treated sub-
jects classified to Cluster 1 are shown in Figure 6 (the 11
non-responders who were primarily dropouts are indicated
by open circles in this plot); the corresponding outcome tra-
jectories are shown in Figure 7.

Cluster 4 is populated overwhelmingly with placebo-
treated non-responders and only a few drug-treated non-
responders. Clearly, subjects classified to Cluster 4 expe-
rience very weak placebo effects, if any. However, Cluster
4 distinguishes between drug and placebo treated subjects
since this cluster consists mostly of placebo-treated subjects.
It stands to reason then, that most of these placebo-treated
non-responders would have benefited from the specific effect
of the drug had they been treated with the active medica-
tion.

Clusters 2 and 3 do not discriminate as well between drug
and placebo treated subjects since both these clusters con-
tain large percentages of subjects from both treatments.
Cluster 2 is populated primarily by CGI-rated responders
and obviously the placebo-treated subjects in Cluster 2 are
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Figure 7. Estimated outcome trajectories for drug-treated
subjects classified to Cluster 1.

Figure 8. Estimated outcome trajectories for placebo-treated
subjects classified to Cluster 2. CGI-rated responders are

denoted by solid red curves.

placebo responders. The estimated trajectories for placebo-
treated subjects in Cluster 2 are shown in Figure 8. The solid
curves in this figure correspond to CGI-rated responders and
hence, placebo-responders have curves that are character-
ized by immediate improvement from baseline that level off
or even deteriorate by the end of the 6-week period. We note
here the distribution of subjects in Clusters 2 and 3: among
Fluoxetine-treated subjects 48% are in Cluster 2 and 14%
are in Cluster 3; among placebo-treated subjects 30% are in
Cluster 2 and 41% are in Cluster 3. One can infer that the
drug was responsible for pushing subjects from Cluster 3,
where the majority subjects are non-responders, to Clus-

ter 2, where there is higher prevalence of treatment respon-
ders. Although it is difficult to distinguish between specific,
non-specific and mixed (specific and non-specific) respon-
ders in Cluster 2, it is reasonable to conclude that some
non-negligible proportion of them were helped by the drug.

If baseline covariates can be found that predict whether
a subject will fall in Cluster 1 if treated with Fluoxetine,
then these covariates can be used to predict who will bene-
fit from the specific effects of the drug – this idea is explored
in Section 6. Similarly if there are baseline covariates that
can predict whether a subject will fall in Cluster 4 when
treated with placebo, then these covariates can be used to
identify subjects who are likely to benefit from the specific
effects of the drug. If a set of covariates can successfully
predict whether a subject will be in Cluster 2 if treated
with placebo, then these covariates can identify placebo re-
sponders. Finally, if a set of covariates can predict that a
subject will fall in Cluster 3, whether treated with a drug
or placebo, then these covariates can help identify subjects
that are non-responsive to both specific and non-specific ef-
fects of treatment. Of course, as with most all classification
methods though, we expect that there will be misclassifica-
tions.

6. MODERATOR IMPORTANCE PLOTS

The semi-supervised discriminant clustering has allowed
us to partition the set of observations (symptom trajecto-
ries over time) into k strata/clusters that are maximally
homogeneous with respect to one or the other of two treat-
ments (e.g., Fluoxetine or placebo). The partition obtained
from the convexity-based clustering uses the objective func-
tion (14). We can plot the estimated function λ̂(·) versus a
baseline predictor to determine if the convexity-based clas-
sification depends on some baseline characteristic.

