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An exponential-squared estimator in the
autoregressive model with heavy-tailed errors

Yunlu Jiang

In this paper, an exponential-squared estimator is intro-
duced in the autoregressive model with heavy-tailed errors.
Under some conditions, the

√
n-consistency of the proposed

estimator is established. Since the exponential-squared esti-
mator involves a tuning parameter λ, we select λ via a five-
fold cross validation procedure. Simulation studies illustrate
that the finite sample performance of proposed method per-
forms better than that of a self-weighted composite quantile
regression (SWCQR) method and self-weighted least abso-
lute deviation (SWLAD) method in terms of Sd and MSE
when the error follows a heavy-tailed distribution and there
are outliers in the dataset. Finally, we apply the proposed
methodology to analyze the Recruitment series.
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1. INTRODUCTION

In the time series area, the autoregressive (AR) mod-
els have played a very important role in modern Statis-
tics, and have successfully applied to a variety of research
fields, such as social sciences, economics, finance, business,
demographics, and meteorology. The estimation of the or-
der is an outstanding statistical problem in an autoregressive
model. However, heavy-tailed time series data is often en-
countered in economics and finance [6], hydrology [1], and
teletraffic data [12]. In the last several decades, there were
many robust estimators proposed and widely studied for
the AR models in the literature. For instance, [3] intro-
duced M-estimation for autoregressions with infinite vari-
ance. [8] studied a SWLAD estimator. [7] proposed an em-
pirical likelihood method to estimate the unknown param-
eters of infinite variance autoregressive models. [2] consid-
ered a weighted quantile regression for AR models to tackle
with infinite variance errors. [10] developed a SWCQR es-
timation procedure to estimate unknown parameter in an
infinite variance autoregressive model. [5] studied the least
tail-trimmed squares estimator for infinite variance autore-
gressions.

Based on the exponential squared loss function [4, 11],
[11] introduced a robust variable selection in a linear regres-
sion model, and studied their robustness. [11] showed that

the proposed estimation approach not only had very good
robustness when there were outliers in the dataset or the
error followed a heavy-tailed distribution, but also was as
asymptotically efficient as the least squares method under
normal error. To obtain a robust and efficient estimator for
AR models, we propose an exponential-squared estimator
based on the exponential squared loss function for the au-
toregressive models. We show that the proposed estimator
possesses

√
n-consistency. Since the exponential squared loss

function has a tuning parameter, we use a 5-fold cross val-
idation to select the tuning parameter. Simulation studies
and a real data analysis demonstrate that the proposed esti-
mator can obtain high efficiency and robust when the error
follows a heavy-tailed distribution.

The rest of this paper is organized as follows. In Section
2, we introduce an exponential-squared estimator in an AR
model, and give the

√
n-consistency of the proposed esti-

mator. Meanwhile, we use a 5-fold cross validation to select
the tuning parameter. In Section 3, simulation studies and
a real data analysis are conducted to compare the finite-
sample performance of the existing and proposed methods.
We conclude with a few remarks in Section 4. A proof is
given in the Appendix.

2. METHODOLOGY AND MAIN RESULTS

2.1 An exponential-squared estimator

Suppose that {Y1, · · · , Yn+p} satisfying a following AR(p)
model,

Yi = φ1Yi−1 + φ2Yi−2 + · · ·+ φpYi−p + εi

= XT
i φ+ εi, i = p+ 1, · · · , p+ n,

(2.1)

where φ = (φ1, φ2, · · · , φp)
T is the unknown autoregres-

sive coefficient, Xi = (Yi−1, · · · , Yi−p)
T , and {εi, i = p +

1, · · · , p + n} is a sequence of independent and identically
distributed random variables with mean 0. We assume that
there is a correct model with the true autoregression coeffi-
cient φ0.

Ideally, if the error term follows a normal distribution,
the ordinary least squares (OLS) estimator is reputed to be
an efficient estimator. Unfortunately, one seldom knows the
true density function of the error term. Specially, if the error
εt follows a heavy-tailed distribution and there are outliers
in the dataset, the least squares estimator is not very robust.

http://www.intlpress.com/SII/


Recently, [10] proposed a SWCQR method, and showed that
the resulting SWCQR estimator was more robust and ef-
ficient than the OLS estimator when the error followed a
heavy-tailed distribution. For a given positive integer q, let
τk = k/(q + 1), k = 1, · · · , q. Note that the conditional τk
quantile of Yi under given Xi is XT

i φ + b∗k, where b∗k is τk
quantile of εi. The SWCQR estimator of φ can be obtained
by minimizing the following function with respect to φ and
b1, · · · , bq,

