Supplementary Material for "Transformed Linear Quantile Regression With Censored Survival Data" by Rui Miao, Liuquan Sun and Guo-Liang Tian

Appendix: Proofs of Theorems

Proof of Theorem 1. For a fixed γ , let $\beta(\tau; \gamma)$ be the solution to the following equation:

$$E\left\{ZN(H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau)) - \int_{0}^{\tau} ZI\{X \ge H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(u))\} dG(\mu)\right\} = 0.$$
 (A.1)

In particular, $\beta(\tau; \gamma_0) = \beta_0(\tau)$. To show the consistency of $\hat{\gamma}$ and $\hat{\beta}(\tau)$, we mainly take the following three steps.

Step A1. We first show the uniform consistency of $\hat{\beta}(\tau; \gamma)$; that is,

$$\sup_{\tau \in [\nu, \tau_U], \ \gamma \in \Omega_{\gamma_0}} \|\hat{\boldsymbol{\beta}}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma)\| \stackrel{P}{\to} 0.$$
(A.2)

Note that $\beta(\tau; \gamma)$ is the solution to the equation (A.1) for any given γ , and $\hat{\beta}(\tau; \gamma)$ is the estimator of $\beta(\tau; \gamma)$. Define $\mathcal{G}_1 = \{Z_i I\{X_i \leq H_{\gamma}^{-1}(Z_i^T b)\}\delta_i : b \in R^p, \gamma \in \Omega_{\gamma_0}\}$, and $\mathcal{G}_2 = \{Z_i I\{X_i \geq H_{\gamma}^{-1}(Z_i^T b)\} : b \in R^p, \gamma \in \Omega_{\gamma_0}\}$, where Ω_{γ_0} is a neighborhood of γ_0 . Both \mathcal{G}_1 and \mathcal{G}_1 are Glivenko-Cantelli (van der Vaart and Wellner, 1996). Then with some modification of the proof of Theorem 1 in Peng and Huang (2008) and using the Glivenko-Cantelli theorem, we can show that **Step A1** holds. The similar arguments are also used in the proof of Theorem 1 of Qian and Peng (2010).

Step A2. We should prove that

$$\hat{\gamma} \xrightarrow{P} \gamma_0.$$
 (A.3)

Note that $\hat{\gamma} = \arg\min_{\gamma} R_n(\gamma)$. Define

$$R(\gamma) = \int_{\nu}^{\tau_U} E[W(\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3; \tau, \gamma)] d\tau,$$

where

$$W(\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}; \tau, \gamma) = I(\mathbf{Z}_{2} \leq \mathbf{Z}_{1})I(\mathbf{Z}_{3} \leq \mathbf{Z}_{1})$$

$$\times \left\{ N_{2} \{ H_{\gamma}^{-1}(\mathbf{Z}_{2}^{T}\boldsymbol{\beta}(\tau; \gamma)) \} - \int_{0}^{\tau} I\{ X_{2} \geq H_{\gamma}^{-1}(\mathbf{Z}_{2}^{T}\boldsymbol{\beta}(u; \gamma)) \} \, \mathrm{d}G(\mu) \right\}$$

$$\times \left\{ N_{3} \{ H_{\gamma}^{-1}(\mathbf{Z}_{3}^{T}\boldsymbol{\beta}(\tau; \gamma)) \} - \int_{0}^{\tau} I\{ X_{3} \geq H_{\gamma}^{-1}(\mathbf{Z}_{3}^{T}\boldsymbol{\beta}(u; \gamma)) \} \, \mathrm{d}G(\mu) \right\}.$$

To prove (A.3), according to Amemiya (1985, p.106–108), we need to verify the following three conditions:

- (i) $R(\gamma)$ is continuous on Ω_{γ_0} , where Ω_{γ_0} is a neighborhood of γ_0 ;
- (ii) $R(\gamma)$ is uniquely minimized at γ_0 ;

(iii)
$$\sup_{\gamma \in \Omega_{\gamma_0}} ||R_n(\gamma) - R(\gamma)|| = o_p(1).$$

Now, we verify the above three conditions step by step. First, we have

$$R(\gamma) = E \Big[\int_{\nu}^{\tau_U} E^2 \Big\{ I(\mathbf{Z}_2 \leq \mathbf{Z}_1) \Big(N_2 \{ H_{\gamma}^{-1}(\mathbf{Z}_2^T \boldsymbol{\beta}(\tau; \gamma)) \} \\ - \int_{0}^{\tau} I \{ X_2 \geq H_{\gamma}^{-1}(\mathbf{Z}_2^T \boldsymbol{\beta}(u; \gamma)) \} \, \mathrm{d}G(\mu) \Big) \Big| \mathbf{Z}_1 \Big\} \, \mathrm{d}\tau \Big].$$

By Conditions (R2) and (R4), it is easy to see that $R(\gamma)$ is continuous in Ω_{γ_0} .

Second, note that by (A.1), γ_0 is a minimizer of $R(\gamma)$. Suppose that $\gamma^* \ (\neq \gamma_0)$ is another minimizer of $R(\gamma)$. Then we have $R(\gamma^*) = R(\gamma_0) = 0$. That is,

$$E\Big\{N_2\{H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma^*))\} - \int_0^{\tau} I\{X_2 \ge H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(u;\gamma^*))\} dG(\mu)\Big\} = 0,$$

and

$$E\left\{N_2\{H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma_0))\} - \int_0^{\tau} I\{X_2 \ge H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(u;\gamma_0))\} dG(\mu)\right\} = 0.$$

