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Likelihood ratio tests in the Rasch model for item
response data when the number of persons and
items goes to infinity
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, Zhaohai Li , Yuanzhang Li, and Hong Qin

When the number of persons and items goes to infinity
simultaneously, the maximum likelihood estimator in the
Rasch model for dichotomous item response data has been
shown to be consistency and asymptotic normality. How-
ever, the limiting distributions of the likelihood ratio tests
in the past thirty years are still unknown. In this paper, we
establish the Wilks type of results for the likelihood ratio
tests under some simple and composite null hypotheses. Our
proof crucially depends on the approximated inverse of the
Fisher information matrix with small approximation errors.
Simulation studies are provided to illustrate the asymptotic
results.
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1. INTRODUCTION

Assume that there are r persons and t items engaged in
dichotomous item response experiments. Rasch (1960) sug-
gested that the probability of the correct response between
person i and item j is specified by:

(1) P (i correctly answers j) =
eαi−νj

1 + eαi−νj
,

where αi measures the ability of person i and νj measures
the difficulty of item j.

The Rasch model plays an important role in the de-
velopment of item response theory and has been exten-
sively studied (e.g. Fischer (1974, 1978); Hambleton, et al.
(1978); Rasch (1960, 1961, 1966); Andersen (1973); Lau-
ritzen (2003)). The book by Bond and Fox (2007) contains
the detailed theoretical and applied studies on this model.
A more recent overview is given by Wright and Mok (2004).
Fischer (1974, pages 261-263; 1981) derived the necessary
and sufficient condition for the existence and uniqueness of
the maximum likelihood estimate (MLE). Haberman (1977)
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independently discovered this condition by using the gen-
eral exponential family theory developed by Berk (1972) and
Barndorff-Nielsen (1978).

In the Rasch model, the total number of parameters is
equal to the sum of the numbers of the persons and items.
Ghosh (1995) proved that if r or t is fixed, then the MLE
is not consistent. Therefore, an interesting asymptotic back-
ground is the case that r and t go to infinity simultaneously.
In this asymptotic framework, Haberman (1977) proved that
the MLE is uniformly consistent and asymptotically normal
by assuming that {αi : i = 1, . . . , r} and {νj : j = 1, . . . , t}
are bounded by a constant. However, there is little known
about the asymptotic behaviors of the likelihood ratio tests
(LRTs) in the past thirty years.

In this paper, we will prove that the LRTs are asymp-
totically normal independent of nuisance parameters under
some simple and composite null hypotheses when r → ∞
and t → ∞ in the sense that

Λ− p√
2p

→ N(0, 1), p → ∞,

where Λ is the likelihood ratio and p is the degree of free-
dom, which is called the Wilks type of results (a notation
coined by Fan, Zhang and Zhang (2001)). For the simple
null, p equals to r + t − 1 (i.e., the total number of free
parameters). For the composite null testing the homogene-
ity of a set of parameters with size m, p = m and the re-
maining r + t −m parameters are nuisance. Two technical
steps are important for deriving the asymptotical distribu-
tion. First, the Fisher information matrix is approximated
by a simple matrix with small approximation errors. Second,
the uniformly upper bound of the errors between the MLEs
and their true values is established by using the Erdős-Galli
graph condition. The results can be used to test whether the
parameters of a set with a large dimension are equal.

The remainder of this paper is organized as follows. The
main results are given in Section 2. Numerical studies are
presented in Section 3. We make some discussion in Section
4. The proofs of the theorems are relegated to Section 5.

2. MAIN RESULTS

As noted by Fischer (1981), the Rasch model can be con-
sidered as the Bradley-Terry model for incomplete paired
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comparisons. In what follows, we will discuss the Rasch
model under this framework. Persons and items are treated
as subjects engaged in paired comparisons. Persons 1, . . . , r
will be labeled as subjects 1, . . . , r and items 1, . . . , t as sub-
jects r + 1, . . . , r + t. Therefore, there are the total r + t
subjects. Let nij be an indictor for pair (i, j). If there is a
response between i and j, denote nij = 1; otherwise, define
nij = 0. Thus, nij = 1 for i = 1, . . . , r; j = r + 1, . . . , r + t
and 0 for other i, j. Let aij be an indictor whether i wins
j. If subject i correctly answers subject j, we say “subject
i beats subject j” and denote aij = 1, aji = 0; If subject
i gives the wrong response to subject j, we say “subject i
loses to subject j” and denote aij = 0, aji = 1; If nij = 0,
denote aij = aji = 0. The item response outcomes can be
summarized by a matrix A = (aij)i,j=1,...,r+t.

