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Appendix: Proofs of Theorems

Proof of Theorem 1. For a fixed γ, let β(τ ; γ) be the solution to the following equation:

E
{
ZN(H−1

γ (ZTβ(τ))−
∫ τ

0

ZI{X ≥ H−1
γ (ZTβ(u))} dG(µ)

}
= 0. (A.1)

In particular, β(τ ; γ0) = β0(τ). To show the consistency of γ̂ and β̂(τ), we mainly take

the following three steps.

Step A1. We first show the uniform consistency of β̂(τ ; γ); that is,

sup
τ∈[ν,τU ], γ∈Ωγ0

∥β̂(τ ; γ)− β(τ ; γ)∥ P→ 0. (A.2)

Note that β(τ ; γ) is the solution to the equation (A.1) for any given γ, and β̂(τ ; γ)

is the estimator of β(τ ; γ). Define G1 = {ZiI{Xi ≤ H−1
γ (ZT

i b)}δi : b ∈ Rp, γ ∈ Ωγ0},

and G2 = {ZiI{Xi ≥ H−1
γ (ZT

i b)} : b ∈ Rp, γ ∈ Ωγ0}, where Ωγ0 is a neighborhood of

γ0. Both G1 and G1 are Glivenko-Cantelli (van der Vaart and Wellner, 1996). Then with

some modification of the proof of Theorem 1 in Peng and Huang (2008) and using the

Glivenko-Cantelli theorem, we can show that Step A1 holds. The similar arguments are

also used in the proof of Theorem 1 of Qian and Peng (2010).

Step A2. We should prove that

γ̂
P→ γ0. (A.3)
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Note that γ̂ = argminγ Rn(γ). Define

R(γ) =

∫ τU

ν

E[W (Z1,Z2,Z3; τ, γ)] dτ,

where

W (Z1,Z2,Z3; τ, γ) = I(Z2 ≤ Z1)I(Z3 ≤ Z1)

×
{
N2{H−1

γ (ZT
2 β(τ ; γ))} −

∫ τ

0

I{X2 ≥ H−1
γ (ZT

2 β(u; γ))} dG(µ)
}

×
{
N3{H−1

γ (ZT
3 β(τ ; γ))} −

∫ τ

0

I{X3 ≥ H−1
γ (ZT

3 β(u; γ))} dG(µ)
}
.

To prove (A.3), according to Amemiya (1985, p.106–108), we need to verify the fol-

lowing three conditions:

(i) R(γ) is continuous on Ωγ0 , where Ωγ0 is a neighborhood of γ0;

(ii) R(γ) is uniquely minimized at γ0;

(iii) sup
γ∈Ωγ0

∥Rn(γ)−R(γ)∥ = op(1).

Now, we verify the above three conditions step by step. First, we have

R(γ) = E
[ ∫ τU

ν

E2
{
I(Z2 ≤ Z1)

(
N2{H−1

γ (ZT
2 β(τ ; γ))}

−
∫ τ

0

I{X2 ≥ H−1
γ (ZT

2 β(u; γ))} dG(µ)
)∣∣∣Z1

}
dτ

]
.

By Conditions (R2) and (R4), it is easy to see that R(γ) is continuous in Ωγ0 .

Second, note that by (A.1), γ0 is a minimizer of R(γ). Suppose that γ∗ (̸= γ0) is

another minimizer of R(γ). Then we have R(γ∗) = R(γ0) = 0. That is,

E
{
N2{H−1

γ∗ (ZT
2 β(τ ; γ

∗))} −
∫ τ

0

I{X2 ≥ H−1
γ∗ (ZT

2 β(u; γ
∗))} dG(µ)

}
= 0,

and

E
{
N2{H−1

γ0
(ZT

2 β(τ ; γ0))} −
∫ τ

0

I{X2 ≥ H−1
γ0

(ZT
2 β(u; γ0))} dG(µ)

}
= 0.
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This implies that for τ ∈ [ν, τU ],

F̃{H−1
γ∗ (ZT

2 β(τ ; γ
∗))} −

∫ τ

0

[
F̄{H−1

γ∗ (ZT
2 β(u; γ

∗))}
]
dG(µ) = 0, (A.4)

and

F̃{H−1
γ0

(ZT
2 β(τ ; γ0))} −

∫ τ

0

[
F̄{H−1

γ0
(ZT

2 β(u; γ0))}
]
dG(µ) = 0, (A.5)

where F̄ (t|Z) = 1 − F (t|Z). Then by (A.4) and (A.5), both F̃{H−1
γ∗ (ZT

2 β(τ ; γ
∗))} and

F̃{H−1
γ0

(ZT
2 β(τ ; γ0))} are solutions to the following nonlinear integral equation of the

second kind for h(τ):

h(τ)−
∫ τ

0

[F̄{F̃−1{h(µ)}}] dG(µ) = 0.

