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Semiparametric transformation models with
length-biased and right-censored data under the
case-cohort design
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Case-cohort designs provide a cost effective way in
large cohort studies. Semiparametric transformation mod-
els, which include the proportional hazards model and the
proportional odds model as special cases, are considered here
for length-biased right-censored data under case-cohort de-
sign. Weighted estimating equations, which can be used even
when the censoring variables are dependent of the covari-
ates, are proposed for simultaneous estimation of the re-
gression parameters and the transformation function. The
resulting regression estimators are shown to be asymptoti-
cally normal with a closed form of variance-covariance ma-
trix and can be estimated by the plug-in method. Simulation
studies show that the proposed approach performs well for
practical use. An application to the Oscar data is also given
to illustrate the methodology.

Keywords and phrases: Case-cohort design, Length-
biased and right-censored data, Mean zero process, Trans-
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1. INTRODUCTION

Prentice (1986) proposed a case-cohort design to reduce
the cost in large cohort studies, where much of the covariate
information on free subjects is largely redundant. Under this
design, a random sample named subcohort is selected from
the full cohort. Covariate information is collected only for
the subjects in the subcohort and any cases who experience
the event of interest.

After the creative work of Prentice (1986) under the
proportional hazards model (Cox, 1972), Self and Prentice
(1988) and Lin and Ying (1993) have made further devel-
opments. However, the proportion hazards assumption may
not always be true in some applications. Or we may be inter-
ested in modeling the association between the failure time
and the covariate from different aspects. Many authors stud-
ied other regression models such as additive hazards models
(Kulich and Lin, 2000), proportional odds models (Chen,
2001b) and semiparametric transformation regression mod-
els (Chen, 2001a; Kong et al., 2004; Lu and Tsiatis, 2006).

∗The corresponding author.

The semiparametric transformation model is specified by

H(T ) = −β′Z+ ε,(1)

where H is an unknown monotone transformation function,
ε is a random variable with a known distribution and is
independent of Z, β is an unknown p-dimensional regression
parameter of interest. The proportional hazards model and
the proportional odds model are special cases of (1) with ε
following the extreme-value distribution and the standard
logistic distribution, respectively. Equivalently, the models
can be represented by

g{Sz(t)} = H(t) + β′Z,

where Sz(t) is the survival function for given the covari-
ate vector Z, g is a known transformation. For the Cox
proportional hazards model, the link function is g(·) =
log{− log(·)}, and for the proportional odds model, g(·) =
−logit(·).

To date, these studies have all involved right censored
failure time data. In observational studies, such as stud-
ies of unemployment duration in the labor economy (Lan-
caster, 1992; de Una-Alvarez et al., 2003), cancer screening
trials (Zelen and Feinleib, 1969; Simon, 1980), and the HIV
prevalent cohort studies (Lagakos et al., 1988), one often
encounters length-biased right-censored data. Length-biased
sampling is a special case of left truncation, which assumes
that the incidence of the disease onset follows a Poisson pro-
cess (Zelen and Feinleib, 1969; Simon, 1980), and hence the
probability of a survival time being sampled is proportional
to its length. Recently, Tsai (2009), Qin and Shen (2010) and
Huang and Qin (2012) have proposed semiparametric esti-
mation under length-biased sampling of Cox model. Shen et
al. (2009) studied the semiparametric transformation model
and the accelerated failure time model. There have no study
in the regression model for length-biased right-censored data
under the case-cohort design.

In this article, we study the semiparametric analysis
of transformation models with length-biased right-censored
data under the case-cohort design. We propose mean zero
estimating equations to estimate regression parameters and
the monotone transformation function. Our approach is mo-
tivated by Lu and Tsiatis (2006), which make use of a mar-
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tingale integral representation and the inverse weighted se-
lected probabilities. The main challenge here is that even
though we can make use of a martingale integral represen-
tation by accommodating left-truncation, the resulting esti-
mators are not fully efficient under length-biased sampling.