Let β = (β1, . . . , βr+t)
� = (α1, . . . , αr, ν1, . . . , νt)

� be
the vector of the merits parameters for subjects 1, . . . , r+ t
and u = (u1, . . . , ur+t)

�, where ui = eβi . Since the prob-
ability (1) doesn’t change by adding a constant to β, we
set β1 = 0(u1 = 1) for parameter identification. When it is
convenient, we interchangeably use the notation βi and ui.
The log-likelihood for the Rasch model can be represented
as
(2)
�(β∗) =

∑
1≤i<j≤r+t

[βiaij + βjaji − nij log(e
βi + eβj )]

=
r+t∑
i=1

βiai −
∑

1≤i<j≤r+t

nij log(e
βi + eβj ).

where ai =
∑r+t

j=1 aij and β∗ = (β2, . . . , βr+t)
�. Notice that

the vector (a2, . . . , ar+t) is a sufficient statistic. The likeli-
hood equations are

(3) ai =

r+t∑
j=1

nije
β̂i

eβ̂i + eβ̂j

=

r+t∑
j=1

nij ûi

ûi + ûj
, i = 2, . . . , r + t.

where β̂∗ = (β̂2, . . . , β̂r+t)
� is the MLE of β∗, β̂1 = β1 = 0,

ûi = eβ̂i and û1 = u1 = 1. Let V = (vij)i,j=2,...,r+t denote
the covariance matrix of ai, i = 2, . . . , r + t, where

vii =
∑r+t

j=1
nijuiuj

(ui+uj)2
, i = 1, . . . , r + t

vij = − nijuiuj

(ui+uj)2
, i, j = 1, . . . , r + t; i �= j.

Note that the dimension of V is (r+ t− 1)× (r+ t− 1). For
notational convenience, we suppress the subscript r+ t− 1.
V is also the Fisher information matrix of the parameters
βi, i = 2, . . . , r + t. Moreover, some notations are defined in
the following:

Mrt = max
1≤i,j≤r+t

ui/uj , λrt = max{r, t}, ρrt = min{r, t},

ni =
∑r+t

j=1 nij ,Ω1 = {1, . . . , r}, Ω2 = {r + 1, . . . , r + t}.

In order to guarantee the existence and uniqueness of the
MLE for (2), the following condition is necessary and suffi-
cient due to Haberman (1977) and Fischer (1981).

Condition A. All cases of outcome matrices A = (aij) are
included except for those in which there exist sets Γ1, Γ2,
Γ3 and Γ4 satisfying:

1. Γ1

⋃
Γ2 = Ω1 and Γ3

⋃
Γ4 = Ω2 with Γ1

⋂
Γ2 = ∅ and

Γ3

⋂
Γ4 = ∅;

2. Γ1 �= ∅ and Γ3 �= ∅, or Γ2 �= ∅ and Γ4 �= ∅;
3. aij = 0 for all i ∈ Γ1 and j ∈ Γ3;
4. aij = 1 for all i ∈ Γ2 and j ∈ Γ4.

The second condition in the above Condition A includes
three cases, in which the MLE does not exist: (1) Γ1 =
Ω1,Γ3 = Ω2 (Γ2 = ∅,Γ4 = ∅). In this case, it says that
all the persons have not given correct responses to all the
items. (2) Γ2 = Ω1,Γ4 = Ω2 (Γ1 = ∅,Γ3 = ∅). In this
case, it says that all the persons have given correct responses
to all the items. (3) Γ1 �= ∅,Γ2 �= ∅,Γ3 �= ∅,Γ4 �= ∅. In
this case, it says that for some partition of the items into
two nonempty subsets Γ1, Γ2 and of the persons into two
nonempty subsets Γ3, Γ4, all the persons in Γ1 have not
given correct responses to all the items in Γ3 and all the
persons in Γ2 have given correct responses to all the items in
Γ4. If all the persons have large merits and all the items have
relatively small merits (corresponding a large Mrt), then all
the persons most probably correctly answer all the items
such that case (1) occurs. There are similar discussions for
the other two cases. On the other hand, the probability that
Condition A fails depends on the size of r and t. Therefore,
controlling the increasing rate of Mrt is necessary in order
to guarantee Condition A. To establish the Wilks type of
results for the Rasch model when t and r go to infinity
simultaneously, we need the following three propositions.

Proposition 1. If Mrt = o(ρrt/ log ρrt) and λrt/ρrt → c
as r and t go to infinity, where c is a constant, then
P (Condition A holds) → 1.

Proposition 2. Let S = (sij)i,j=2,...,r+t be the matrix with

sij =
δij
vii

+
1

v11

where δij is the Kroneck delta function. The upper bound of
the approximation error using S to approximate the inverse
of V takes:

(4) ‖V −1 − S‖ ≤ O(
M4

rt

ρ2rt
) as ρrt → ∞,

where ‖A‖ = maxi,j |aij | for a general matrix.

Proposition 3. Let Δui = (ûi/ui)− 1. If Mrt = o(log ρrt)
and λrt/ρrt → c as r and t go to infinity, then with proba-
bility approaching 1,
(5)

max
i=1,...,r+t

|Δui| ≤ max
i,j=1,...,r+t

|Δui −Δuj | ≤
θrt

1− θrt
→ 0,
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where
(6)

θrt =

[
2(1 +Mrt)

2

Mrt
+

ec
∗Mrt(1 +Mrt)

4

4M2
rt

]√
λrt log λrt

ρ2rt
,

and c∗ is a constant.