Since the above integral equation has a unique solution (Polyanin and Manzhirov, 2008,

p.426), we have F̃{H−1
γ0

(ZT
2 β(τ ; γ0))} = F̃{H−1

γ∗ (ZT
2 β(τ ; γ

∗))}. Hence it follows from

Condition (R5)(a) that H−1
γ0

(ZT
2 β(τ ; γ0)) = H−1

γ∗ (ZT
2 β(τ ; γ

∗)). From Condition (R3), we

obtain γ∗ = γ0. This completes the proof of (ii).

Third, we need to verify (iii). Note that

sup
γ∈Ωγ0

|Rn(γ)−R(γ)| ≤ sup
γ∈Ωγ0

|Rn(γ)−R0
n(γ)|+ sup

γ∈Ωγ0

|R0
n(γ)−R(γ)|, (A.6)

where

R0
n(γ) =

1

n

∫ τU

ν

n∑
i=1

D0
n(Zi, τ, γ)

2 dτ,

and

D0
n(z, τ, γ) =

1

n

n∑
i=1

I(Zi ≤ z)
{
Ni(H

−1
γ (ZT

i β(τ ; γ)))−
∫ τ

0

I[Xi ≥ H−1
γ (ZT

i β(µ; γ))]dG(µ)
}
.

Obviously, R0
n(γ) is a V-statistic. Let U0

n(γ) be the corresponding U-statistic. Following

the same argument as that of Lemma 1 in the Chapter 2 of Mu (2005) and using the

properties of Vapnik–Chervonenkis (VC) class from Lemma 2.5 of Pakes and Pollard

(1989), we can prove that the class of functions {W (Z1,Z2,Z3; τ, γ) : γ ∈ Ωγ0 , τ ∈ [ν, τU ]}
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is Euclidean with constant envelop. Then it follows from Corollary 3.5 of Arcones and

Giné (1993) that sup
γ∈Ωγ0

∥U0
n(γ)−R(γ)∥ = op(1). Thus, Theorem 3.11 of Arcones and Giné

(1993) yields

sup
γ∈Ωγ0

|R0
n(γ)−R(γ)| = op(1). (A.7)

In the follows, we will prove that sup
γ∈Ωγ0

|Rn(γ) − R0
n(γ)| = op(1). Denote θ(τ) =

(γ,β(τ)). Define

ψn,i(z; τ, θ) = I(Zi ≤ z)
{
Ni{H−1

γ (ZT
i β(τ))} −

∫ τ

0

I[Xi ≥ H−1
γ (ZT

i β(µ))] dG(µ)
}
,

and

ψ(z; τ, θ) = E
[
I(Z ≤ z)

{
N{H−1

γ (ZTβ(τ))} −
∫ τ

0

I[X ≥ H−1
γ (ZTβ(µ))] dG(µ)

}]
.

Similarly, the class of functions {ψn,i(z; γ,β)} is Euclidean with constant envelop. Hence

for θγ(τ) = (γ,β(τ ; γ)), it follows from Lemma 2.8 of Pakes and Pollard (1989) that

uniformly in z ∈ Rp, τ ∈ [ν, τU ] and γ ∈ Ωγ0 ,∣∣∣ 1
n

n∑
i=1

[ψn,i(z; τ, θ)− ψn,i(z; τ, θγ)− ψ(z; τ, θ) + ψ(z; τ, θγ)]
∣∣∣ = op(1). (A.8)

Applying Conditions (R1), (R2) and (R4), we obtain

|ψ(z; τ, θ)− ψ(z; τ, θγ)|

≤
∣∣∣E{I(Z ≤ z)