This article is organized as follows. In Section 2, we intro-
duce some notation, the proposed estimating methods and
the computational algorithms. The asymptotic distribution
results are shown in Section 3, and the outline of their proofs
is presented in the Appendix. Section 4 is devoted to sim-
ulation studies to examine the finite sample properties of
the regression parameter estimators. In Section 5, the Oscar
data is used to illustrate the estimating procedure. Section
6 contains a brief discussion.

2. METHODOLOGY

2.1 Notation

Let T 0 denote the time from the onset to the failure event
of interest, and let A0 the time between the onset and study
enrollment. Here we assume that T 0 satisfies the transfor-
mation model which is specified through H(T 0) = −β′Z+ε,
where the hazard function and cumulative hazard function
of ε is denoted by λ(t) and Λ(t), respectively. In a length-
biased sampling, a subject would be sampled only if the
failure event does not occur before the sampling time, that
is, T 0 is left truncated by A0. Denote by T , A and Z the
survival time, truncation time, and the covariates for indi-
viduals in the prevalent cohort. Then (T,A) has the same
joint distributions as (T 0, A0)|T 0 ≥ A0. Write V = T − A,
thus V denotes the residual lifetime after enrollment. The
observation of the survival time in the prevalent cohort is
usually subject to right censoring due to study end or pre-
mature dropout. Instead of observing the actual value of T ,
we observe the censored survival time Y = min(T,A + C).
Let Ṽ = min(T − A,C) be the observed residual lifetime,
that is, Ṽ = V for uncensored subjects and Ṽ = C for
censored subjects. We assume that the censoring time af-
ter enrollment C is independent of (T,A) given Z, which is
reasonable in many applications. However, that the survival
time T and the total censoring time A + C are dependent,
as they share the same A.

To simplify the presentation, we will focus on the classical
case-cohort design of Prentice (1986), in which the subco-
hort is a simple random sample from the full cohort. With
slight modifications the methodology can also be applied
to the stratified case-cohort design of Borgan et al. (2000),
where the sampling of the subcohort can be stratified. Let
n and ñ denote the number of subjects in the full cohort
and in the subcohort respectively. Under the classical case-
cohort design, we observe {(Yi, Ai, δi), i = 1, 2, · · · , n} for
all individuals in the full cohort, and Zi only for subjects
in the subcohort and all cases. Let ξi be the subcohort in-
dicator, taking the value 1 or 0, whether the subject is in-
cluded in the subcohort or not. Hence the data are sum-
marised as {(Yi, Ai, δi, [δi + (1 − δi)ξi]Zi, ), i = 1, 2, · · · , n}.

Here ξi is independent of (Yi, Ai,Zi), i = 1, 2, · · · , n, while
the {ξi, i = 1, 2, · · · , n} are dependent because of the sam-
pling without replacement. Let p denote the probability of
a subject being sampled into the subcohort. Given the fail-
ure status δi, the probability of subject i being selected into
the case-cohort sample is δi + (1 − δi)p. We can define a
weight ρi = δi + (1 − δi)ξi/p, for each individual in the
full cohort by the inverse selection probabilities. In view of
the results in Robins et al. (1994), we can replace p in the
definition of ρi with its empirical estimate p̂ = ñ/n. Here
πi = δi + (1 − δi)ξi/p̂ is denoted so as to exploit the infor-
mation available in the full-cohort data.

2.2 Estimating methods

The method of Lu and Tsiatis (2006) can be modified to
accommodate left-truncation. Let Ni(t) = I(Yi ≤ t, δi = 1)
be the indicator of whether or not the ith individual failed
before time t and Y a

i (t) = I(Ai ≤ t ≤ Yi) be the indicator of
whether or not the ith individual is at risk just before time
t. As shown by Andersen et al. (1993), the counting process
Ni(·) can be uniquely decomposed so that for every i and t,

Ni(t) = M1i(t) +

∫ t

0

Y a
i (u)dΛT 0(u|Zi).(2)

where M1i(t) is a local square martingale, ΛT 0(u|Z) is the
cumulative hazard function of T 0 given the covariate Z.