The proofs of Propositions 1–3 are given in the supple-
mentary materials (http://www.intlpress.com/SII/p/2016/
9-2/SII-9-2-YAN-supplement.pdf). Proposition 1 asserts
that the MLE exists with probability approaching one as
r → ∞ and t → ∞. This is a necessary condition for any
desired asymptotic properties of the MLE. To derive the
asymptotic distribution of the log-likelihood ratio test, one
may apply the Taylor’s expansion to �(β̂∗) at the point of the
true parameter β∗. The first-order item is (a−E(a))�(β̂∗−
β∗) and the second-order item is 1

2 (β̂∗ − β∗)
�V (β̂∗ − β∗),

where a = (a2, . . . , ar+t)
�. It naturally requires establish-

ing the relationship between β̂∗ and a. Specifically, an ap-
proximate explicit expression of β̂∗ that depends on a, is
required. To this end, one needs to obtain the inverse of V .
Since the inverse of V doesn’t have a close form, we use a
simple matrix to approximate it. This is done in Proposi-
tion 2, which provides a high accurate approximate errors.
When Mrt is a constant, the upper bound of the errors in
(4) is in the magnitude of ρ−2

rt uniformly. Similar situations
appears in Simons and Yao (1999) and Yan and Xu (2013)
who used a simple matrix to approximate the inverse of the
Fisher information matrix to prove the asymptotic normal-
ity of the MLE. Proposition 3 gives an upper bound of the
errors between the MLE and its true value. In contrast with
Haberman’s (1977) result of consistency, we don’t assume
that Mrt is a constant here. A technical step in the proof
of Proposition 3 uses the Erdős-Galli graph condition. The
item response result can be represented by a directed bipar-
tite graph, in which a correct answer indicates an edge from
person to item and a wrong answer indicates an opposite
direction. This technical skill is motivated by Chatterjee,
Diaconis and Sly (2011) who proved the consistency in the
β-model for undirected random graphs with the diverging
number of nodes.

Now, we present the Wilks type of results for a simple
null and a composite null in the following.

Theorem 1. For a fixed β, if Mrt = o(log ρrt), λrt/ρrt → c
and

(7)

r+t∑
i,j=1

|e
βi − eβj

eβi + eβj
| = o

(
ρ
3/2
rt

(log ρrt)3/2

)
,

then the log-likelihood ratio test �(β̂∗)− �(β∗) is asymptoti-
cally normally distributed in the sense that

(8)
2[�(β̂∗)− �(β∗)]− (r + t− 1)√

2(r + t− 1)

L→ N(0, 1).

Theorem 2. Assume that m/ρrt ≥ τ > 0, where τ is a
positive constant. Under the null H0 : β2 = · · · = βm, if
Mrt = o(log ρrt), λrt/ρrt → c and (7) holds, then the log-

likelihood ratio test �(β̂∗)−�(β̂
H

∗ ) is asymptotically normally
distributed in the sense that

(9)
2[�(β̂∗)− �(β̂

H

∗ )]− (m− 1)√
2(m− 1)

L→ N(0, 1),

where β̂
H

∗ = (β̂H
2 , . . . , β̂H

r+t) is the MLE of β∗ under the null

H0 and β̂H
1 = 0.

The condition Mrt = o(log ρrt) is to control the increas-
ing rate of Mrt, and it is necessary in order to guarantee
the existence of the MLE with high probability. The second
condition λrt/ρrt → c requires that the number of persons
compares with that of items. Condition (7) is technical, due
to the control of the remainder in the Taylor expansion of the
log-likelihood function. It essentially requires that a large set
of parameters do not differ too much.

Remark 1. We only consider a special index subset, i.e.,
i ∈ {2, . . . ,m} for the complex null in Theorem 2. Since the
index labels are not essential, we may change the order of
index labels for persons and items. Therefore, if we change
the null H0 : β2 = · · · = βm to H0: βi, i ∈ S are equal for
a subset S ⊂ {1, . . . , r + t} with size m− 1, Theorem 2 still
holds.

3. NUMERICAL RESULTS

In this section, we demonstrate the theoretical results via
numerical studies.

3.1 Simulation studies

We conduct simulations to evaluate Theorems 1 and 2.
Theorem 1 is evaluated by using the quantile-quantile (QQ)
plots while Theorem 2 is done by investigating the power
of the statistic (9). The parameters were set to be ui =
[(Mrt−1)i/r]+1 for i = 1, . . . , r; ui = [(Mrt−1)(i−r)/t]+1
for i = r + 1, . . . , r + t. If the MLE doesn’t exist, we define
the LRTs to be zero. In practical applications, the number
of persons is usually larger than that of items. Therefore,
we only consider the results in the case r > t. We consid-
ered three cases for Mrt = 1, t1/2, t and a combination for
(r, t) = (50, 30), and did 10,000 repetitions for each sim-
ulation. In the simulation results, Condition A failed with
probability 0.053 whenMrt = t and 0 for otherMrt. The QQ
plots of the empirical distribution for the statistic (8) against
the standard normal distribution are shown in Figure 1. Al-
though the results for only a single combination of (r, t) are
given here, we also tried other values and found that the
phenomena are similar. Figure 1 shows that the empirical
quantiles of the statistic (8) are very close to the quantiles
of the standardized normal distribution when Mrt = 1, t1/2.
On the other hand, when Mrt = t, Condition A failed with
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Figure 1. The QQ plots of the test (8) (r = 50, t = 30). The real lines are the reference line y = x.

Table 1. Powers of the test (9)

(r, t) (m1,m2) η = 0 η = 0.3 η = 0.6 η = 0.9 η = 1.2

(50, 30) (15,0) 0.055 0.153 0.384 0.607 0.750
(25,0) 0.053 0.217 0.541 0.810 0.920
(0, 15) 0.047 0.229 0.587 0.8455 0.933
(0, 25) 0.054 0.326 0.809 0.969 0.994

(100, 40) (15,0) 0.054 0.185 0.539 0.754 0.869
(25,0) 0.048 0.270 0.688 0.907 0.979
(0, 15) 0.049 0.472 0.930 0.998 1
(0, 25) 0.050 0.671 0.993 1 1

frequency 0.053. These simulation results indicate that it is
necessary to control the increasing rate of Mrt in order to
guarantee Condition A. However, it also implies that the
condition on Mrt in Theorem 1 is strict and could be loos-
ened.