[
F̃{H−1

γ (ZT
i β(τ))} − F̃{H−1

γ (ZT
i β(τ ; γ))}

]}∣∣∣
+
∣∣∣E{I(Z ≤ z)

∫ τ

0

[
F̄{H−1

γ (ZT
i β(µ))} − F̄{H−1

γ (ZT
i β(µ; γ))}

]
dG(µ)

}∣∣∣
≤ C0

[
sup

u∈[ν,τ ]
∥β(u)− β(u; γ)∥+ ν

]
, (A.9)

where C0 is a positive constant. Denote θ̂γ(τ) = (γ, β̂(τ ; γ)). Then it follows from (A.8)

and (A.9) that

sup
γ∈Ωγ0

|Rn(γ)−R0
n(γ)|
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≤ sup
γ∈Ωγ0

1

n

∫ τU

ν

n∑
i=1

∣∣∣{ 1
n

n∑
i=1

ψn,i(Zi; τ, γ,β1)}2 − { 1
n

n∑
i=1

ψn,i(Zi; τ, γ,β2)}2
∣∣∣ dτ

≤ C1

[
sup

τ∈[ν,τU ],γ∈Ωγ0

∥β̂(τ ; γ)− β(τ ; γ)∥+ ν
]
+ op(1),

where C1 is a positive constant. Note that ν can be arbitrarily small. Then by (A.2), we

have

sup
γ∈Ωγ0

|Rn(γ)−R0
n(γ)| = op(1). (A.10)

Thus, by combining (A.6), (A.7) and (A.10), we completed the proof of (iii), and hence

the proof of (A.3).

Step A3. we show that sup
τ∈[ν,τU ]

∥β̂(τ)− β0(τ)∥
P→ 0.

Let β̇(τ ; γ) = ∂β(τ ; γ)/∂γ. First, we need to show that β̇(τ ; γ) is uniformly bounded

in τ ∈ [ν, τU ] and γ ∈ Ωγ0 . Define

B{b, γ} = E
{
Z⊗2f̃ [H−1

γ (ZT b)|Z]
∂H−1

γ (t)

∂t
|t=ZT b

}
,

J{b, γ} = E
{
Z⊗2f̄ [H−1

γ (ZT b)|Z]
∂H−1

γ (t)

∂t
|t=ZT b

}
, (A.11)

where f̄(t|Z) = dF̄ (t|Z)/dt. Thus, it follows from (A.1) that

B{β(τ ; γ), γ}−1Q{β(τ ; γ), γ}

= β̇(τ ; γ)−
∫ τ

0

B{β(τ ; γ), γ}−1J{β(µ; γ), γ}β̇(µ; γ) dG(µ),

where

Q{β(τ ; γ), γ} = E
{
Zf̃ [H−1

γ (ZTβ(τ ; γ))|Z]
∂H−1

γ (ZTβ(τ ; γ))

∂γ

}
−E

{∫ τ

0

Zf̄ [H−1
γ (ZTβ(µ; γ))|Z]

∂H−1
γ (ZTβ(µ; γ))

∂γ
dG(µ)

}
.

The above equation is a linear Volterra integral equation of the second kind (Polyanin and

Manzhirov, 2008). It can be checked that by conditions (R2) and (R4), B{β(τ ; γ), γ}−1,
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Q{β(τ ; γ), γ} and J{β(τ ; γ), γ} are continuous in τ ∈ [ν, τU ] and γ ∈ Ωγ0 . Therefore,

according to Theorem 3.3 in Linz (1985), the above integral equation has a unique solution

β̇(τ ; γ), which is uniformly bounded in τ ∈ [ν, τU ] and γ ∈ Ωγ0 . Note that

∥β̂(τ)− β0(τ)∥ = ∥β̂(τ ; γ̂)− β(τ ; γ0)∥

≤ ∥β̂(τ ; γ̂)− β(τ ; γ̂)∥+ ∥β(τ ; γ̂)− β(τ ; γ0)∥

≤ ∥β̂(τ ; γ̂)− β(τ ; γ̂)∥+ sup
τ∈[ν,τU ],γ∈Ωγ0

∥β̇(τ ; γ)∥|γ̂ − γ0|.

Then by (A.2) and (A.3), we have that sup
τ∈[ν,τU ]

∥β̂(τ) − β0(τ)∥
P→ 0. This completes the

proof of Theorem 1.