Equation (2) leads to the following estimating equations:

n∑
i=1

∫ τ

0

πiZi

[
dNi(t)− Y a

i (t)dΛ{H(t) + β′Zi}
]
= 0,(3)

n∑
i=1

πi

[
dNi(t)− Y a

i (t)dΛ{H(t) + β′Zi}
]
= 0, (t ≥ 0)(4)

where H is a nondecreasing function satisfying H(0) = −∞
and τ is a prespecified constant such that Pr(Ṽ ≥ τ) > 0. In
fact, the estimating equations (3) and (4) can be used to an-
alyze the general left-truncated and right-censored data for
semiparametric transformation model under the case-cohort
design. When using them to length-biased right-censored
data, the resulting estimators are still consistent and have
weak convergency properties. But they are inefficient be-
cause they do not exploit the special property of length-
biased sampling.

The conditional density function and survival function of
the survival time T 0 given Z = z are denoted by f(t|z) and
S(t|z). Let G(t|z) denote the survival function of C given
Z = z. Under length-biased sampling, the truncation vari-
able A0 follows a uniform distribution and the joint density
function of (T,A) given Z = z evaluated at (t, a) is

(5)
f(t|z)
μ(z)

I(t ≥ a)

(Lancaster, 1992), where μ(z) =
∫
uf(u|z)du is the condi-

tional mean of T 0 given Z = z. In the absence of censoring,
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it follows from (5) that the pair of random variables (A, V )
has an exchangeable joint density function f(a + v|z)/μ(z)
for a ≥ 0 and v ≥ 0, and the common marginal density
function is fA(t|z) = fV (t|z) = S(t|z)/μ(z). In the pres-
ence of right censoring, the joint density function of (A, Ṽ )
conditioned on δ = 1 is

(A = a, Ṽ = v)|(δ = 1,Z = z)

∼ f(a+ v|z)
μ(z)

G(v|z)
Pr(δ = 1|Z = z)

, a ≥ 0, v ≥ 0.

That is, A and Ṽ do not have an exchangeable joint dis-
tribution despite conditioning on δ = 1. Interestingly, we
have

A = a|(δ = 1, Ṽ = v,Z = z)

∼ f(a+ v|z)
S(v|z) , a ≥ 0, v ≥ 0,

which is identical to the conditional density function of V =
T −A given A in the prevalent population.

We then use this property to propose new mean-zero es-
timating equations to add efficiency. Based on this, we can
use the mean-zero stochastic process M2i(t), where

M2i(t) = Ni(t)−
∫ t

0

δiI(Ṽi ≤ t ≤ Yi)dΛT 0(u|Zi)du.

In order to express briefly, define Mi(t) = [M1i(t) +

M2i(t)]/2 = Ni(t) −
∫ t

0
Ri(u)dΛT 0(u|Zi)du, where Ri(u) =

1
2{I(Ai ≤ u ≤ Yi) + δiI(Ṽi ≤ u ≤ Yi)}.

Lemma 1. Under length-biased sampling, we have
E[dM1(t)] = 0.

A proof of Lemma 1 is given in the Appendix. And it
leads to the following two estimating equations:

U(β, H) =
n∑

i=1

∫ τ

0

πiZi

[
dNi(t)−Ri(t)dΛ{H(t) + β′Zi}

]
= 0,(6)

n∑
i=1

πi

[
dNi(t)−Ri(t)dΛ{H(t) + β′Zi}

]
= 0. (t ≥ 0).(7)

They are analogous to the estimating equations derived by
Lu and Tsiatis (2006). The requirement H(0) = −∞ en-
sures that Λ(a + H(0)) = 0 for any finite a. Let H be
the collection of all nondecreasing step functions on [0,∞)
with H(0) = −∞ and with jumps only at the observed fail-

ure times t1, t2, · · · , tk. We denote by (β̂, Ĥ) the solution of
(6)− (7). It is then clear that Ĥ ∈ H.