This implies that for $\tau \in [\nu, \tau_U]$,

$$\tilde{F}\{H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma^*))\} - \int_0^{\tau} \left[\bar{F}\{H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(u;\gamma^*))\}\right] dG(\mu) = 0, \tag{A.4}$$

and

$$\tilde{F}\{H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma_0))\} - \int_0^{\tau} \left[\bar{F}\{H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(u;\gamma_0))\} \right] dG(\mu) = 0, \tag{A.5}$$

where $\bar{F}(t|\mathbf{Z}) = 1 - F(t|\mathbf{Z})$. Then by (A.4) and (A.5), both $\tilde{F}\{H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma^*))\}$ and $\tilde{F}\{H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma_0))\}$ are solutions to the following nonlinear integral equation of the second kind for $h(\tau)$:

$$h(\tau) - \int_0^{\tau} [\bar{F}\{\tilde{F}^{-1}\{h(\mu)\}\}] dG(\mu) = 0.$$

Since the above integral equation has a unique solution (Polyanin and Manzhirov, 2008, p.426), we have $\tilde{F}\{H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma_0))\} = \tilde{F}\{H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma^*))\}$. Hence it follows from Condition (R5)(a) that $H_{\gamma_0}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma_0)) = H_{\gamma^*}^{-1}(\mathbf{Z}_2^T\boldsymbol{\beta}(\tau;\gamma^*))$. From Condition (R3), we obtain $\gamma^* = \gamma_0$. This completes the proof of (ii).

Third, we need to verify (iii). Note that

$$\sup_{\gamma \in \Omega_{\gamma_0}} |R_n(\gamma) - R(\gamma)| \leq \sup_{\gamma \in \Omega_{\gamma_0}} |R_n(\gamma) - R_n^0(\gamma)| + \sup_{\gamma \in \Omega_{\gamma_0}} |R_n^0(\gamma) - R(\gamma)|, \tag{A.6}$$

where

$$R_n^0(\gamma) = \frac{1}{n} \int_{\nu}^{\tau_U} \sum_{i=1}^n D_n^0(\mathbf{Z}_i, \tau, \gamma)^2 d\tau,$$

and

$$D_n^0(\boldsymbol{z},\tau,\gamma) = \frac{1}{n} \sum_{i=1}^n I(\mathbf{Z}_i \leq \boldsymbol{z}) \Big\{ N_i(H_{\gamma}^{-1}(\mathbf{Z}_i^T \boldsymbol{\beta}(\tau;\gamma))) - \int_0^{\tau} I[X_i \geq H_{\gamma}^{-1}(\mathbf{Z}_i^T \boldsymbol{\beta}(\mu;\gamma))] \mathrm{d}G(\mu) \Big\}.$$

Obviously, $R_n^0(\gamma)$ is a V-statistic. Let $U_n^0(\gamma)$ be the corresponding U-statistic. Following the same argument as that of Lemma 1 in the Chapter 2 of Mu (2005) and using the properties of Vapnik–Chervonenkis (VC) class from Lemma 2.5 of Pakes and Pollard (1989), we can prove that the class of functions $\{W(\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3; \tau, \gamma) : \gamma \in \Omega_{\gamma_0}, \tau \in [\nu, \tau_U]\}$

is Euclidean with constant envelop. Then it follows from Corollary 3.5 of Arcones and Giné (1993) that $\sup_{\gamma \in \Omega_{\gamma_0}} \|U_n^0(\gamma) - R(\gamma)\| = o_p(1)$. Thus, Theorem 3.11 of Arcones and Giné (1993) yields

$$\sup_{\gamma \in \Omega_{\gamma_0}} |R_n^0(\gamma) - R(\gamma)| = o_p(1). \tag{A.7}$$

In the follows, we will prove that $\sup_{\gamma \in \Omega_{\gamma_0}} |R_n(\gamma) - R_n^0(\gamma)| = o_p(1)$. Denote $\theta(\tau) = (\gamma, \boldsymbol{\beta}(\tau))$. Define

$$\psi_{n,i}(\boldsymbol{z};\tau,\theta) = I(\mathbf{Z}_i \leq \boldsymbol{z}) \Big\{ N_i \{ H_{\gamma}^{-1}(\mathbf{Z}_i^T \boldsymbol{\beta}(\tau)) \} - \int_0^{\tau} I[X_i \geq H_{\gamma}^{-1}(\mathbf{Z}_i^T \boldsymbol{\beta}(\mu))] \, \mathrm{d}G(\mu) \Big\},$$

and

$$\psi(\boldsymbol{z};\tau,\theta) = E\Big[I(\mathbf{Z} \leq \boldsymbol{z})\Big\{N\{H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau))\} - \int_{0}^{\tau}I[X \geq H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu))]\,\mathrm{d}G(\mu)\Big\}\Big].$$

Similarly, the class of functions $\{\psi_{n,i}(\boldsymbol{z};\gamma,\boldsymbol{\beta})\}$ is Euclidean with constant envelop. Hence for $\theta_{\gamma}(\tau) = (\gamma,\boldsymbol{\beta}(\tau;\gamma))$, it follows from Lemma 2.8 of Pakes and Pollard (1989) that uniformly in $\boldsymbol{z} \in \mathbb{R}^p$, $\tau \in [\nu,\tau_U]$ and $\gamma \in \Omega_{\gamma_0}$,

$$\left| \frac{1}{n} \sum_{i=1}^{n} \left[\psi_{n,i}(\boldsymbol{z}; \tau, \theta) - \psi_{n,i}(\boldsymbol{z}; \tau, \theta_{\gamma}) - \psi(\boldsymbol{z}; \tau, \theta) + \psi(\boldsymbol{z}; \tau, \theta_{\gamma}) \right] \right| = o_p(1). \tag{A.8}$$

