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Appendix: Proofs of Theorems

Proof of Theorem 1. For a fixed v, let 3(7;) be the solution to the following equation:
B{ZNU @) - [ 21X 2 B EBWGE} =0 (A

0
In particular, B8(7;v) = By(7). To show the consistency of 4 and B(T), we mainly take

the following three steps.

Step A1l. We first show the uniform consistency of B(T; v); that is,

sup  [|B(r37) — B )| = 0. (A.2)

TE [VvTU]v ’YGQ’YO

Note that 5(7;7) is the solution to the equation (A.1) for any given -, and B(T;’y)
is the estimator of 3(7;7). Define G = {Z,I{X; < H;'(Z[b)}d; : b € RP,y € Q,},
and Go = {Z,I{X; > H ' (Z]b)} : b € R’y € Q. }, where Q,, is a neighborhood of
7. Both G; and G; are Glivenko-Cantelli (van der Vaart and Wellner, 1996). Then with
some modification of the proof of Theorem 1 in Peng and Huang (2008) and using the
Glivenko-Cantelli theorem, we can show that Step A1 holds. The similar arguments are

also used in the proof of Theorem 1 of Qian and Peng (2010).

Step A2. We should prove that
v B 7o- (A.3)



Note that 4 = argmin,, R, (7). Define

R(y) = /VTU EW(Zy, Zo, Zs: 7, )] dr.

where

W(Zy,Zy,Z3; 7,v) = [(Zo <7Zy)I(Z3s <Z)
AWl @) - [ 106 > 52580} 46}
AN @) - [ 10 = B 2B} 60}

To prove (A.3), according to Amemiya (1985, p.106-108), we need to verify the fol-

lowing three conditions:

i) R(7) is continuous on §2.,, where 2. is a neighborhood of ~;
Y0 7
(ii) R(7) is uniquely minimized at vo;

(iif) sup [[Rn(y) = R(Y)|| = 0p(1).

Y€y,

Now, we verify the above three conditions step by step. First, we have

RO) = B[ [ E{1(2 < 20) (Nalt; (25B(rs))
- [z B @) o) |2} ar

0
By Conditions (R2) and (R4), it is easy to see that R(7) is continuous in €2.,.
Second, note that by (A.1), 70 is a minimizer of R(7y). Suppose that v* (# ) is
another minimizer of R(vy). Then we have R(v*) = R(7y) = 0. That is,

E{N{H @B} - [ 10X > @By} A6} =

and

E{ No{ . (23 B(7:70))} — / (X, > H; (Z5(u0)} G0 } = 0,



This implies that for 7 € [v, 71/,
FLHZNZEB(riv))} - / [P @By acm =0, (A4)

and

UL 0)) — [ PO @3B} a6 =0 (A5)
where F(t|Z) = 1 — F(t|Z). Then by (A.4) and (A.5), both F{H;l(ZZTﬁ(T;’y*))} and
F {H.'(Z7B(7;7))} are solutions to the following nonlinear integral equation of the

second kind for h(7):

hr) - / UFE ()] dG () =

Since the above integral equation has a unique solution (Polyanin and Manzhirov, 2008,
p.426), we have F{H Y (ZIB(r;7))} = F{H(ZIB(r;7*))}. Hence it follows from
Condition (R5)(a) that H.'(Z3B(7;%)) = H;}(ZQTQ(T;V*)). From Condition (R3), we
obtain v* = 79. This completes the proof of (ii).