(2.2)

q∑
k=1

n+p∑
t=p+1

ωtρτk

⎛
⎝Yt − bk −

p∑
j=1

φjYt−j

⎞
⎠ ,

where ρτ (u) = τu− uI(u < 0), and ωt is given in [10].
Next, we will introduce an exponential-squared estima-

tor by using the exponential squared loss function. The
exponential-squared estimator is defined as

(2.3) φ̂n = argmax
φ

n+p∑
t=p+1

exp

⎧⎨
⎩−(Yt −

p∑
j=1

φjYt−j)
2/λ

⎫⎬
⎭ ,

where λ is a tuning parameter, and controls the degree of
robust and efficiency. We will select the tuning parameter
by a 5-fold cross validation in Section 2.2. For convenience,
we call our proposed estimator as the ESL estimator. Next,
we study the asymptotic properties of the ESL estimator.
Before presenting asymptotic properties, we list some con-
ditions:

(C1) The characteristic polynomial 1− φ1t− · · · − φpt
p has

all roots outside the unit circle.
(C2) Let Xt = (Yt−1, · · · , Yt−p)

T , εt = Yt −XT
t φ0, I(φ0) is

negative definite, where

I(φ0) =
2

λ
E

[
XtX

T
t e

−ε2t/λ

(
2ε2t
λ

− 1

)]
.

Theorem 2.1. Assume that conditions (C1)and (C2) hold.

There exists a local maximum φ̂n satisfying
√
n(φ̂n−φ0) =

Op(1).

2.2 The choice of tuning parameter

From (2.3), we can see that the proposed estimator de-
pends on the tuning parameter λ. Therefore, before we ob-
tain the ESL estimator, we first should select the tuning
parameter. There are many methods to select λ, such as
cross-validation (CV), generalized cross-validation (GCV),
AIC, and BIC. In this paper, we use a 5-fold cross valida-
tion procedure to select λ. Denote the full dataset by D, and
let the training and test set be D−Dν and Dν , respectively.

For each λ and ν, we obtain the ESL estimator φ̂
(ν)

(λ) of
φ using the training set D−Dν . The 5-fold cross-validation
criterion is defined as

CV (λ) =

5∑
ν=1

mad{Yk − φ̂
(ν)

(λ)TXk, (Yk,Xk) ∈ Dν},

Figure 1. CV (λ) against λ.

where Xk = (Yk−1, · · · , Yk−p)
T , mad{Vn} is the median

absolute deviation (MAD) estimator based on the dataset
Vn. We select λ that minimizes CV (λ).

3. SIMULATION STUDY

In this section, we conduct simulation studies to exam-
ine the finite sample performance of the proposed estimator,
and then demonstrate the proposed methodology by a real
data analysis. We first explain how to select the tuning pa-
rameter λ. We choose n = 500, and the dataset is generated
according to the following autoregressive model

(3.1) Yt = φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + εt,

where φ = (φ1, φ2, φ3)
T = (0.5, 0,−0.7)T , and the error

term εt follows a standard Cauchy distribution. The orig-
inal 500 sample is randomly partitioned into 5 equal size
subsamples. We plot CV (λ) against the tuning parameter λ
as depicted in Figure 1. From Figure 1, we obtain λ = 5 by
minimizing the CV (λ).

In the following, we evaluate the performance of various
methods with different sample sizes. We simulate 500 data
sets from the autoregressive model (2.1) with sample sizes
of n = 100, 200, 500. In this simulation, we choose AR(2)
with φ = (φ1, φ2)

T = (0.8,−0.3)T , and AR(3) with φ =
(φ1, φ2, φ3)

T = (0.5, 0,−0.7)T . The dataset are generated
by the following three mechanisms:

(1) the error term εt follows a standard normal distribu-
tion, N(0, 1);

(2) the error term εt follows a t-distribution with de-
gree of freedom 2, t2; However, the the first 5% dataset of
{Y1, · · · , Yn+p} are replaced by 100;

(3) we take the same setting as (2), except that the error
term follows a Cauchy distribution.
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Table 1. The mean, standard deviation (Sd), and MSE for
the estimators of φ under normal error

φ1 = 0.8 φ2 = −0.3
n Estimator MSE Mean(Sd) Mean(Sd)