Applying Conditions (R1), (R2) and (R4), we obtain

$$|\psi(\boldsymbol{z};\tau,\theta) - \psi(\boldsymbol{z};\tau,\theta_{\gamma})|$$

$$\leq \left| E \left\{ I(\mathbf{Z} \leq \boldsymbol{z}) \left[\tilde{F} \{ H_{\gamma}^{-1}(\mathbf{Z}_{i}^{T}\boldsymbol{\beta}(\tau)) \} - \tilde{F} \{ H_{\gamma}^{-1}(\mathbf{Z}_{i}^{T}\boldsymbol{\beta}(\tau;\gamma)) \} \right] \right\} \right|$$

$$+ \left| E \left\{ I(\mathbf{Z} \leq \boldsymbol{z}) \int_{0}^{\tau} \left[\bar{F} \{ H_{\gamma}^{-1}(\mathbf{Z}_{i}^{T}\boldsymbol{\beta}(\mu)) \} - \bar{F} \{ H_{\gamma}^{-1}(\mathbf{Z}_{i}^{T}\boldsymbol{\beta}(\mu;\gamma)) \} \right] dG(\mu) \right\} \right|$$

$$\leq C_{0} \left[\sup_{u \in [\nu,\tau]} \|\boldsymbol{\beta}(u) - \boldsymbol{\beta}(u;\gamma)\| + \nu \right], \tag{A.9}$$

where C_0 is a positive constant. Denote $\hat{\theta}_{\gamma}(\tau) = (\gamma, \hat{\beta}(\tau; \gamma))$. Then it follows from (A.8) and (A.9) that

$$\sup_{\gamma \in \Omega_{\gamma_0}} |R_n(\gamma) - R_n^0(\gamma)|$$

$$\leq \sup_{\gamma \in \Omega_{\gamma_0}} \frac{1}{n} \int_{\nu}^{\tau_U} \sum_{i=1}^{n} \left| \left\{ \frac{1}{n} \sum_{i=1}^{n} \psi_{n,i}(\mathbf{Z}_i; \tau, \gamma, \boldsymbol{\beta}_1) \right\}^2 - \left\{ \frac{1}{n} \sum_{i=1}^{n} \psi_{n,i}(\mathbf{Z}_i; \tau, \gamma, \boldsymbol{\beta}_2) \right\}^2 \right| d\tau$$

$$\leq C_1 \left[\sup_{\tau \in [\nu, \tau_U], \gamma \in \Omega_{\gamma_0}} \|\hat{\boldsymbol{\beta}}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma)\| + \nu \right] + o_p(1),$$

where C_1 is a positive constant. Note that ν can be arbitrarily small. Then by (A.2), we have

$$\sup_{\gamma \in \Omega_{\gamma_0}} |R_n(\gamma) - R_n^0(\gamma)| = o_p(1). \tag{A.10}$$

Thus, by combining (A.6), (A.7) and (A.10), we completed the proof of (iii), and hence the proof of (A.3).

Step A3. we show that $\sup_{\tau \in [\nu, \tau_U]} \|\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_0(\tau)\| \stackrel{\mathrm{P}}{\to} 0.$

Let $\dot{\boldsymbol{\beta}}(\tau;\gamma) = \partial \boldsymbol{\beta}(\tau;\gamma)/\partial \gamma$. First, we need to show that $\dot{\boldsymbol{\beta}}(\tau;\gamma)$ is uniformly bounded in $\tau \in [\nu, \tau_U]$ and $\gamma \in \Omega_{\gamma_0}$. Define

$$\mathbf{B}\{b,\gamma\} = E\Big\{\mathbf{Z}^{\otimes 2}\tilde{f}[H_{\gamma}^{-1}(\mathbf{Z}^{T}b)|\mathbf{Z}]\frac{\partial H_{\gamma}^{-1}(t)}{\partial t}|_{t=\mathbf{Z}^{T}b}\Big\},$$

$$\mathbf{J}\{b,\gamma\} = E\Big\{\mathbf{Z}^{\otimes 2}\bar{f}[H_{\gamma}^{-1}(\mathbf{Z}^{T}b)|\mathbf{Z}]\frac{\partial H_{\gamma}^{-1}(t)}{\partial t}|_{t=\mathbf{Z}^{T}b}\Big\},$$
(A.11)

where $\bar{f}(t|\mathbf{Z}) = d\bar{F}(t|\mathbf{Z})/dt$. Thus, it follows from (A.1) that

$$\begin{split} &\mathbf{B}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}^{-1}\mathbf{Q}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}\\ &= \dot{\boldsymbol{\beta}}(\tau;\gamma) - \int_0^{\tau}\mathbf{B}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}^{-1}\mathbf{J}\{\boldsymbol{\beta}(\mu;\gamma),\gamma\}\dot{\boldsymbol{\beta}}(\mu;\gamma)\,\mathrm{d}G(\mu), \end{split}$$

where

$$\mathbf{Q}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\} = E\Big\{\mathbf{Z}\tilde{f}[H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau;\gamma))|\mathbf{Z}]\frac{\partial H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau;\gamma))}{\partial\gamma}\Big\} - E\Big\{\int_{0}^{\tau}\mathbf{Z}\bar{f}[H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu;\gamma))|\mathbf{Z}]\frac{\partial H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu;\gamma))}{\partial\gamma}\,\mathrm{d}G(\mu)\Big\}.$$

The above equation is a linear Volterra integral equation of the second kind (Polyanin and Manzhirov, 2008). It can be checked that by conditions (R2) and (R4), $\mathbf{B}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}^{-1}$,

 $\mathbf{Q}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}$ and $J\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}$ are continuous in $\tau \in [\nu,\tau_U]$ and $\gamma \in \Omega_{\gamma_0}$. Therefore, according to Theorem 3.3 in Linz (1985), the above integral equation has a unique solution $\dot{\boldsymbol{\beta}}(\tau;\gamma)$, which is uniformly bounded in $\tau \in [\nu,\tau_U]$ and $\gamma \in \Omega_{\gamma_0}$. Note that

$$\begin{split} \|\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_{0}(\tau)\| &= \|\hat{\boldsymbol{\beta}}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \gamma_{0})\| \\ &\leq \|\hat{\boldsymbol{\beta}}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \hat{\gamma})\| + \|\boldsymbol{\beta}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \gamma_{0})\| \\ &\leq \|\hat{\boldsymbol{\beta}}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \hat{\gamma})\| + \sup_{\tau \in [\nu, \tau_{U}], \gamma \in \Omega_{\gamma_{0}}} \|\dot{\boldsymbol{\beta}}(\tau; \gamma)\| |\hat{\gamma} - \gamma_{0}|. \end{split}$$

Then by (A.2) and (A.3), we have that $\sup_{\tau \in [\nu, \tau_U]} \|\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_0(\tau)\| \stackrel{P}{\to} 0$. This completes the proof of Theorem 1.