Next, we simulated powers of the test statistic (9). We
considered the null H0 : u1 = · · · = um1 = 1, ur+1 = · · · =
ur+m2 = 1 and the alternative H1 : ui = (iηMrt/m1) + 1,
i = 1, . . . ,m1, ui = [(i− r)ηMrt/m2]+1, i = r+1, . . . , r+ t,
where η controls the strength of the deviation from the null
hypothesis. The other redundant parameters were set to be
ui = (Mrt − 1)i/r for i = m1 + 1, . . . , r; ui = (Mrt − 1)(i−
r)/t for i = m2 + 1, . . . , r + t. In this simulation, we let
Mrt = 3. The simulated powers were put in Table 1, in which
Condition A held with 100% frequencies. The simulated type
I errors look very good. The powers become bigger as m1

or m2 increases when r and t are fixed. When η ≥ 0.6, the
simulated powers are very high for m1 ≥ 25 or m2 ≥ 25,
which exceed 80% in many cases.

3.2 A data example

We use the data set for Bond’s Logical Operations
Test as an illustrated example, which is available from the
web http://www.personality-project.org/r/html/blot.html.
This data set was collected by Trevor G. Bond and is used
as an example of Rasch modeling by Bond and Fox (2007,

Table 2. The fitted parameters of 35 items for BLOT data

Item u Item u Item u Item u

6 0.013 12 0.026 22 0.053 5 0.057
27 0.062 20 0.067 1 0.072 2 0.077
14 0.077 7 0.082 33 0.093 29 0.098
34 0.104 16 0.116 35 0.116 10 0.129
18 0.150 4 0.158 9 0.190 11 0.190
31 0.190 24 0.199 23 0.226 17 0.236
19 0.256 25 0.267 3 0.339 26 0.352
8 0.380 15 0.441 13 0.441 30 0.475
32 0.512 28 0.851 21 1.747

p. 56). It contains 150 persons and 35 items. In this data set,
r = 150, t = 35 and t/r = 0.23. In order to guarantee Con-
dition A, individuals 23, 27 and 46 were deleted before the
analysis, who gave the correct responses for all the items.
The fitted parameters of the 35 items are given in Table 2.

It may be of interest to test whether there is significant
difference among 35 items. As given in Remark 1, we can use
Theorem 2 to perform hypothesis testing. Under this null,
the value of the test (9) is 23.25 and the corresponding p-
value is 1.46×10−119, indicating a very significant difference.
To test the homogeneity for a subset of items, we use the null
that the merits of the 26 items 1, 2, 4, 5, 6, 7, 9, 10, 11, 12,
14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 29, 31, 33, 34, 35, are
equal as an example, in which the number of persons giving
correct responses are not less than 100. Under this null, the
value of the test (9) is 8.66 and the corresponding p-value is
4.86× 10−18, indicating a very significant difference as well.
Next, we use the proposed test statistic to test whether the
parameters for a subset of persons are equal. We choose the
set containing the 38 persons 36, 44, 51, 52, 66, 68, 72, 75,
82, 83, 85, 86, 90, 91, 92, 94, 98, 99, 100, 101, 102, 103,
105, 106, 107, 108, 109, 111, 117, 120, 121, 124, 127, 131,
136, 142, 145, 149 as an example, who gave 20 ∼ 25 correct
responses. Under this null, the value of the test (9) is −3.21
and the corresponding p-value is 1.32 × 10−3, indicating a
significant difference as well.
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4. DISCUSSION

When the numbers of items and persons go to infinity
simultaneously, we have derived Wilks type of theorems for
the LRTs in the Rasch model. Theorems 1 and 2 can be used
to construct the confidence interval of parameters and test
the equality of a large number of parameters. For example,
an approximate 1− α confidence interval of β̄∗ is

{β∗ : |[�(β∗)− �(β̄∗)− (r+ t− 1)]/
√
2(r + t− 1)| ≤ z1−α/2,

where zα is the α-quantile of the standard normal distribu-
tion. The condition on Mrt in Theorems 1 and 2 requires
Mrt = o(log ρrt). Moreover, another condition is imposed
on the pairwise differences of parameters in (7). Simulation
studies shed light that there are still good approximations
for the likelihood ratio tests in Theorems 1 and 2 even when
Mrt = ρ

1/2
rt . However, it should be noted that the asymp-

totic behavior of the LRTs depends not only on Mrt, but
also on the configuration of all the parameters. It would be
of interest to see if the conditions in Theorems 1 and 2 can
be relaxed.

We only consider the dichotomous response data in this
paper. The polytomous response data may be encountered
in practice when the items are rating scales, for which suc-
cessively higher integer scores are coded to indicate increas-
ing levels of competence such as “Strongly Disagree” la-
belled as 0, “Disagree” as 1, “Agree” as 2 and “Strongly
Agree” as 3. Andrich (1978) proposed the polytomous Rasch
model to allow the multiple responses. Masters (1982) inde-
pendently discovered it with a different name called “par-
tial credit model”. This generalized model also assigns a
potential parameter to each subject and has more complex
probability structures than the dichotomous case. However,
there are still a lack of asymptotical theories for the polyto-
mous Rasch model. Anderson, Li and Vermunt (2007) pro-
vided some simulations that shed light on the MLEs that
are consistent when the number of persons and items are
large enough. Establishing asymptotical properties of the
MLEs as well as the Wilks type of results for the polyto-
mous Rasch models for high dimensional situations is still
an open question.