ESL 0.0217 0.8113(0.1064) −0.2909(0.1024)
100 SWCQR 0.0193 0.8018(0.0915) −0.3043(0.1052)

SWLAD 0.0283 0.7923(0.1104) −0.2977(0.1276)
LS 0.0163 0.8101(0.0873) −0.2994(0.0934)
ESL 0.0190 0.7715(0.1053) −0.2779(0.0822)

200 SWCQR 0.0116 0.7770(0.0787) −0.2865(0.0695)
SWLAD 0.0169 0.7733(0.0998) −0.2833(0.0783)

LS 0.0103 0.7803(0.0744) −0.2831(0.0645)
ESL 0.0048 0.7952(0.0430) −0.3111(0.0541)

500 SWCQR 0.0042 0.7975(0.0433) −0.3054(0.0492)
SWLAD 0.0059 0.7975(0.0520) −0.3072(0.0566)

LS 0.0039 0.7970(0.0397) −0.2996(0.0486)

Table 2. The mean, standard deviation (Sd), and MSE for
the estimators of φ under t2 error

φ1 = 0.8 φ2 = −0.3
n Estimator MSE Mean(Sd) Mean(Sd)

ESL 0.0089 0.7942(0.0669) −0.3006(0.0668)
100 SWCQR 0.0110 0.7856(0.0702) −0.3026(0.0770)

SWLAD 0.0128 0.7867(0.0794) −0.3021(0.0834)
LS 0.0904 0.7787(0.1012) −0.0308(0.0862)
ESL 0.0034 0.8042(0.0424) −0.3040(0.0409)

200 SWCQR 0.0077 0.7920(0.0612) −0.3051(0.0629)
SWLAD 0.0089 0.7945(0.0645) −0.3043(0.0694)

LS 0.0943 0.9075(0.0755) −0.0324(0.0744)
ESL 0.0018 0.8004(0.0307) −0.2987(0.0302)

500 SWCQR 0.0050 0.8038(0.0479) −0.3147(0.0507)
SWLAD 0.0062 0.8008(0.0554) −0.3128(0.0647)

LS 0.0296 0.8699(0.0853) −0.1989(0.0860)

We compare our proposed method (ESL) with SWCQR
proposed by [10], SWLAD introduced by [8], and the least
squares (LS) method. For the ESL estimator, we choose
the tuning parameter λ based on another 500 independent
samples for each simulation. In order to evaluate the finite-
sample performance, we calculate the mean, standard devi-
ation (Sd) as well as the mean-squared errors (MSE) for the
estimators of φ over 500 simulations, respectively.

The results are summarized in Table 1–6. From Table 1–
6, we can find that the Sd and MSE of ESL, SWCQR, and
SWLAD in all three settings are decreased as the sample
size n increases. Meanwhile, according to Table 1 and Ta-
ble 4, the Sd and MSE of ESL, SWCQR, and SWLAD are
very close and are slightly higher than those of LS when the
error has a standard normal distribution. However, when
the error follows a heavy-tailed distribution and there are
outliers in the dataset, the Sd and MSE of our proposed
method are smaller than those of SWCQR and SWLAD
method. This illustrates that our proposed method is robust
to outliers in the dataset, and is more efficient than SWCQR

Table 3. The mean, standard deviation (Sd), and MSE for
the estimators of φ under Cauchy error

φ1 = 0.8 φ2 = −0.3
n Estimator MSE Mean(Sd) Mean(Sd)

ESL 0.0037 0.7967(0.0403) −0.2989(0.0459)
100 SWCQR 0.0097 0.7935(0.0724) −0.2957(0.0673)

SWLAD 0.0142 0.7884(0.0875) −0.2969(0.0810)
LS 0.1046 0.8193(0.2187) −0.1565(0.1915)
ESL 0.0006 0.7990(0.0184) −0.2973(0.0162)

200 SWCQR 0.0061 0.8011(0.0945) −0.2831(0.1126)
SWLAD 0.0091 0.7960(0.0608) −0.2819(0.0716)

LS 0.0916 0.8526(0.2145) −0.1576(0.1522)
ESL 0.0001 0.7988(0.0079) −0.2996(0.0067)

500 SWCQR 0.0035 0.8152(0.0354) −0.2772(0.0399)
SWLAD 0.0042 0.8151(0.0405) −0.2824(0.0456)

LS 0.0296 0.8699(0.0853) −0.1989(0.0860)

Figure 2. ACF (a) and PACF (b) of the Recruitment series.

when the error is heavy tailed and there are outliers in the
dataset.