Proof of Theorem 2. To show the asymptotic distributions of $\hat{\gamma}$ and $\hat{\beta}(\tau)$, we take the following three steps.

Step B1. We prove that $\hat{\gamma}$ is $n^{1/2}$ -consistent.

Let $\hat{\theta}(\tau) = (\gamma, \hat{\boldsymbol{\beta}}(\tau; \gamma))$, $\theta_0(\tau) = (\gamma_0, \boldsymbol{\beta}(\tau; \gamma_0))$. In view of (A.2), following the argument in Lai and Ying (1988) and Lemma B.1 in Peng and Huang (2008), we obtain that uniformly in $\boldsymbol{z} \in \mathbb{R}^p$ and $\tau \in [\nu, \tau_U]$, for any sequence $d_n = o(1)$,

$$\sup_{|\gamma-\gamma_0|\leq d_n} \left| n^{-1/2} \sum_{i=1}^n [\psi_{n,i}(\boldsymbol{z};\tau,\hat{\theta}) - \psi_{n,i}(\boldsymbol{z};\tau,\theta_0) - \psi(\boldsymbol{z};\tau,\hat{\theta}) + \psi(\boldsymbol{z};\tau,\theta_0)] \right| = o_p(1). \quad (A.12)$$

Denote $\dot{\psi}_{\beta}(\boldsymbol{z}; \tau, \theta)$ and $\dot{\psi}_{\gamma}(\boldsymbol{z}; \tau, \theta)$ to be the partial derivative of $\psi(\boldsymbol{z}; \tau, \theta)$ with respect to $\boldsymbol{\beta}$ and γ , respectively, that is,

$$\dot{\psi}_{\beta}(\boldsymbol{z};\tau,\theta) = E\left[I(\mathbf{Z} \leq \boldsymbol{z})\left\{\tilde{f}(H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau))|\mathbf{Z})\frac{\mathrm{d}H_{\gamma}^{-1}(t)}{\mathrm{d}t}|_{t=\mathbf{Z}^{T}\boldsymbol{\beta}(\tau)}\mathbf{Z}\right.\right. \\
+ \int_{0}^{\tau} \overline{f}(H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu))|\mathbf{Z})\frac{\mathrm{d}H_{\gamma}^{-1}(t)}{\mathrm{d}t}|_{t=\mathbf{Z}^{T}\boldsymbol{\beta}(\mu)}\mathbf{Z}\,\mathrm{d}G(\mu)\right\}, \\
\dot{\psi}_{\gamma}(\boldsymbol{z};\tau,\theta) = E\left[I(\mathbf{Z} \leq \boldsymbol{z})\left\{\tilde{f}(H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau))|\mathbf{Z})\frac{\mathrm{d}H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\tau))}{\mathrm{d}\gamma}\right.\right. \\
+ \int_{0}^{\tau} \overline{f}(H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu))|\mathbf{Z})\frac{\mathrm{d}H_{\gamma}^{-1}(\mathbf{Z}^{T}\boldsymbol{\beta}(\mu))}{\mathrm{d}\gamma}\,\mathrm{d}G(\mu)\right\}.$$

Similar to Theorem 2 of Peng and Huang (2008), we get

$$\sup_{\tau \in [\nu, \tau_U], \gamma \in \Omega_{\gamma_0}} \|\hat{\boldsymbol{\beta}}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma)\| = O_p(n^{-1/2}). \tag{A.13}$$

Define $P(\boldsymbol{z},\tau) = \dot{\boldsymbol{\psi}}_{\beta}(\boldsymbol{z};\tau,\theta_0)^T \dot{\boldsymbol{\beta}}(\tau;\gamma_0) + \dot{\psi}_{\gamma}(\boldsymbol{z};\tau,\theta_0)$. Thus, it follows from (A.12) and (A.13) that uniformly in $\boldsymbol{z} \in \mathbb{R}^p$, $\tau \in [\nu,\tau_U]$ and $|\gamma - \gamma_0| \leq d_n$,

$$D_{n}(\boldsymbol{z}, \tau, \gamma) = D_{n}^{0}(\boldsymbol{z}, \tau, \gamma_{0}) + \dot{\boldsymbol{\psi}}_{\beta}(\boldsymbol{z}; \tau, \theta_{0})^{T} [\{\hat{\boldsymbol{\beta}}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma)\} + \{\boldsymbol{\beta}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma_{0})\}]$$

$$+ \dot{\boldsymbol{\psi}}_{\gamma}(\boldsymbol{z}; \tau, \theta_{0})(\gamma - \gamma_{0}) + o_{p}(n^{-1/2}) + O_{p}(|\gamma - \gamma_{0}|^{2})$$

$$= D_{n}^{0}(\boldsymbol{z}, \tau, \gamma_{0}) + P(\boldsymbol{z}, \tau)(\gamma - \gamma_{0}) + O_{p}(n^{-1/2}) + o_{p}(|\gamma - \gamma_{0}|).$$
(A.14)