5. PROOFS OF THEOREMS

The following lemma plays an important role in the proof
of Theorem 1.

Lemma 1. (1) If Mrt = o(ρ
1/8
rt ), then

∑r+t
i=1(ai−E(ai))

2/vii
is asymptotically normal with mean r+ t and variance 2(r+
t).

(2) If Mrt = o(ρ
1/8
rt ), then (a − E(a))�V −1(a − E(a)) is

asymptotically normal with mean r+t and variance 2(r+t),
where a = (a2, . . . , ar+t).

Proof. Let ṽij = |vij |. If i �= j, then ṽij = −vij =
nuiuj/(ui + uj)

2. For convenience, denote

xij = aij − E(aij), j �= i, xii = 0,

and define qrt = min
i,j;i �=j

ṽij ≥ Mrt/(1 + Mrt)
2, Qrt =

max
i,j;i �=j

ṽij ≤ 1/4. If Mrt = o(ρ
1/8
rt ), then Qrt/qrt = o(t1/8).

Since (ai−E(ai))
2, i = 1, · · · , r is a sequence of indepen-

dent random variables and (ai−E(ai))
2, i = r+1, · · · , r+ t

is also a sequence of independent random variables, in order
to prove Lemma 1 (1), it is sufficient to show:
If Qrt/qrt = o(t1/8), then the following hold:

(C1)
∑r

i=1(ai − E(ai))
2/vii is asymptotically normally dis-

tributed with mean r and variance 2r.
(C2)

∑r+t
i=r+1(ai−E(ai))

2/vii is asymptotically normally dis-
tributed with mean t and variance 2t.

(C3)
∑r+t

i=1(ai − E(ai))
2/vii is asymptotically normally dis-

tributed with mean r + t and variance 2(r + t).

The proofs of C1 and C2 are similar. We only give the
proof of C1 and omit the other. Let zi = [(ai − E(ai))

2 −
E(ai − E(ai))

2]/vii. By direct calculation,
(10)

v2iiE(z2i )

=
∑r+t

j=r+1[E(x4
ij)− (E(x2

ij))
2] + 2

∑r+t
j,l=r+1;j �=l ṽij ṽil

=
∑r+t

j=r+1 ṽij(1− 2pij)
2 + 2

∑r+t
j,l=r+1;j �=l ṽij ṽil.

Since {zi}ri=1 is a sequence of independent random variables,
to prove C1, it is sufficient to show E(z2i ) < ∞ and for
any give ε > 0, the Lindeberg-Feller condition [Lindeberg
(1922); Feller (1945)]

(11)
1

G2
r

r∑
i=1

E[z2i I(|zi| > εGr)] → 0,

where G2
r =

∑r
i=1 E(z2i ).

Note that vii =
∑r+t

j=r+1 ṽij for i = 1, . . . , r. By (10), we

have that E(z2i ) ≤ 2/vii + 2 and

(12) G2
r ≥

r∑
i=1

2
∑r=t

k,l=r+1;l �=k ṽikṽil

v2ii
≥ 2r(t− 1)q2rt

tQ2
rt

.

Let μ > 1 and ν > 1 be two constants such that
(1/μ) + (1/ν) = 1. Note that for 1 ≤ i ≤ r, ai − E(ai)
is the sum of a sequence of independent random variables
xij , j = r+1, . . . , r+ t with mean zero and xij is a dichoto-
mous random variables taking values −pij and 1− pij with
success probabilities 1− pij and pij . It is easy to show

E(x4μ
ij ) ≤ p4μij (1− pij) + (1− pij)

4μpij ≤ 2ṽij .

By Rosenthal’s (1970) inequality, we have

E(ai − E(ai))
4μ ≤ c4μ[(

r+t∑
j=r+1

E(x2
ij))

2μ +

r+t∑
j=r+1

E(x4μ
ij )]

≤ c4μ(

r+t∑
j=r+1

ṽij)
2μ + 2c4μ

r+t∑
j=r+1

ṽij ,
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where c4μ is a constant depending only on 4μ. Consequently,
(13)
E(ai − Eai)

4μ

v2μii
≤ c4μ +

2c4μtQrt

(tqrt)2μ
≤ c4μ +

2c4μ(Qrt/qrt)
2μ

t2μ−1
.

Thus, if Qrt/qrt = o(ρ
1/8
rt ), then for sufficiently large ρrt, we

have
(14)

(E(z2μi ))1/μ ≤ max

{
(E[

(ai − Eai)
4μ

v2μii
])1/μ, 1

}
≤ 1 + c4μ.

For any given ε > 0, by (12), if Qrt/qrt = o(ρ
1/8
rt ), we can

choose Gr such that εGr > 1 when ρrt is large enough. Note
that E(ai − E(ai))

2 = vii and

|zi| > εGr ⇔ (ai−E(ai))
2

vii
> εGr + 1

or (ai−E(ai))
2

vii
< 1− εGr.