3.1 Real data application

As an illustration, we apply the proposed methodology
to model the Recruitment series [9] (number of new fish).
There are 453 months of observed recruitment ranging over
the years 1950–1987. The autocorrelation function (ACF)
and the partial autocorrelation function (PACF) given in
Figure 2 are consistent with the behavior of an AR(2).

We first use the OLS method to analyze the dataset. The
estimated results are given in Table 7. Furthermore, a nor-
mal Q-Q plot of regression residuals is shown in Figure 3.
From Figure 3, we can find that Q-Q plot lacks linearity.
Therefore, the error indicates non-normality. We use the
Shapiro-Wilk normality test, and obtain that the p-value is
2.843× 10−7. This also illustrates that the error is a heavy-
tailed distribution.

Next, we apply the SWCQR method and ESL method to
tackle this dataset. For the ESL method, we use the pro-
posed method to select the tuning parameter λ, and obtain
λ = 0.1. The results are shown in Table 7. The standard er-
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Table 4. The mean, standard deviation (Sd), and MSE for the estimators of φ under normal error

φ1 = 0.5 φ2 = 0 φ3 = −0.7
n Estimator MSE Mean(Sd) Mean(Sd) Mean(Sd)

ESL 0.0334 0.4751(0.0936) −0.0074(0.1187) −0.6710(0.0967)
100 SWCQR 0.0306 0.4894(0.0945) −0.0179(0.1126) −0.6801(0.0921)

SWLAD 0.0406 0.4817(0.1135) −0.0121(0.1298) −0.6828(0.1025)
LS 0.0283 0.4912(0.0903) −0.0158(0.1081) −0.6701(0.0866)
ESL 0.0134 0.5060(0.0607) −0.0112(0.0682) −0.6766(0.0666)

200 SWCQR 0.0139 0.4994(0.0579) −0.0073(0.0747) −0.6850(0.0697)
SWLAD 0.0206 0.5028(0.0737) −0.0113(0.0907) −0.6837(0.0823)

LS 0.0121 0.5003(0.0538) −0.0076(0.0707) −0.6778(0.0619)
ESL 0.0036 0.4972(0.0284) −0.0003(0.0378) −0.6928(0.0367)

500 SWCQR 0.0036 0.5003(0.0299) −0.0054(0.0367) −0.6929(0.0363)
SWLAD 0.0063 0.5007(0.0413) −0.0060(0.0485) −0.6922(0.0468)

LS 0.0032 0.4993(0.0275) −0.0036(0.0346) −0.6904(0.0337)

Table 5. The mean, standard deviation (Sd), and MSE for the estimators of φ under t2 error

φ1 = 0.5 φ2 = 0 φ3 = −0.7
n Estimator MSE Mean(Sd) Mean(Sd) Mean(Sd)

ESL 0.0068 0.5103(0.0407) −0.0008(0.0480) −0.6932(0.0531)
100 SWCQR 0.0138 0.5026(0.0675) −0.0106(0.0736) −0.6855(0.0604)

SWLAD 0.0164 0.5015(0.0705) −0.0101(0.0838) −0.6895(0.0662)
LS 0.5183 0.7469(0.0943) −0.0632(0.1165) −0.0475(0.0739)
ESL 0.0035 0.5011(0.0280) −0.0045(0.0389) −0.6928(0.0340)

200 SWCQR 0.0051 0.4978(0.0386) −0.0017(0.0455) −0.6960(0.0400)
SWLAD 0.0059 0.4954(0.0410) 0.0042(0.0484) −0.6985(0.0434)

LS 0.7354 0.9778(0.0882) −0.1377(0.1135) −0.0218(0.0883)
ESL 0.0010 0.4996(0.0163) 0.0001(0.0204) −0.6988(0.0182)

500 SWCQR 0.0031 0.5007(0.0288) −0.0031(0.0361) −0.6964(0.0318)
SWLAD 0.0043 0.5034(0.0341) −0.0067(0.0427) −0.6931(0.0356)

LS 1.0499 1.1383(0.0939) −0.2783(0.1077) 0.0324(0.0922)

Table 6. The mean, standard deviation (Sd), and MSE for the estimators of φ under Cauchy error

φ1 = 0.5 φ2 = 0 φ3 = −0.7
n Estimator MSE Mean(Sd) Mean(Sd) Mean(Sd)