Figure 9 shows a plot of λ̂(·) versus baseline Clini-
cal Global Impression of severity (CGI-severity) for drug-
treated subjects (black dots) and for placebo-treated sub-
jects (red squares). CGI-severity takes values from 1 to 7
with higher values indicating more severe depression, specif-
ically, 1 = normal (not ill), 2 = minimally ill, 3 = mildly ill,
4 = moderately ill, 5 = markedly ill, 6 = severely ill, 7 =
extremely ill. (Only one person had a value less than 4 and
only three had values equal to 7.) The horizontal lines in Fig-
ure 9 mark the cutoff values, see (17), which determine clus-
ter membership for the observations. The large solid sym-
bols are the mean values of λ at each unique CGI value for
the drug-treated subjects (circles) and the placebo-treated
subjects (squares) respectively. As the figure shows, among
drug-treated individuals, the more severely depressed a sub-
ject was at baseline the more likely they were to be classified
towards the specific drug responder Cluster 1. In particular,
only 24% of the drug-treated subjects with a baseline CGI of
4 were classified to the drug-responder cluster, whereas 53%
of drug-treated subjects with a baseline CGI of 5 were clas-
sified to the drug responder cluster and 40% of drug-treated
subjects with a baseline CGI of 6 where classified to the
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Figure 9. A moderator importance plot: a plot of λ̂(·) versus baseline CGI severity for Fluoxetine-treated subjects. The
horizontal lines demark the cut-offs for cluster membership.

drug-responder cluster. On the other hand, 31% of placebo-
treated subjects with a low baseline CGI = 4 were classified
to the non-responder Cluster 4, compared to only 14% of
placebo-treated subjects with baseline CGI = 5 (only one
out of the nine placebo-treated subject with baseline CGI of
6 were classified to Cluster 4). Interestingly, placebo-treated
subjects who were moderately depressed at baseline (CGI
= 4) where more likely to fall into the non-responder clus-
ter than more severely depressed placebo-treated subjects.
Thus, there is modest evidence that baseline CGI severity
is helpful in predicting whether or not a Fluoxetine-treated
patient will respond due to specific effects of the drug.

A similar analysis was done using the baseline predictor
age (in years) and the results are shown in Figure 10. The

function λ̂ plotted versus age was estimated using a penal-
ized cubic spline for both drug and placebo-treated subjects
and the estimated curves are shown in Figure 10: the top
curve is for drug-treated subjects and the bottom curve is
for placebo-treated subjects. Both curves in Figure 10 are
basically flat indicating that age appears to have no sub-
stantial moderating effect in predicting cluster membership
in this case.

7. DISCUSSION

Because of the difficulty in diagnosing many mental dis-
eases and also the difficulty of distinguishing between differ-
ent mental illness when making a diagnoses, unsupervised
learning tools are paramount to better understand sources

of heterogeneity in mental disporders. Cluster analysis has
long been a mainstay of unsupervised learning. This paper
has proposed a semi-supervised clustering algorithm that
incorporates the powerful features of discriminant analysis
from supervised learning.

A common complication that arises in applications, such
as in the example in Section 5, is missing data (e.g. due to
drop out). Estimating the longitudinal trajectories, the best
linear unbiased predictors (BLUP) for the trajectories are
obtainable under the assumption that the missing data are
missing at random (MAR) conditional on the prior obser-
vations of the outcome. If there is a reason to suspect the
MAR condition is violated, imputation methods based on
more covariates than just the previous observations of the
outcome can be used to produce multiple imputed data sets.
Comparing the clustering results for the multiple imputed
data sets would be a nice way of assessing the effect of the
missing data on the clustering inferences.

The ultimate goal of the approach presented in this pa-
per is to discover biomarkers for mental illnesses such as
depression. That is, to use baseline measures, even includ-
ing complicated modalities such as brain images, that can
(hopefully) help in diagnosing mental illness and also be
used to predict the optimal treatment for patients. In the
example presented here there were only a very limited num-
ber of baseline measures and the moderator importance
of the two baseline measures that were analyzed (base-
line CGI-severity and age) were modest to non-existent.
With the increasing availability of baseline measures such
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Figure 10. A moderator importance plot using the baseline predictor age.

as brain images and genetic data, there is the hope of find-
ing more powerful biosignatures of drug and placebo re-
sponse.
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