Third, we need to verify (iii). Note that

sup |R,(7) — R(v)| < sup |Ra(y) — Ry(v)| + sup |R)(v) — R(Y)I, (A.6)
Y€y, 7€y 7€y
where

1 [T
== _/ ZDQ(ZiaTv’Y)z dT
n
vooog=1

and

Dh(z,7,7) = ZIZ< Nt @B~ [ 11X = B B)ac )

Obviously, RY () is a V-statistic. Let U2(y) be the corresponding U-statistic. Following
the same argument as that of Lemma 1 in the Chapter 2 of Mu (2005) and using the
properties of Vapnik—Chervonenkis (VC) class from Lemma 2.5 of Pakes and Pollard

(1989), we can prove that the class of functions {W(Z1,Zs, Z3; 7,7) : v € Q, T € [V, 0]}



is Fuclidean with constant envelop. Then it follows from Corollary 3.5 of Arcones and

Giné (1993) that sup ||U2(y) — R(7)|| = 0,(1). Thus, Theorem 3.11 of Arcones and Giné
YEQ,

(1993) yields
sup R, (7) = R(7)] = 0,(1). (A7)

YEQ,

In the follows, we will prove that sup |R.(v) — R2(y)| = o0,(1). Denote 6(1) =
’YEQ“/()
(7, B(7)). Define

nalaim6) = 12 < )N @A) ~ [ 11X = B2 Bw)) a6

and

v(eim0) = B[1(2 < ) {N{H, @B} - [ 10X = 12 B a6

Similarly, the class of functions {¢,;(2;7,3)} is Euclidean with constant envelop. Hence
for 6.,(r) = (v,B(1;7)), it follows from Lemma 2.8 of Pakes and Pollard (1989) that

uniformly in z € RP, 7 € [y, 7y] and v € Q,,

1 n
S Wz ) — uslzi 7 0) — (i) F vz b)) = o). (AB)
i=1
Applying Conditions (R1), (R2) and (R4), we obtain

(2 7,0) — ¥(2;7,0,)|
< |p{1@ < 2)[F{m @A)} - PO @B )Y
+‘E{I(Z < z) /OT [F{H;l(zfﬂ(u))} - F{H;l(ZiTﬂ(u;v))}} dG(u)H

< Cof sup [1B(u) ~Blus) +v]. (A9)

wE(v,T)

where Cj is a positive constant. Denote 6. (7) = (v, B(r;7)). Then it follows from (A.8)
and (A.9) that

sup |Ra(7) — R (7)

7€y,



< sup _/ Z’{ anz ZwT ’yaﬁl 2_{%Zl¢n,i(zi;7—:7w82>}2

<a s 1) = Bl + ] +o,(1),

Te[VvTU]7’y€Q’70
where C} is a positive constant. Note that v can be arbitrarily small. Then by (A.2), we

have

sup R (y) — Ry (7)| = 0,(1). (A.10)

S

Thus, by combining (A.6), (A.7) and (A.10), we completed the proof of (iii), and hence
the proof of (A.3).

Step A3. we show that sup |[3(r) — B, (7)|| 5o

T€[v, U]

Let B(7;7) = 08(7;~)/dv. First, we need to show that 3(r;~) is uniformly bounded

in 7 € [v,7y] and v € . Define

B} = {ze i @z e ),

3.0y = Bz i @ ) ), (A1)

where f(t|Z) = dF(t|Z)/dt. Thus, it follows from (A.1) that

B{B(7;7),7} ' Q{B(7;7),7}
= B(rv) - / B{B(;7), 7} I{B(;7), 7} B(1;7) dG (p),

0

where

QB(rin).1} = E{ZfH (2" B( oz <Zaf(m>>}

OH-Y(Z" B(1;
~o{ [ @ pus iz L2 ag )

The above equation is a linear Volterra integral equation of the second kind (Polyanin and

Manzhirov, 2008). It can be checked that by conditions (R2) and (R4), B{B(7;~),v}*,



Q{B(7;7v),~v} and J{B(7;7),~} are continuous in 7 € [v,7y] and v € Q,,. Therefore,
according to Theorem 3.3 in Linz (1985), the above integral equation has a unique solution

B(;7), which is uniformly bounded in 7 € [, 7¢] and v € Q.. Note that

1B(r) = Bo()ll = 11B(r:4) = B(r; )
1B(r:3) = B(T: )|l + 18(m:7) = B(r570)|
< BTA) =B+ sup BN =0l

TE [VvTU] 7769’)’0

IN

Then by (A.2) and (A.3), we have that sup |[B3(r) — B,(7)|| 2 0. This completes the
TE€v, U]

proof of Theorem 1.