Using the law of large numbers and the central limit theorem, we have

$$\frac{1}{n} \sum_{i=1}^{n} \int_{\nu}^{\tau_U} P^2(\mathbf{Z}_i, \tau) \, \mathrm{d}\tau = \Delta + o_p(1),$$

and

$$W_n = \frac{1}{n} \sum_{i=1}^n \int_{\nu}^{\tau_U} D_n^0(\mathbf{Z}_i, \tau, \gamma_0) P(\mathbf{Z}_i, \tau) \, d\tau = O_p(n^{-1/2}),$$

where $\Delta = E\{\int_{\nu}^{\tau_U} P^2(\mathbf{Z}_i, \tau) d\tau\} > 0$. Hence (A.3) and (A.14) imply that

$$R_{n}(\hat{\gamma}) - R_{n}(\gamma_{0}) = \Delta(\hat{\gamma} - \gamma_{0})^{2} + 2W_{n}(\hat{\gamma} - \gamma_{0}) + O_{p}(n^{-1/2}(\hat{\gamma} - \gamma_{0}))$$

$$+ O_{p}(n^{-1}) + o_{p}((\hat{\gamma} - \gamma_{0})^{2})$$

$$= \Delta(\hat{\gamma} - \gamma_{0})^{2} + O_{p}(n^{-1/2}(\hat{\gamma} - \gamma_{0}))$$

$$+ O_{p}(n^{-1}) + o_{p}((\hat{\gamma} - \gamma_{0})^{2}). \tag{A.15}$$

Note that for sufficiently large n, $o_p((\hat{\gamma} - \gamma_0)^2) \ge -\Delta(\hat{\gamma} - \gamma_0)^2/2$. Write $C_n n^{-1/2}(\hat{\gamma} - \gamma_0)$ for $O_p(n^{-1/2}(\hat{\gamma} - \gamma_0))$, where $C_n = O_p(1)$. Since $R_n(\hat{\gamma}) \le R_n(\gamma_0)$, it follows from (A.15) that

$$\frac{\Delta}{2}(\hat{\gamma} - \gamma_0)^2 + C_n n^{-1/2}(\hat{\gamma} - \gamma_0) = O_p(n^{-1}),$$

that is,

$$\frac{\Delta}{2} \left[(\hat{\gamma} - \gamma_0) + \frac{n^{-1/2} C_n}{\Lambda} \right]^2 = \frac{n^{-1} C_n^2}{2\Lambda} + O_p(n^{-1}) = O_p(n^{-1}).$$

Thus,

$$|(\hat{\gamma} - \gamma_0) + \frac{n^{-1/2}C_n}{\Lambda}| = O_p(n^{-1/2}),$$

which implies $|\hat{\gamma} - \gamma_0| = O_p(n^{-1/2})$. Hence $\hat{\gamma}$ is $n^{1/2}$ -consistent.

Step B2. We prove that for any sequence $\delta_n = o_p(1)$,

$$\sup_{\tau \in [\nu, \tau_U], |\gamma - \gamma_0| \le \delta_n} \|\hat{\boldsymbol{\beta}}(\tau; \gamma) - \boldsymbol{\beta}(\tau; \gamma) + \boldsymbol{\beta}(\tau; \gamma_0) - \hat{\boldsymbol{\beta}}(\tau; \gamma_0)\| = o_p(n^{-1/2}). \tag{A.16}$$

Denote $\boldsymbol{\mu}\{\boldsymbol{\beta}(\tau), \gamma\} = E[\mathbf{Z}N\{H_{\gamma}^{-1}(\mathbf{Z}^T\boldsymbol{\beta}(\tau))\}]$ and $\tilde{\boldsymbol{\mu}}\{\boldsymbol{\beta}(\tau), \gamma\} = E[\mathbf{Z}I\{X \geq H_{\gamma}^{-1}(\mathbf{Z}^T\boldsymbol{\beta}(\tau))\}]$. Similar to (A.12), we have that uniformly in $\tau \in [\nu, \tau_U]$,

$$\sup_{|\gamma-\gamma_0|\leq\delta_n} \left\| n^{1/2} \left\{ \mathbf{S}_n \{ \hat{\boldsymbol{\beta}}(\tau;\gamma); \gamma \} - \mathbf{S}_n \{ \boldsymbol{\beta}(\tau;\gamma); \gamma \} \right\} \right. \\
\left. - n^{1/2} \left\{ \left[\boldsymbol{\mu} \{ \hat{\boldsymbol{\beta}}(\tau;\gamma), \gamma \} - \boldsymbol{\mu} \{ \boldsymbol{\beta}(\tau;\gamma), \gamma \} \right] - \int_0^{\tau} \left[\tilde{\boldsymbol{\mu}} \{ \hat{\boldsymbol{\beta}}(\mu;\gamma), \gamma \} - \tilde{\boldsymbol{\mu}} \{ \boldsymbol{\beta}(\mu;\gamma), \gamma \} \right] dG(\mu) \right\} \right\| \\
= o_p(1). \tag{A.17}$$

Following the argument in Peng and Huang (2008), we have that $\boldsymbol{\mu}\{\hat{\boldsymbol{\beta}}(\tau),\gamma\}$ converges to $\boldsymbol{\mu}\{\boldsymbol{\beta}_0(\tau),\gamma\}$ in probability uniformly in $\tau \in [\nu,\tau_U]$ and $\gamma \in \Omega_{\gamma_0}$. Let $o_I(\rho_n)$ denote a term that converges to 0 in probability uniformly in $\tau \in I$ after being divided by ρ_n . Because $\lim_{n\to\infty} n^{1/2} ||S_L|| = 0$, it follows from the definition of $\hat{\boldsymbol{\beta}}(\tau;\gamma)$ that $n^{1/2}\mathbf{S}_n(\hat{\boldsymbol{\beta}}(\tau;\gamma);\gamma) = o_{[\nu,\tau_U]}(1)$. Thus, using the similar arguments to the proof of Theorem 2 in Peng and Huang (2008), we have