Therefore, by Hoeffding’s (1963) inequality and noticing
that vii ≥ tqrt for i = 1, . . . , r, we have

P (|zi| > εGt) ≤ P ((ai − Eai)
2 ≥ εviiGr)

≤ 2 exp(−2εviiGr/t) ≤ 2 exp(−2εqrtGr)

≤ 2 exp
(
−4εr(t− 1)q3rt/(tQ

2
rt)

)
.

Hölder’s inequality gives [c.f. (12), (13)]

E[z2i I(|zi| > εGt)]

≤ [E(z2μi )]1/μ(P (|zi| > εGt))
1/ν

≤ 2(1 + c4μ) exp[−4εr(t− 1)q2rt/(νtQ
3
rt)].(15)

By (15), we have

1

G2
r

r∑
i=1

E[z2i I(|zi| > εGt)]

≤ tQ2
rt(1 + c4μ)

(t− 1)q2rt
exp[−4εr(t− 1)q2rt/(νtQ

3
rt)].

Since μ > 1 and ν > 1 are constants, if Qrt/qrt = o(t1/8),
then the above expression goes to zero as ρrt → ∞. This
shows (11).

The variance of
∑r+t

i=1(ai − E(ai))
2/vii is the sum of the

following two terms:

(a)
∑r+t

i=1 V ar[(ai − E(ai))
2/vii];

(b) 2
∑

1≤i<j≤t Cov( (ai−E(ai))
2

vii
,
(aj−E(aj))

2

vjj
).

A direct calculation gives that

V ar(ai − E(ai))
2 =

∑r+t
j=1[ṽij(p

2
ij − pijpji + p2ji)

+
nij−1
nij

ṽ2ij − 3ṽ2ij ]I(nij > 0) + 2v2ii.

Consequently,

|
∑r+t

i=1 V ar(ai − E(ai))
2/v2ii − 2

r + t
|

≤ 1

r + t

r+t∑
i,j=1

ṽij + 3ṽ2ij
v2ii

≤ Qrt

qrt
+

3Q2
rt

q2rt
.

Thus, if Qrt/qrt = o(t1/2), we have

(16)

∑r+t
i=1 V ar(ai − E(ai))

2/vii
r + t

= o(1) + 2.

Since

|Cov((ai − E(ai))
2, (aj − E(aj))

2)|
= |Cov(x2

ij , x
2
ji)| ≤ 2ṽij + ṽ2ij ,

we have

1

r + t
|
∑
i �=j

Cov(
(ai − E(ai))

2

vii
,
(aj − E(aj))

2

vjj
)|

≤ 1

r + t

∑
i �=j

2ṽij + ṽ2ij
viivjj

≤ 3Qrt

q2rtt
.(17)

By (16) and (17), if Qrt/qrt = o(t1/2), we have that

V ar(
∑r+t

i=1(ai − E(ai))
2/vii)

r + t
= o(1) + 2.

In view of C1 and C2, by Slutsky’s theorem, we have C3.
This completes the proof of Lemma 1 (1).

Note that V −1 = W + S and

E[(a− E(a))�S(a− E(a))] =

r+t∑
i=1

(ai − E(ai))
2

vii
.

Since v11 = −
∑r+t

i=2 v1i and for i = 2, . . . , r + t,

(SV )ii =

r+t∑
j=2

sijvji =

r+t∑
j=2

(
δij
vii

+
1

v11
)vji

= 1 +
1

v11

r+t∑
j=2

vji = 1− v1i
v11

,

we have

tr(WV ) = tr((V −1 − S)V )

= tr(I − SV ) =

r+t∑
i=2

v1i
v11

= −1.

Therefore, it is sufficient to show

V ar(
∑r+t

i,j=2(ai − E(ai))wij(aj − E(aj)))

2(r + t)
= o(1)

in order to prove

(18)
(a− E(a))TW (a− E(a))√

r + t
= op(1).
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If this is true, then Lemma 1 (2) comes from Lemma 1 (1)
immediately.

There are four cases for calculating the covariance gijζη =
Cov((ai − Eai)wij(aj − Eaj), (aζ − Eaζ)wζη(aη − Eaη)).

Case 1: i = j = ζ = η. By (5),

|giiii| ≤ w2
ii(2v

2
ii +

r+t∑
k=1

(3ṽ2ik + 2ṽik))

≤ w2
ii(

λ2
rt

8
+

3λrt

16
+

λrt

2
) = O(λ2

rtw
2
ii).

Similarly, we have that
Case 2: only three indicates among the four indicates are
the same (assume that j = ζ = η)

|gijjj | ≤ |wijwjj |(
λrt

8
+

3

4
) = O(λrt|wijwjj |);

Case 3: only two indicates among the four indicates are the
same (assume that i = j or j = ζ)

|giiηζ | = |wiiwζη(2ṽiζ ṽiη + viiṽζη)|

≤ |wiiwζη|(
λrt

16
+

λrt

8
) = O(λrt|wiiwζη|);

|gijjη| = |wiiwjη(2ṽjiṽjη + ṽij ṽjη)|

≤ 3

16
|wiiwjη| = O(|wiiwjη|).

Case 4: All the four indicates are different

|gijζη| = |wijwζη(ṽiζ ṽjη + ṽiη ṽjζ)|

≤ 1

8
|wijwζη| = O(|wijwζη|).