Proof of Theorem 2. To show the asymptotic distributions of 4 and B(T), we take the

following three steps.

Step B1. We prove that 4 is n'/?-consistent.
Let (1) = (7, B(137)), 00(7) = (70, B(T37%)). In view of (A.2), following the argument
in Lai and Ying (1988) and Lemma B.1 in Peng and Huang (2008), we obtain that

uniformly in z € R? and 7 € [v, 7y, for any sequence d,, = o(1),

n

sup ‘n*/? S i 7.0) — iz 7, 00) — (257, 8) + (=7, 60)]| = 0p(1). (A.12)
"Y_"/Olgdn i=1

Denote zﬁﬁ(z; 7,0) and z/)W(z; 7,0) to be the partial derivative of 1(z; 7, #) with respect to

B and v, respectively, that is,

) PO (7T dH (1)
Py(z;7,0) = E[I(Zﬁz){f(H (ZTB(1))|Z) = iz s Z
dH!
/f (2" B(w)1Z) — (t)|t=ZTﬁ(u)ZdG(u)H,
) ~ dH-"YZT3(T
Yy (2;7,0) = E[I(ZSz){f(H;l(ZTlg(T)”Z) ) <dz,y B(7))

+ [T sz dH;l(fjw) acn ]



Similar to Theorem 2 of Peng and Huang (2008), we get

sup |1B(757) = B3 7)|| = Op(n™'?). (A.13)

Te[VvTU]ﬂ'YEQ’YO
Define P(z,7) = ¢5(z;7, GO)TB(T;%) - w',y(Z;T, 6p). Thus, it follows from (A.12) and

(A.13) that uniformly in z € R?, 7 € [v, 7y and |y — | < d,,

Dalzm) = Dhlz7w) + (e ) 1A ) — Blri)} + (B(ri7) — Brs0))]
i (257, 00) (7 — %0) + 0p(n %) + Op(1y — Y0l?)

= DS(z,7,7) + P(2,7)(7 = %) + Op(n ) + 0,(|y — 70))- (A.14)

Using the law of large numbers and the central limit theorem, we have

I [
_Z/ P*(Zi,7)dr = A+ 0,(1),
n
i=1 7V
and
I (™ ~1/2
W, = n Zl/u Dp(Zi, 7,70) P(Zs, 7) dT = Op(n™/7),

where A = E{ [ P?(Z;,7)dr} > 0. Hence (A.3) and (A.14) imply that

Ral3) = Rai0) = AG =)+ 2Wa(d = 20) + Opln (5~ 70)
+0p(n71) + 0p((F = 7))
= AW =)"+ Op(n"*(7 = 0))
+0,(n™") + 0,((F = 0)?)- (A.15)
Note that for sufficiently large n, 0,((% — 70)%) > —A(¥ — 70)%/2. Write C,n™2(§ — 7o)
for O,(n"Y2(§ — 4)), where C,, = O,(1). Since R,(%) < R,(7), it follows from (A.15)
that
A 2 —1/2(4 _ -1
o (1 =70)" + Can™ (7 = 70) = Op(n™),

that is,

o | >

n_l/QCn] 2 pTiC?

(=) + it Opn7) = Opn 7).



Thus,
n—1/2Cn
x|

(% —70) + = 0p(n~"?),

which implies | — 40| = O,(n~'/2). Hence 4 is n'/?-consistent.

Step B2. We prove that for any sequence 4,, = 0,(1),

sup 18(7:7) — B(r:7) + B(T:70) — B(T:70) || = 0p(n?). (A.16)

T€[v, 1yl [Y—70]<on

Denote u{B(7), v} = E[ZN{H'(Z"B(r))}] and p{B(7), v} = E[ZI{X > HT'(Z" B(7))}].