Proof of Theorem 2. To show the asymptotic distributions of γ̂ and β̂(τ), we take the

following three steps.

Step B1. We prove that γ̂ is n1/2-consistent.

Let θ̂(τ) = (γ, β̂(τ ; γ)), θ0(τ) = (γ0,β(τ ; γ0)). In view of (A.2), following the argument

in Lai and Ying (1988) and Lemma B.1 in Peng and Huang (2008), we obtain that

uniformly in z ∈ Rp and τ ∈ [ν, τU ], for any sequence dn = o(1),

sup
|γ−γ0|≤dn

∣∣∣n−1/2

n∑
i=1

[ψn,i(z; τ, θ̂)− ψn,i(z; τ, θ0)− ψ(z; τ, θ̂) + ψ(z; τ, θ0)]
∣∣∣ = op(1). (A.12)

Denote ψ̇β(z; τ, θ) and ψ̇γ(z; τ, θ) to be the partial derivative of ψ(z; τ, θ) with respect to

β and γ, respectively, that is,

ψ̇β(z; τ, θ) = E
[
I(Z ≤ z)

{
f̃(H−1

γ (ZTβ(τ))|Z)
dH−1

γ (t)

dt
|t=ZT β(τ)Z

+

∫ τ

0

f(H−1
γ (ZTβ(µ))|Z)

dH−1
γ (t)

dt
|t=ZT β(µ)Z dG(µ)

}]
,

ψ̇γ(z; τ, θ) = E
[
I(Z ≤ z)

{
f̃(H−1

γ (ZTβ(τ))|Z)
dH−1

γ (ZTβ(τ))

dγ

+

∫ τ

0

f(H−1
γ (ZTβ(µ))|Z)

dH−1
γ (ZTβ(µ))

dγ
dG(µ)

}]
.
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Similar to Theorem 2 of Peng and Huang (2008), we get

sup
τ∈[ν,τU ],γ∈Ωγ0

∥β̂(τ ; γ)− β(τ ; γ)∥ = Op(n
−1/2). (A.13)

Define P (z, τ) = ψ̇β(z; τ, θ0)
T β̇(τ ; γ0) + ψ̇γ(z; τ, θ0). Thus, it follows from (A.12) and

(A.13) that uniformly in z ∈ Rp, τ ∈ [ν, τU ] and |γ − γ0| ≤ dn,

Dn(z, τ, γ) = D0
n(z, τ, γ0) + ψ̇β(z; τ, θ0)

T [{β̂(τ ; γ)− β(τ ; γ)}+ {β(τ ; γ)− β(τ ; γ0)}]

+ψ̇γ(z; τ, θ0)(γ − γ0) + op(n
−1/2) +Op(|γ − γ0|2)

= D0
n(z, τ, γ0) + P (z, τ)(γ − γ0) +Op(n

−1/2) + op(|γ − γ0|)). (A.14)

Using the law of large numbers and the central limit theorem, we have

1

n

n∑
i=1

∫ τU

ν

P 2(Zi, τ) dτ = ∆+ op(1),

and

Wn =
1

n

n∑
i=1

∫ τU

ν

D0
n(Zi, τ, γ0)P (Zi, τ) dτ = Op(n

−1/2),

where ∆ = E{
∫ τU
ν
P 2(Zi, τ) dτ} > 0. Hence (A.3) and (A.14) imply that

Rn(γ̂)−Rn(γ0) = ∆(γ̂ − γ0)
2 + 2Wn(γ̂ − γ0) +Op(n

−1/2(γ̂ − γ0))

+Op(n
−1) + op((γ̂ − γ0)

2)

= ∆(γ̂ − γ0)
2 + Op(n

−1/2(γ̂ − γ0))

+Op(n
−1) + op((γ̂ − γ0)

2). (A.15)

Note that for sufficiently large n, op((γ̂ − γ0)
2) ≥ −∆(γ̂ − γ0)

2/2. Write Cnn
−1/2(γ̂ − γ0)

for Op(n
−1/2(γ̂ − γ0)), where Cn = Op(1). Since Rn(γ̂) ≤ Rn(γ0), it follows from (A.15)

that

∆

2
(γ̂ − γ0)

2 + Cnn
−1/2(γ̂ − γ0) = Op(n

−1),

that is,

∆

2

[
(γ̂ − γ0) +

n−1/2Cn

∆

]2
=
n−1C2

n

2∆
+Op(n

−1) = Op(n
−1).
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Thus,

|(γ̂ − γ0) +
n−1/2Cn

∆
| = Op(n

−1/2),

which implies |γ̂ − γ0| = Op(n
−1/2). Hence γ̂ is n1/2-consistent.