$$-n^{1/2}\mathbf{S}_{n}(\boldsymbol{\beta}(\tau;\gamma),\gamma) = n^{1/2}\Big[\boldsymbol{\mu}\{\hat{\boldsymbol{\beta}}(\tau;\gamma),\gamma\} - \boldsymbol{\mu}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}\Big] \\ - \int_{0}^{\tau} n^{1/2}\Big[\tilde{\boldsymbol{\mu}}\{\hat{\boldsymbol{\beta}}(\mu;\gamma),\gamma\} - \tilde{\boldsymbol{\mu}}\{\boldsymbol{\beta}(\mu;\gamma),\gamma\}\Big] dG(\mu) + o_{[\nu,\tau_{U}]}(1) \\ = n^{1/2}\Big[\boldsymbol{\mu}\{\hat{\boldsymbol{\beta}}(\tau;\gamma),\gamma\} - \boldsymbol{\mu}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}\Big] \\ - \int_{0}^{\tau}\Big\{\Big[\mathbf{J}\{\boldsymbol{\beta}(\mu;\gamma),\gamma\}\mathbf{B}^{-1}\{\boldsymbol{\beta}(\mu;\gamma),\gamma\} + o_{[\nu,\tau_{U}]}(1)\Big] \\ \times n^{1/2}\Big[\boldsymbol{\mu}\{\hat{\boldsymbol{\beta}}(\mu;\gamma),\gamma\}\} - \boldsymbol{\mu}\{\boldsymbol{\beta}(\mu;\gamma),\gamma\}\Big]\Big\} dG(\mu) + o_{[\nu,\tau_{U}]}(1),$$

where **J** and **B** are defined in (A.11). Note that the above equation is a stochastic differential equation about $n^{1/2}[\mu\{\hat{\beta}(\tau;\gamma),\gamma\} - \mu\{\beta(\tau;\gamma),\gamma\}]$. Then it follows from the production integration theory (Gill and Johansen, 1990; Andersen *et al*, 1998) that

$$n^{1/2}[\boldsymbol{\mu}\{\hat{\boldsymbol{\beta}}(\tau),\gamma\} - \boldsymbol{\mu}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}] = \boldsymbol{\phi}(-n^{1/2}\mathbf{S}_n\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}) + o_{[\nu,\tau_U]}(1),$$

where ϕ is a map from \mathcal{F} to \mathcal{F} such that for any $\mathbf{g} \in \mathcal{F}$, $\phi(\mathbf{g})(\tau) = \int_0^{\tau} I(s,\tau) \, d\mathbf{g}(s)$ with

$$I(s,t) = \prod_{\mu \in (s,t]} \Big[\mathbf{I}_p + \mathbf{J} \{ \boldsymbol{\beta}(\tau; \gamma), \gamma \} \mathbf{B}^{-1} \{ \boldsymbol{\beta}(\tau; \gamma), \gamma \} dG(\mu) \Big],$$

and

$$\mathcal{F} = \{ \mathbf{g} : [\nu, \tau_U] \to \mathbb{R}^p, \mathbf{g} \text{ is left-continuous with right limit, } \mathbf{g}(0) = \mathbf{0}_p \}.$$

Using the Taylor expansion and the continuous mapping theorem, we have that for any $\gamma \in \Omega_{\gamma_0}$,

$$n^{1/2}(\hat{\boldsymbol{\beta}}(\tau;\gamma) - \boldsymbol{\beta}(\tau;\gamma)) = \mathbf{B}^{-1}\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}\boldsymbol{\phi}(-n^{1/2}\mathbf{S}_n\{\boldsymbol{\beta}(\tau;\gamma),\gamma\}) + o_{[\nu,\tau_U]}(1). \quad (A.18)$$

Based on the proof of Theorem 1 in Peng and Huang (2008), we have

$$\sup_{\tau \in [\nu, \tau_U]} \| \mathbf{S}_n \{ \boldsymbol{\beta}(\tau; \gamma_0), \gamma_0 \}) \| = O_p(n^{-1/2}),$$

which combining with (A.18) implies

$$n^{1/2} \|\hat{\boldsymbol{\beta}}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \hat{\gamma}) + \boldsymbol{\beta}(\tau; \gamma_0) - \hat{\boldsymbol{\beta}}(\tau; \gamma_0) \|$$

$$\leq C_2 \|\boldsymbol{\phi}(-n^{1/2} \mathbf{S}_n \{\boldsymbol{\beta}(\tau; \gamma), \hat{\gamma}\}) - \boldsymbol{\phi}(-n^{1/2} \mathbf{S}_n \{\boldsymbol{\beta}(\tau; \gamma_0), \gamma_0\}) \| + o_{[\nu, \tau_U]}(1), \tag{A.19}$$

where C_2 is a positive constant. Note that $E\{\mathbf{S}_n(\boldsymbol{\beta}(\tau;\gamma),\gamma)\}=0$. Similar to (A.17), we have

$$\sup_{\tau \in [\nu, \tau_U], |\gamma - \gamma_0| \le \delta_n} \|n^{1/2} \mathbf{S}_n \{ \boldsymbol{\beta}(\tau; \gamma), \gamma \} - n^{1/2} \mathbf{S}_n \{ \boldsymbol{\beta}(\tau; \gamma_0\}, \gamma_0) \| = o_p(1).$$

Because $\phi(.)$ is a linear operator, it follows that

$$\sup_{\tau \in [\nu, \tau_U], |\gamma - \gamma_0| \le \delta_n} \| \phi(-n^{1/2} \mathbf{S}_n \{ \beta_0(\tau), \gamma \}) - \phi(-n^{1/2} \mathbf{S}_n \{ \beta(\tau; \gamma_0), \gamma_0 \}) \| = o_p(1). \quad (A.20)$$

Thus, (A.16) follows from (A.19) and (A.20).