Similar to (A.12), we have that uniformly in 7 € [v, 7],

|7—Sylj\p§5n ’ nl/Q{Sn{B(T; )7} = Su{B(T57); ’Y}}
2 {s{Blrin) 7} = (BN = [ Bl 1) =~ {8 7G|
= Op(l)- (A.17)

Following the argument in Peng and Huang (2008), we have that p,{,(;' (1),~v} converges to
p{By(7),~v} in probability uniformly in 7 € [v, 7| and v € Q.. Let o;(p,,) denote a term
that converges to 0 in probability uniformly in 7 € I after being divided by p,. Because
lim,, 0o n/2||SL|| = 0, it follows from the definition of B(7;7) that n'/2S,(B8(1;7);v) =
O[,,1(1). Thus, using the similar arguments to the proof of Theorem 2 in Peng and Huang

(2008), we have

—n'28,(B(ri7).7) = w2 u{B(rin). ) — w8,
~ [ e Bs2). 9} = B0).7)] A6 + 001 (1)
= a2 [u{B(ri7). 7} — (BT 1]
-/ {J{ﬁxm BB 7),7} + 0l (1)

1/2[ 1)} = B ), 7}]} G(1) + o (1),



where J and B are defined in (A.11). Note that the above equation is a stochastic
differential equation about n'/2[u{B(r;7),7} — w{B(;7),7}]. Then it follows from the

production integration theory (Gill and Johansen, 1990; Andersen et al, 1998) that

02 {B(7),7} = {B(7;7), 7} = ¢(=n'*Su{B(757),7}) + 0 (1),

where ¢ is a map from F to F such that for any g € F, ¢(g)(7) = fOT I(s,7)dg(s) with

1s,0) = TT [t + 3B, 1B H{B(737), 714G (),

HE(s,t]
and

F ={g: [v,7v] = R?, g is left-continuous with right limit, g(0) = 0,}.

Using the Taylor expansion and the continuous mapping theorem, we have that for any

v €Ly,

n'(B(r;7) — B(137)) = B7HB(1:7), 7} (—n"?S,{B(7:7),7}) + 0ppry) (1), (A.18)

Based on the proof of Theorem 1 in Peng and Huang (2008), we have

sup (1S, {B(7:%): )l = Op(n™?),

T€[v, U]

which combining with (A.18) implies

n'2|B(r;4) — B(1:4) + B(37%) — B(T5%) |

< Col|p(—n'*S,{B(7:7),4}) — d(=n'*Su{B(7:7%), 10 DIl + 0 (1), (A.19)

where Cy is a positive constant. Note that E{S,(8(7;7),7)} = 0. Similar to (A.17), we

have

sup In"2S,{B(737),7} = 028 {B(7; %0}, 70) Il = 0,(1).

T€[v,TU], v —=70|<dn

Because ¢(.) is a linear operator, it follows that

sup lp(=n'"28,{Bo(7),7}) — S(=n'*S{B(7570), 1)l = 0,(1).  (A.20)

TE [V7TU} ) |7_70 | Sén



10

Thus, (A.16) follows from (A.19) and (A.20).

Step B3. We show the asymptotic normality of 3(r) and 4.
Let v satisfy that [y—~| < 6n~'/2, where d is a positive constant. Note that 3(7;7) =
Bo(7). Then it follows from (A.18) that

B(rs70) = Bo(r) = n BB, (7). 70} (—n 28, {8y (7), %0 }) + 0 (7112,
Therefore, combining (A.14) and (A.16), we obtain

Dy(2,7,7) = Dp(z,7m950) +n *45(257,60) "B {Bo(7), w0} d(—n'*S,{By(7), 70)}

+ P<z’ 7—)('7 - ’70) + O[V,TU]<TL—1/2>'

Therefore,

Ra) =3 [ [D8(i o0 4552 7,00 By(7), 20} (28, (o). )]

+ 2H,(y —70) + Ay —70)? + 0p(n71), (A.21)

where

1~ (™
Hn = E Z/ {P(ZMT)[DBL(ZZ)Ta 70)
i=1 vV

+455(Zis 7, 00) BB (7), 70} (=18, {By(7), 0} } dr

Let 4 =~ — H,/A. Then it follows from (A.21) that

0> R,(7) — Ru(7) = 2H, (Y — ) + A7 — ’YO>2 + Op(nil)