Step B2. We prove that for any sequence δn = op(1),

sup
τ∈[ν,τU ], |γ−γ0|≤δn

∥β̂(τ ; γ)− β(τ ; γ) + β(τ ; γ0)− β̂(τ ; γ0)∥ = op(n
−1/2). (A.16)

Denote µ{β(τ), γ} = E[ZN{H−1
γ (ZTβ(τ))}] and µ̃{β(τ), γ} = E[ZI{X ≥ H−1

γ (ZTβ(τ))}].

Similar to (A.12), we have that uniformly in τ ∈ [ν, τU ],

sup
|γ−γ0|≤δn

∥∥∥n1/2
{
Sn{β̂(τ ; γ); γ} − Sn{β(τ ; γ); γ}

}
−n1/2

{
[µ{β̂(τ ; γ), γ} − µ{β(τ ; γ), γ}]−

∫ τ

0

[µ̃{β̂(µ; γ), γ} − µ̃{β(µ; γ), γ}]dG(µ)
}∥∥∥

= op(1). (A.17)

Following the argument in Peng and Huang (2008), we have that µ{β̂(τ), γ} converges to

µ{β0(τ), γ} in probability uniformly in τ ∈ [ν, τU ] and γ ∈ Ωγ0 . Let oI(ρn) denote a term

that converges to 0 in probability uniformly in τ ∈ I after being divided by ρn. Because

limn→∞ n1/2∥SL∥ = 0, it follows from the definition of β̂(τ ; γ) that n1/2Sn(β̂(τ ; γ); γ) =

o[ν,τU ](1). Thus, using the similar arguments to the proof of Theorem 2 in Peng and Huang

(2008), we have

−n1/2Sn(β(τ ; γ), γ) = n1/2
[
µ{β̂(τ ; γ), γ} − µ{β(τ ; γ), γ}

]
−
∫ τ

0

n1/2
[
µ̃{β̂(µ; γ), γ} − µ̃{β(µ; γ), γ}

]
dG(µ) + o[ν,τU ](1)

= n1/2
[
µ{β̂(τ ; γ), γ} − µ{β(τ ; γ), γ}

]
−

∫ τ

0

{[
J{β(µ; γ), γ}B−1{β(µ; γ), γ}+ o[ν,τU ](1)

]
× n1/2

[
µ{β̂(µ; γ), γ)} − µ{β(µ; γ), γ}

]}
dG(µ) + o[ν,τU ](1),
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where J and B are defined in (A.11). Note that the above equation is a stochastic

differential equation about n1/2[µ{β̂(τ ; γ), γ} − µ{β(τ ; γ), γ}]. Then it follows from the

production integration theory (Gill and Johansen, 1990; Andersen et al, 1998) that

n1/2[µ{β̂(τ), γ} − µ{β(τ ; γ), γ}] = ϕ(−n1/2Sn{β(τ ; γ), γ}) + o[ν,τU ](1),

where ϕ is a map from F to F such that for any g ∈ F , ϕ(g)(τ) =
∫ τ

0
I(s, τ) dg(s) with

I(s, t) =
∏

µ∈(s,t]

[
Ip + J{β(τ ; γ), γ}B−1{β(τ ; γ), γ}dG(µ)

]
,

and

F = {g: [ν, τU ] → Rp, g is left-continuous with right limit, g(0) = 0p}.