Consequently, if Mrt = o(ρ
1/8
rt ) and λrt/ρrt → c, then

V ar[(a− E(a))�W (a− E(a))]

2(r + t)

≤ O(
M

1/8
rt

(r + t)ρ4rt
× [(r + t)λ2

rt

+ (r + t)2λrt + (r + t)3 + (r + t)4])

≤ O(
M8

rt

ρrt
) = o(1).

This completes the proof of Lemma 1 (2).

Proof of Theorem 1. If maxi |(ûi/ui) − 1| ≤ 1, then there

exits a constant c∗ such that |β̂i−βi| ≤ c∗|(ûi/ui)−1|/2 for
all i. Let E be the event that

(19) α̂rt := max
i,j

|β̂i − βi − (β̂j − βj)| ≤
c∗θrt
1− θrt

,

where θrt is defined in (6). By Proposition 3, P (E) → 1 if
Mrt = o(log ρrt) and λrt/ρrt → c. The following calculations
are based on the event E.

By Taylor’s expansion, we have
(20)

�(β̂∗)−�(β∗) = (a−E(a))�(β̂∗−β∗)−
1

2
(β̂∗−β∗)

�V (β̂∗−β∗)+z,

where

z =
1

6
[

r+t∑
i=2

η̂i(β̂i − βi)
3(21)

+ 2

r+t∑
i,j=2;i �=j

η̂ij(β̂i − βi)
2(β̂j − βj)],

η̂i =
∂3�

∂β3
i

∣∣∣β∗+θ(β̂∗−β∗)
=

r+t∑
j=1

nije
ω̂ieω̂j (eω̂j − eω̂i)

(eω̂i + eω̂j )3
,

ηij =
∂3�

∂β2
i ∂βj

∣∣∣β∗+θ(β̂∗−β∗)
=

nije
ω̂ieω̂j (eω̂j − eω̂i)

(eω̂i + eω̂j )3
,

ω̂i = βi + θ(β̂i − βi), i = 2, . . . , r + t, 0 ≤ θ ≤ 1.

By Taylor’s expansion, we have

nije
β̂i−β̂j

1 + eβ̂i−β̂j

− nije
βi−βj

1 + eβi−βj

=
nije

βi−βj

(1 + eβi−βj )2
× γ̂ij +

nije
θ̂ij (1− θ̂i,j)

(1 + eθ̂ij )3
× γ̂2

ij

= ṽij γ̂ij +
nije

θ̂ij (1− eθ̂ij )

(1 + eθ̂ij )3
× γ̂2

ij ,

where γ̂ij = β̂i − βi − (β̂j − βj), θ̂ij = βi − βj + dij(β̂i − β̂j)
(0 ≤ dij ≤ 1) and

(22) ṽij = |vij | =
nije

βi−βj

(1 + eβi−βj )2
, i �= j; ṽii = 0.

Let

(23) hij =
nije

θ̂ij (1− eθ̂ij )γ̂2
ij

(1 + eθ̂ij )3
, hi =

∑
j �=i

hij .

Then we have

ai−E(ai) =

r+t∑
j=1

ṽij [(β̂i−βi)−(β̂j−βj)]+hi, i = 2, . . . , r+t.

Write the above equations into the matrix:

(24) a− E(a) = V (β̂∗ − β∗) + h,

where h = (h2, . . . , hr+t)
�. Substituting β̂∗−β∗ = V −1[(a−

E(a))− h] into (20), it yields
(25)

�(β̂∗)−�(β∗) =
1

2
(a−E(a))�V −1(a−E(a))− 1

2
h�V −1h+z.
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In view of Lemma 1 (2), it is sufficient to prove that

(26)
hTV −1h
√
ρrt

= op(1),
z

√
ρrt

= op(1).

in order to prove Theorem 1.
Since |ex(1−ex)/(1+ex)3| ≤ ex/(1+ex)2 ≤ 1/4, we have

(27)

|hij | ≤ nijα̂
2
rt/4, |hi| ≤

∑
j �=i

|hij | ≤
r+t∑
j=1

nij
α̂2
rt

4
≤ λrtα̂

2
rt

4
.

By (24), we have

r+t∑
i=2

(ai − E(ai)) =

r+t∑
j=2

ṽj1(β̂j − βj) +

r+t∑
i=2

hi.

Hence,

|
r+t∑
i=2

hi| = | − (a1 − E(a1))−
r+t∑
j=2

ṽj1(β̂j − βj)

≤ |a1 − E(a1)|+ v11α̂rt.(28)

It is easy to show that if Mrt = o(log ρrt), then (a1 −
E(a1))

2/v11 = Op(1), by noting that a1 =
∑r+t

i=r+1 a1i is
a sum of t independent Binomial random variables. Since
(29)

Mrt

(1 +Mrt)2
≤ ṽij ≤

1

4
, i �= j;

ρrtMrt

(1 +Mrt)2
≤ vii ≤

λrt

4
,

by (27) and (28), we have

hTSh =

r+t∑
i=2

h2
i

vii
+

(
∑r+t

i=2 hi)
2

v11

≤ λ2
rtα̂

4
rt

16
× (1 +Mrt)

2

ρrtMrt
+

2(a1 − E(a1))
2

v11
+ 2v11α̂

2
rt

≤ O(
λ4
rtM

9
rte

4c∗Mrt(log λrt)
2

ρ4rt
).