— 2H,(5 = %) = AG = %) — 0y(n ™)

. . H: _
= 2Hn(’y - 70) + A(’}/ - 70)2 + K + Op(n 1)7

which implies that
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Thus,
Y= + 0,(n?). (A.22)

Let Y; = (Z;, X;,;), and
oY) = [ (12 < 20PN 2By ) - [ 11X > HL N8 (0) 4G )

+P(Z;, )9 5(Zsi 7, 60) BB (7). 20} bl (7))

where hy(r) = Zy{ N(HHZIBo(r)}) = f7 11X, = HH{ZEBy(i)} dG (1)} Then we

have

D) ML ROEED ) PN B!

p(¥.¥;) = t{o(¥u ¥y) + (v, Y )

Define

Un:%zzmm

1<j
which is a U-statistic. Since E|¢(V;, Y;)||* < oo, it follows from Lemma 5.7.3 of Serfling
(2002) that E||H, — U,||*> = O(n~?), which implies that n'/?(H,, — U,) = 0,(1). Hence by
Theorem 12.3 of Van der vaart (1998), we get
nl/2Hn _ nl/2Un — oy~ 1/2 Z@l(Y;) + Op(l),
i=1
where ¢1(y) = E{¢(Y1,Y2)|Y1 = y}. This combining with (A.22) gives
n'2(§ = q0) = =207 PATY " 1Y) + 0,(1), (A.23)
i=1
which means that n'/?(4 — 7,) is asymptotically normal with mean zero and variance

0% = 4ATE{$:(V1)*}.
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Based on (A.16), (A.18) and (A.23), we obtain

n'2{B(r) = Bo(r)} = n'*{B(r:4) — B(ri0)}

= n2{B(r;7%) — B(T;70)} + BT 70)n (5 = %) + 0y (1)

n

= 023 BB 0} blhu(r))

i=1
~2B(rs 1) AT (Y) } + 0 (1), (A.24)
which implies that n'/2{3(r) — B,(1)} (v € [v,7v]) converges in finite-dimensional dis-
tribution to a zero-mean Gaussian process. Following the arguments in Appendix B in
Peng and Huang (2008), it can been shown that {B~{B,(7), 0 }¢(hi(7)), T € [v,7v]} is a
Donsker class. In addition, 3 (T570) is a deterministic function and ¢ (Y;) does not involve
7. Thus, by the Donsker theorem, n'/ 2{B(T) — Bo(T)} converges weakly to a zero-mean

Gaussian process for 7 € [v, 7y]. This completes the proof of Theorem 2.

Justification for the Resampling Method. Since F(() = 1 and ¢(.) is a linear

operator, using arguments analogous to those in the proof of Theorem 2, we have

n'?(yr = y0) = —2n~PAT ZC% ) + 0p(1), (A.25)

and uniformly in 7 € [v, 7y],
nl/Q{B*(T) — =n 12 ZC { “HBo(1), 70} @(hi(T))

~28(ri70) A3V | + 0,(1). (A.26)

Thus, it follows from (A.23)-(A.26) that
nt?(yr —4) = —2n72A 12 — 1)@ (Y;) + 0,(1), (A.27)

and uniformly in 7 € [v, 7],

n

B (7) = B(r)} = 1230 (G = D{BTHB(), 20} b li(r))

=1
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—2B(r; ) AT G1(Yi) | + 0,(1), (A.28)

Note that var({) = 1. In view of (A.25)-(A.28), by the arguments of Lin, Wei and Ying
(1993), we obtain that the conditional distributions of n*/2(v* —4) and n*/%{3" (1) — B(7)}
given the observed data are asymptotically equivalent to the unconditional distributions

of n'/2(3 — ~g) and n'/2{B(1) — By(7)} for T € [v, 7], respectively.