Step B3. We show the asymptotic normality of $\hat{\beta}(\tau)$ and $\hat{\gamma}$.

Let γ satisfy that $|\gamma - \gamma_0| \leq \delta n^{-1/2}$, where δ is a positive constant. Note that $\boldsymbol{\beta}(\tau; \gamma_0) = \boldsymbol{\beta}_0(\tau)$. Then it follows from (A.18) that

$$\hat{\boldsymbol{\beta}}(\tau; \gamma_0) - \boldsymbol{\beta}_0(\tau) = n^{-1/2} \mathbf{B}^{-1} \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \} \boldsymbol{\phi}(-n^{1/2} \mathbf{S}_n \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \}) + o_{[\nu, \tau_U]}(n^{-1/2}).$$

Therefore, combining (A.14) and (A.16), we obtain

$$D_{n}(\boldsymbol{z}, \tau, \gamma) = D_{n}^{0}(\boldsymbol{z}, \tau, \gamma_{0}) + n^{-1/2} \dot{\boldsymbol{\psi}}_{\beta}(\boldsymbol{z}; \tau, \theta_{0})^{T} \mathbf{B}^{-1} \{ \boldsymbol{\beta}_{0}(\tau), \gamma_{0} \} \boldsymbol{\phi}(-n^{1/2} \mathbf{S}_{n} \{ \boldsymbol{\beta}_{0}(\tau), \gamma_{0}) \}$$
$$+ P(\boldsymbol{z}, \tau)(\gamma - \gamma_{0}) + o_{[\nu, \tau_{U}]}(n^{-1/2}).$$

Therefore,

$$R_n(\gamma) = \frac{1}{n} \sum_{i=1}^n \int_{\nu}^{\tau_U} \left[D_n^0(\mathbf{Z}_i, \tau, \gamma_0) + \dot{\boldsymbol{\psi}}_{\beta}(\mathbf{Z}_i; \tau, \theta_0)^T \mathbf{B}^{-1} \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \} \boldsymbol{\phi}(-n^{1/2} \mathbf{S}_n \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \}) \right]^2 d\tau$$

$$+ 2H_n(\gamma - \gamma_0) + \Delta(\gamma - \gamma_0)^2 + o_p(n^{-1}), \tag{A.21}$$

where

$$H_n = \frac{1}{n} \sum_{i=1}^n \int_{\nu}^{\tau_U} \left\{ P(\mathbf{Z}_i, \tau) [D_n^0(\mathbf{Z}_i, \tau, \gamma_0) + \dot{\boldsymbol{\psi}}_{\boldsymbol{\beta}}(\mathbf{Z}_i; \tau, \theta_0)^T \mathbf{B}^{-1} \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \} \boldsymbol{\phi}(-n^{1/2} \mathbf{S}_n \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \}] \right\} d\tau.$$

Let $\tilde{\gamma} = \gamma_0 - H_n/\Delta$. Then it follows from (A.21) that

$$0 \ge R_n(\hat{\gamma}) - R_n(\tilde{\gamma}) = 2H_n(\hat{\gamma} - \gamma_0) + \Delta(\hat{\gamma} - \gamma_0)^2 + o_p(n^{-1})$$
$$- 2H_n(\tilde{\gamma} - \gamma_0) - \Delta(\tilde{\gamma} - \gamma_0)^2 - o_p(n^{-1})$$
$$= 2H_n(\hat{\gamma} - \gamma_0) + \Delta(\hat{\gamma} - \gamma_0)^2 + \frac{H_n^2}{\Delta} + o_p(n^{-1}),$$

which implies that

$$\Delta \left(\hat{\gamma} - \gamma_0 + \frac{H_n}{\Delta} \right)^2 \le o_p(n^{-1}).$$

Thus,

$$\hat{\gamma} - \gamma_0 = -\frac{H_n}{\Delta} + o_p(n^{-1/2}). \tag{A.22}$$

Let $Y_i = (\mathbf{Z}_i, X_i, \delta_i)$, and

$$\varphi(Y_i, Y_j) = \int_{\nu}^{\tau_U} \left[I(\mathbf{Z}_j \leq \mathbf{Z}_i) P(\mathbf{Z}_i, \tau) \{ N_j (H_{\gamma_0}^{-1}(\mathbf{Z}_j^T \boldsymbol{\beta}_0(\tau))) - \int_0^{\tau} I[X_j \geq H_{\gamma_0}^{-1}(\mathbf{Z}_j^T \boldsymbol{\beta}_0(u))] \, \mathrm{d}G(\mu) \} \right]$$
$$+ P(\mathbf{Z}_j, \tau) \dot{\boldsymbol{\psi}}_{\beta}(\mathbf{Z}_j; \tau, \theta_0)^T \mathbf{B}^{-1} \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \} \boldsymbol{\phi}(h_j(\tau)) \, \mathrm{d}\tau,$$

where $h_j(\tau) = \mathbf{Z}_j \Big\{ N_j (H_{\gamma_0}^{-1} \{ \mathbf{Z}_j^T \boldsymbol{\beta}_0(\tau) \}) - \int_0^{\tau} I[X_j \geq H_{\gamma_0}^{-1} \{ \mathbf{Z}_j^T \boldsymbol{\beta}_0(\mu) \}] dG(\mu) \}.$ Then we have

$$H_n = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \varphi(Y_i, Y_j) = \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \tilde{\varphi}(Y_i, Y_j),$$

which is a V-statistic, where

$$\tilde{\varphi}(Y_i, Y_j) = \frac{1}{2} \Big\{ \varphi(Y_i, Y_j) + \varphi(Y_j, Y_i) \Big\}.$$