Using the Taylor expansion and the continuous mapping theorem, we have that for any

γ ∈ Ωγ0 ,

n1/2(β̂(τ ; γ)− β(τ ; γ)) = B−1{β(τ ; γ), γ}ϕ(−n1/2Sn{β(τ ; γ), γ}) + o[ν,τU ](1). (A.18)

Based on the proof of Theorem 1 in Peng and Huang (2008), we have

sup
τ∈[ν,τU ]

∥Sn{β(τ ; γ0), γ0})∥ = Op(n
−1/2),

which combining with (A.18) implies

n1/2∥β̂(τ ; γ̂)− β(τ ; γ̂) + β(τ ; γ0)− β̂(τ ; γ0)∥

≤ C2∥ϕ(−n1/2Sn{β(τ ; γ), γ̂})− ϕ(−n1/2Sn{β(τ ; γ0), γ0})∥+ o[ν,τU ](1), (A.19)

where C2 is a positive constant. Note that E{Sn(β(τ ; γ), γ)} = 0. Similar to (A.17), we

have

sup
τ∈[ν,τU ], |γ−γ0|≤δn

∥n1/2Sn{β(τ ; γ), γ} − n1/2Sn{β(τ ; γ0}, γ0)∥ = op(1).

Because ϕ(.) is a linear operator, it follows that

sup
τ∈[ν,τU ], |γ−γ0|≤δn

∥ϕ(−n1/2Sn{β0(τ), γ})− ϕ(−n1/2Sn{β(τ ; γ0), γ0})∥ = op(1). (A.20)
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Thus, (A.16) follows from (A.19) and (A.20).

Step B3. We show the asymptotic normality of β̂(τ) and γ̂.

Let γ satisfy that |γ−γ0| ≤ δn−1/2, where δ is a positive constant. Note that β(τ ; γ0) =

β0(τ). Then it follows from (A.18) that

β̂(τ ; γ0)− β0(τ) = n−1/2B−1{β0(τ), γ0}ϕ(−n1/2Sn{β0(τ), γ0}) + o[ν,τU ](n
−1/2).

Therefore, combining (A.14) and (A.16), we obtain

Dn(z, τ, γ) = D0
n(z, τ, γ0) + n−1/2ψ̇β(z; τ, θ0)

TB−1{β0(τ), γ0}ϕ(−n1/2Sn{β0(τ), γ0)}

+ P (z, τ)(γ − γ0) + o[ν,τU ](n
−1/2).

Therefore,

Rn(γ) =
1

n

n∑
i=1

∫ τU

ν

[
D0

n(Zi, τ, γ0)+ψ̇β(Zi; τ, θ0)
TB−1{β0(τ), γ0}ϕ(−n1/2Sn{β0(τ), γ0})

]2
dτ

+ 2Hn(γ − γ0) + ∆(γ − γ0)
2 + op(n

−1), (A.21)

where

Hn =
1

n

n∑
i=1

∫ τU

ν

{
P (Zi, τ)[D

0
n(Zi, τ, γ0)

+ψ̇β(Zi; τ, θ0)
TB−1{β0(τ), γ0}ϕ(−n1/2Sn{β0(τ), γ0}]

}
dτ.

Let γ̃ = γ0 −Hn/∆. Then it follows from (A.21) that

0 ≥ Rn(γ̂)−Rn(γ̃) = 2Hn(γ̂ − γ0) + ∆(γ̂ − γ0)
2 + op(n

−1)

− 2Hn(γ̃ − γ0)−∆(γ̃ − γ0)
2 − op(n

−1)

= 2Hn(γ̂ − γ0) + ∆(γ̂ − γ0)
2 +

H2
n

∆
+ op(n

−1),

which implies that

∆
(
γ̂ − γ0 +

Hn

∆

)2

≤ op(n
−1).
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Thus,

γ̂ − γ0 = −Hn

∆
+ op(n

−1/2). (A.22)

Let Yi = (Zi, Xi, δi), and

φ(Yi, Yj) =

∫ τU

ν

[
I(Zj ≤ Zi)P (Zi, τ){Nj(H

−1
γ0

(ZT
j β0(τ)))−

∫ τ

0

I[Xj ≥ H−1
γ0

(ZT
j β0(u))] dG(µ)}

+P (Zj, τ)ψ̇β(Zj; τ, θ0)
TB−1{β0(τ), γ0}ϕ(hj(τ))

]
dτ,

where hj(τ) = Zj

{
Nj(H

−1
γ0

{ZT
j β0(τ)})−

∫ τ

0
I[Xj ≥ H−1

γ0
{ZT

j β0(µ)}] dG(µ)}. Then we

have

Hn =
1

n2

n∑
i=1

n∑
j=1

φ(Yi, Yj) =
1

n2

n∑
i=1

n∑
j=1

φ̃(Yi, Yj),

which is a V-statistic, where

φ̃(Yi, Yj) =
1

2

{
φ(Yi, Yj) + φ(Yj, Yi)

}
.