ESL 0.0012 0.5007(0.0176) 0.0002(0.0235) −0.6990(0.0196)
100 SWCQR 0.0087 0.5175(0.0469) −0.0199(0.0569) −0.6817(0.0479)

SWLAD 0.0198 0.5289(0.0699) −0.0337(0.0825) −0.6681(0.0730)
LS 0.2868 0.7154(0.1456) −0.1013(0.1383) −0.3329(0.2366)
ESL 0.0005 0.4976(0.0112) 0.0021(0.0132) −0.7017(0.0120)

200 SWCQR 0.0032 0.5114(0.0305) −0.0112(0.0321) −0.6874(0.0300)
SWLAD 0.0148 0.5265(0.0622) −0.0286(0.0731) −0.6739(0.0599)

LS 0.4633 0.8421(0.2245) −0.1910(0.1951) −0.3017(0.2532)
ESL 0.0001 0.5001(0.0046) 0.0002(0.0052) −0.6999(0.0039)

500 SWCQR 0.0006 0.5059(0.0121) −0.0072(0.0138) −0.6915(0.0096)
SWLAD 0.0025 0.5209(0.0199) −0.0201(0.0214) −0.6786(0.0183)

LS 0.3239 0.7611(0.2324) −0.1894(0.1970) −0.4299(0.2358)

rors based on 100 replacement bootstrap samples are given

in their corresponding parentheses. From Table 7, we can

find that the estimated results of ESL and SWCQR are

very different. We utilize the resulting models to make a

forecast, and calculate the following relative mean square

error (RMSE) to evaluate the predict performance of ESL
and SWCQR,

RMSE(φ̂) =
(y− ŷ ˆφ

)T (y− ŷ ˆφ
)

(y− ŷ ˆφLS
)T (y− ŷ ˆφLS

)
.
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Figure 3. Q-Q plot of regression residuals.

Table 7. Estimated autoregressive parameters for the
Recruitment series

Estimator φ1 φ2

OLS 1.3541(0.0515) −0.4632(0.0658)
SWCQR 1.3259(0.0466) −0.4295(0.0526)
ESL 1.8304(0.0100) −0.8843(0.0394)

By simple calculation, we yield that RMSE(φ̂
ESL

) =

0.8843 and RMSE(φ̂
SWCQR

) = 0.9670. Therefore, we sug-
gest the ELS method to tackle with time series data with a
heavy-tailed distribution in practice.

4. DISCUSSION

In this paper, we proposed an exponential-squared es-
timator for the unknown autoregressive parameter in the
AR model with heavy-tailed errors. The advantages of the
proposed method were illustrated through numerical sim-
ulations and a real data analysis. According to simulation
studies, ESL method has a smaller MSE than the SWCQR
method when the error followed a heavy-tailed distribution.
It is very interesting to investigate the asymptotic proper-
ties of proposed estimator and the effect of choice of tuning
parameter on outcomes, which leaves for further work.

APPENDIX

Proof of Theorem 2.1. Denote Xi = (Yi−1, · · · , Yi−p)
T , and

Ln(φ) =

n+p∑
i=p+1

exp
{
−(Yi − φTXi)

2/λ
}
.

By the Taylor expansion, we have

Dn(u) = Ln(φ0 + n−1/2u)− Ln(φ0)

= n−1/2L
′

n(φ0)u− 1

2
uT [−I(φ0)]u{1 + op(1)},

(A.1)

where u is p-dimensional vector such that ‖u‖ = C, and

L
′

n(φ0) =

n+p∑
i=p+1

[
exp

{
−ε2i /λ

} 2εi
λ

Xi

]
,

I(φ0) =
2

λ
E

[
XiX

T
i e

−ε2i /λ

(
2ε2i
λ

− 1

)]
.

According to the condition (C2), I(φ0) is negative defi-
nite. By the classical central limit theorem, n−1/2L

′

n(φ0) =
Op(1). Therefore, for the last equality of Equation (A.1), the
second term dominates the first term uniformly in ||u|| = C
by choosing a sufficiently large C. Thus, for any given ε > 0,
we have

(A.2) P

{
sup

||u||=C

Ln(φ0 + n−1/2u) < Ln(φ0)

}
≥ 1− ε.

Equation (A.2) implies that with probability at least 1 − ε

that there exists a local maximum φ̂n in the ball {φ0 +
n−1/2u : ||u|| ≤ C}. This completes the proof of Theo-
rem 2.1.
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