Therefore, by Proposition 2 and the inequality (27), we have

|hTV −1h|
≤ |hTSh|+ |hTWh|

≤ h2
i

vii
+

(
∑r+t

i=2 hi)
2

v11
+ ‖W‖

r+t∑
i,j=2

|hi||hj |

≤ O

(
λ4
rtM

9
rte

4c∗Mrt(log λrt)
2

ρ4rt

)
(30)

+O

(
λ6
rtM

12
rt e

4c∗Mrt(log λrt)
2

ρ6rt

)
.

Assuming that α̂rt is sufficiently small, we have

η̂ij ≤ nij

4
× |e

βj+θ(β̂j−βj) − eβi+θ(β̂i−βi)

eβi+θ(β̂i−βi) + eβj+θ(β̂j−βj)
|

≤ nij

4
×

(
|e

βj − eβi

eβj + eβi
|+ 2α̂rt

)
.(31)

Consequently, we have

6|z| ≤ 3α̂3
rt

⎛
⎝ r+t∑

i,j=1

nij

4
[|e

βi − eβj

eβi + eβj
|+ 2α̂rt]

⎞
⎠

≤ O

(
M8

rte
4c∗Mrt(log λrt)

2λ
4
rt

ρ4rt

)
(32)

+O

⎛
⎝M6

rte
3c∗Mrt(log λrt)

3/2
r+t∑
i,j=1

|e
βi − eβj

eβi + eβj
|λ

3/2
rt

ρ3rt

⎞
⎠ .

By (30) and (32), if Mrt = o(log ρrt) and (7) holds, then we
have (26). This completes the proof.

Let

V =

(
V11 V12

V �
12 V22

)
,

where V11 and V22 have the dimension (m − 1) × (m − 1)
and (r + t − m) × (r + t − m), respectively. V11 and
V22 are the covariance matrices of a1 = (a2, . . . , am)�

and a2 = (am+1, . . . , ar+t)
�, respectively. Let μ =∑m

i=2

∑
j /∈{2,...,m} ṽij be the variance of a2+ · · ·+am and ω

be the vector of the column sum of V12, where j /∈ {2, . . . ,m}
denotes j ∈ {1, . . . , r +m}\{2, . . . ,m}. Let

U =

(
μ ω�

ω V22

)
,

Similar to the proof of Proposition 2, we have

Lemma 2. Let S̄ = (s̄ij)i,j=m+1,...,r+t, where s̄ij =
δij/vii + 1/v11 for all i �= j except for s̄11 = 1/μ + 1/v11.
Then we have

‖W = U−1 − S̄‖ ≤ O(
M4

rt

(r + t−m)2
),

where the norm ‖ · ‖ is defined in Proposition 2.

Proof of Theorem 2. Let b = (
∑m

i=2 ai, am+1, . . . , ar+t)
�.

The definition of z and hi in (21) and (23) can be viewed

as a function on β̂∗ and β∗. Since β̂2 = · · · = β̂m and
β2 = · · · = βm under H0, similar to the proof of (20), we
have
(33)

�(β̂
H

∗ )− �(β∗) =
1

2
(b−E(b))�U−1(b−E(b))− 1

2
h̄�U−1h̄+ z̄,

where h̄ = (
∑m

i=2 h̄i, h̄m+1, . . . , h̄r+t)
�, h̄i = hi(β̂∗ =

β̂
H

∗ ,β∗) and z̄ = z(β̂∗ = β̂
H

∗ ,β∗).
If Mrt = o(log ρrt), λrt/ρrt → c and (7) holds, similar to

the proof of (26), we have

|h̄TU−1h̄|√
r + t−m

= op(1),
|z̄|√

r + t−m
= op(1).
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Since m/ρrt ≥ τ > 0 and τ is a constant, we have

�(β̂
H

∗ )− �(β∗)√
2(m− 1)

=
1
2 (b− E(b))�U−1(b− E(b))√

2(m− 1)
+ op(1).

Similar to the proof of (18), we have

(b− E(b))�W (b− E(b))

r + t−m
= op(1).

Consequently,

(34)
�(β̂

H

∗ )− �(β∗)√
2(m− 1)

=
1
2 (b− E(b))T S̄(b− E(b))√

2(m− 1)
+op(1).

Note that

(35) (a− E(a))�S(a− E(a)) =

r+t∑
i=1

(ai − E(ai))
2

vii
,

(b− E(b))T S̄(b− E(b)) =

r+t∑
i=m+1

(ai − E(ai))
2

vii
(36)

+
[
∑m

i=2(ai − E(ai))]
2

μ
+

(a1 − E(a1))
2

v11
.

Moreover, it is easy to show [
∑m

i=2(ai−E(ai))]
2/μ = Op(1)

by referring to the central limit theorem for the bounded
case (Loève (1977), page 289) if μ =

∑m
i=2 vii diverges. In

view of that m/ρrt ≥ τ > 0, by (20), (26) and (18), we have

(37)
�(β̂∗)− �(β∗)√

2(m− 1)
=

1
2 (a− E(a))TS(a− E(a))√

2(m− 1)
+ op(1).

Combining (34), (35), (36) and (37), it yields

2(�(β̂∗)− �(β̂
H

∗ ))− (m− 1)√
2(m− 1)

=

∑m
i=2(ai − E(ai))

2/vii − (m− 1)√
2(m− 1)

+ op(1).

Similar to the proof of Lemma 1 (2), the main item of the
right expression in the above equation is asymptotically nor-
mal if Mrt = o(log ρrt) holds. This completes the proof.
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