Define

Un =
1(
2
n

) ∑∑
i<j

φ̃(Yi, Yj),

which is a U-statistic. Since E∥φ(Yi, Yj)∥2 < ∞, it follows from Lemma 5.7.3 of Serfling

(2002) that E∥Hn −Un∥2 = O(n−2), which implies that n1/2(Hn −Un) = op(1). Hence by

Theorem 12.3 of Van der vaart (1998), we get

n1/2Hn = n1/2Un = 2n−1/2

n∑
i=1

φ̃1(Yi) + op(1),

where φ̃1(y) = E{φ̃(Y1, Y2)|Y1 = y}. This combining with (A.22) gives

n1/2(γ̂ − γ0) = −2n−1/2∆−1

n∑
i=1

φ̃1(Yi) + op(1), (A.23)

which means that n1/2(γ̂ − γ0) is asymptotically normal with mean zero and variance

σ2 = 4∆−2E{φ̃1(Y1)
2}.
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Based on (A.16), (A.18) and (A.23), we obtain

n1/2{β̂(τ)− β0(τ)} = n1/2{β̂(τ ; γ̂)− β(τ ; γ0)}

= n1/2{β̂(τ ; γ0)− β(τ ; γ0)}+ β̇(τ ; γ0)n1/2(γ̂ − γ0) + o[ν,τU ](1)

= n−1/2

n∑
i=1

{
B−1{β0(τ), γ0}ϕ(hi(τ))

−2β̇(τ ; γ0)∆
−1φ̃1(Yi)

}
+ o[ν,τU ](1), (A.24)

which implies that n1/2{β̂(τ) − β0(τ)} (τ ∈ [ν, τU ]) converges in finite-dimensional dis-

tribution to a zero-mean Gaussian process. Following the arguments in Appendix B in

Peng and Huang (2008), it can been shown that {B−1{β0(τ), γ0}ϕ(hi(τ)), τ ∈ [ν, τU ]} is a

Donsker class. In addition, β̇(τ ; γ0) is a deterministic function and φ̃1(Yi) does not involve

τ. Thus, by the Donsker theorem, n1/2{β̂(τ) − β0(τ)} converges weakly to a zero-mean

Gaussian process for τ ∈ [ν, τU ]. This completes the proof of Theorem 2.

Justification for the Resampling Method. Since E(ζ) = 1 and ϕ(.) is a linear

operator, using arguments analogous to those in the proof of Theorem 2, we have

n1/2(γ̂∗ − γ0) = −2n−1/2∆−1

n∑
i=1

ζiφ̃1(Yi) + op(1), (A.25)

and uniformly in τ ∈ [ν, τU ],

n1/2{β̂
∗
(τ)− β0(τ)} = n−1/2

n∑
i=1

ζi

{
B−1{β0(τ), γ0}ϕ(hi(τ))

−2β̇(τ ; γ0)∆
−1φ̃1(Yi)

}
+ op(1). (A.26)

Thus, it follows from (A.23)-(A.26) that

n1/2(γ̂∗ − γ̂) = −2n−1/2∆−1

n∑
i=1

(ζi − 1)φ̃1(Yi) + op(1), (A.27)

and uniformly in τ ∈ [ν, τU ],

n1/2{β̂
∗
(τ)− β̂(τ)} = n−1/2

n∑
i=1

(ζi − 1)
{
B−1{β0(τ), γ0}ϕ(hi(τ))
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−2β̇(τ ; γ0)∆
−1φ̃1(Yi)

}
+ op(1). (A.28)

Note that var(ζ) = 1. In view of (A.25)-(A.28), by the arguments of Lin, Wei and Ying

(1993), we obtain that the conditional distributions of n1/2(γ∗−γ̂) and n1/2{β̂
∗
(τ)−β̂(τ)}

given the observed data are asymptotically equivalent to the unconditional distributions

of n1/2(γ̂ − γ0) and n
1/2{β̂(τ)− β0(τ)} for τ ∈ [ν, τU ], respectively.