Define

$$U_n = \frac{1}{\binom{2}{n}} \sum_{i < j} \tilde{\varphi}(Y_i, Y_j),$$

which is a U-statistic. Since $E\|\varphi(Y_i,Y_j)\|^2 < \infty$, it follows from Lemma 5.7.3 of Serfling (2002) that $E\|H_n - U_n\|^2 = O(n^{-2})$, which implies that $n^{1/2}(H_n - U_n) = o_p(1)$. Hence by Theorem 12.3 of Van der vaart (1998), we get

$$n^{1/2}H_n = n^{1/2}U_n = 2n^{-1/2}\sum_{i=1}^n \tilde{\varphi}_1(Y_i) + o_p(1),$$

where $\tilde{\varphi}_1(y) = E\{\tilde{\varphi}(Y_1, Y_2)|Y_1 = y\}$. This combining with (A.22) gives

$$n^{1/2}(\hat{\gamma} - \gamma_0) = -2n^{-1/2}\Delta^{-1}\sum_{i=1}^n \tilde{\varphi}_1(Y_i) + o_p(1), \tag{A.23}$$

which means that $n^{1/2}(\hat{\gamma} - \gamma_0)$ is asymptotically normal with mean zero and variance $\sigma^2 = 4\Delta^{-2}E\{\tilde{\varphi}_1(Y_1)^2\}.$

Based on (A.16), (A.18) and (A.23), we obtain

$$n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_{0}(\tau)\} = n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau; \hat{\gamma}) - \boldsymbol{\beta}(\tau; \gamma_{0})\}$$

$$= n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau; \gamma_{0}) - \boldsymbol{\beta}(\tau; \gamma_{0})\} + \dot{\boldsymbol{\beta}}(\tau; \gamma_{0})n^{1/2}(\hat{\gamma} - \gamma_{0}) + o_{[\nu, \tau_{U}]}(1)$$

$$= n^{-1/2} \sum_{i=1}^{n} \left\{ \mathbf{B}^{-1}\{\boldsymbol{\beta}_{0}(\tau), \gamma_{0}\} \boldsymbol{\phi}(h_{i}(\tau)) - 2\dot{\boldsymbol{\beta}}(\tau; \gamma_{0}) \Delta^{-1} \tilde{\varphi}_{1}(Y_{i}) \right\} + o_{[\nu, \tau_{U}]}(1),$$
(A.24)

which implies that $n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_0(\tau)\}\ (\tau \in [\nu, \tau_U])$ converges in finite-dimensional distribution to a zero-mean Gaussian process. Following the arguments in Appendix B in Peng and Huang (2008), it can been shown that $\{\mathbf{B}^{-1}\{\boldsymbol{\beta}_0(\tau), \gamma_0\}\boldsymbol{\phi}(h_i(\tau)), \tau \in [\nu, \tau_U]\}$ is a Donsker class. In addition, $\dot{\boldsymbol{\beta}}(\tau; \gamma_0)$ is a deterministic function and $\tilde{\varphi}_1(Y_i)$ does not involve τ . Thus, by the Donsker theorem, $n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_0(\tau)\}$ converges weakly to a zero-mean Gaussian process for $\tau \in [\nu, \tau_U]$. This completes the proof of Theorem 2.

Justification for the Resampling Method. Since $E(\zeta) = 1$ and $\phi(.)$ is a linear operator, using arguments analogous to those in the proof of Theorem 2, we have

$$n^{1/2}(\hat{\gamma}^* - \gamma_0) = -2n^{-1/2}\Delta^{-1}\sum_{i=1}^n \zeta_i \tilde{\varphi}_1(Y_i) + o_p(1), \tag{A.25}$$

and uniformly in $\tau \in [\nu, \tau_U]$,

$$n^{1/2} \{ \hat{\boldsymbol{\beta}}^*(\tau) - \boldsymbol{\beta}_0(\tau) \} = n^{-1/2} \sum_{i=1}^n \zeta_i \Big\{ \mathbf{B}^{-1} \{ \boldsymbol{\beta}_0(\tau), \gamma_0 \} \boldsymbol{\phi}(h_i(\tau)) - 2\dot{\boldsymbol{\beta}}(\tau; \gamma_0) \Delta^{-1} \tilde{\varphi}_1(Y_i) \Big\} + o_p(1).$$
(A.26)

Thus, it follows from (A.23)-(A.26) that

$$n^{1/2}(\hat{\gamma}^* - \hat{\gamma}) = -2n^{-1/2}\Delta^{-1}\sum_{i=1}^n (\zeta_i - 1)\tilde{\varphi}_1(Y_i) + o_p(1), \tag{A.27}$$

and uniformly in $\tau \in [\nu, \tau_U]$,

$$n^{1/2}\{\hat{\boldsymbol{\beta}}^*(\tau) - \hat{\boldsymbol{\beta}}(\tau)\} = n^{-1/2} \sum_{i=1}^n (\zeta_i - 1) \Big\{ \mathbf{B}^{-1}\{\boldsymbol{\beta}_0(\tau), \gamma_0\} \boldsymbol{\phi}(h_i(\tau)) \Big\}$$

$$-2\dot{\boldsymbol{\beta}}(\tau;\gamma_0)\Delta^{-1}\tilde{\varphi}_1(Y_i)\right\} + o_p(1). \tag{A.28}$$

Note that $\operatorname{var}(\zeta) = 1$. In view of (A.25)-(A.28), by the arguments of Lin, Wei and Ying (1993), we obtain that the conditional distributions of $n^{1/2}(\gamma^* - \hat{\gamma})$ and $n^{1/2}\{\hat{\boldsymbol{\beta}}^*(\tau) - \hat{\boldsymbol{\beta}}(\tau)\}$ given the observed data are asymptotically equivalent to the unconditional distributions of $n^{1/2}(\hat{\gamma} - \gamma_0)$ and $n^{1/2}\{\hat{\boldsymbol{\beta}}(\tau) - \boldsymbol{\beta}_0(\tau)\}$ for $\tau \in [\nu, \tau_U]$, respectively.