There are some alternative versions of (7) that are simple
for computational purposes (Chen et al., 2002). Note that

(7) can be rewritten as:

⎛
⎜⎜⎜⎝
1−

∑n
i=1 πiRi(t1)[Λ(β

′Zi +H(t1))−Λ(β′Zi +H(t1−))]
1−

∑n
i=1 πiRi(t2)[Λ(β

′Zi +H(t2))−Λ(β′Zi +H(t2−))]
...

1−
∑n

i=1 πiRi(tk)[Λ(β
′Zi +H(tk))−Λ(β′Zi +H(tk−))]

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠(8)

with H ∈ H, implying H(t1−) = −∞. Slightly differently
from (8), one might also consider the following computa-
tional simpler estimating equations:

⎛
⎜⎜⎜⎝

1−
∑n

i=1 πiRi(t1)Λ(β
′Zi +H(t1))

1−
∑n

i=1 πiRi(t2)λ(β
′Zi +H(t2−))ΔH(t2)
...

1−
∑n

i=1 πiRi(tk)λ(β
′Zi +H(tk−))ΔH(tk)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠(9)

where H ∈ H and ΔH(t) = H(t)−H(t−).

2.3 Computational algorithms

Following Chen et al. (2002), the equations (6) and (7)
naturally suggest the following iterative algorithm for com-
puting (β̂, Ĥ).

Step 0: Choose an initial value of β, denoted by β(0).
Step 1: Obtain H(0) as follows. First obtain H(0)(t1) by

solving

n∑
i=1

πiRi(t1)Λ{β′Zi +H(t1)} = 1,

with β = β(0). Then, obtain H(0)(tk), k = 2, 3, · · · ,K,
one-by-one by

H(0)(tk)

=H(0)(tk−1) +
1∑n

i=1 πiRi(tk)λ{β′Zi +H(0)(tk−1)}

with β = β(0).
Step 2: Obtain new estimate of β by solving (6) with H =

H(0).
Step 3: Set β(0) to be the estimate obtained in Step 2 and

repeat Steps 1 and 2 until prescribed convergence cri-
teria are met.
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3. THEORETICAL RESULTS

To identify the limiting distributions of the estimators,
we define the following terms:

B1(t) = E[λ̇{β′
0Z+H0(t)}R(t)],

BZ
1 (t) = E[Zλ̇{β′

0Z+H0(t)}R(t)],

B2(t) = E[λ{β′
0Z+H0(t)}R(t)],

BZ
2 (t) = E[Zλ{β′

0Z+H0(t)}R(t)],

B(t, s) = exp

{∫ t

s

B2(u)
−1B1(u)dH0(u)

}
,

B3(t, s) = E[Zλ{β′
0Z+H0(s)}I(s ≥ t)B(t, s)],

B4(t, s) = E[δZλ{β′
0Z+H0(s)}I(s ≥ t)B(t, s)],

μz(t) =
1

2B2(t)[
B3(t, Y )−B3(t, A) +B4(t, Y )−B4(t, Ṽ )

]
.

Also define

A =

∫ τ

0

E
[
{Z− μz(t)}Z′λ̇{β′

0Z+H0(t)}R(t)
]
dH0(t),

Σ = E

{
{δ + (1− δ)/p}

[∫ τ

0

{Z− μz(t)}dM(t)

]⊗2
}

−1− p

p

{
E

[
δ

∫ τ

0

{Z− μz(t)}dM(t)

]}⊗2

.

We need to impose the following regularity conditions:

C1 For any finite K, λ(x) is strictly positive and λ̇(x) is
bounded and continuously differentiable on (−∞,K),
where the superscript dot always denote derivatives.

C2 The covariate vector Z is bounded in the sense that
Pr(‖Z‖ < M) = 1 for some constant M > 0.

C3 The true transformation function H0 has a continuous
and positive derivative on [0, τ ].

C4 The matrix A is nonsingular.

Remark: Condition C1 is a mild condition and is satisfied
in commonly encountered transformation models. Condition
C2 is imposed so that modern empirical process theory can
be directly used. Condition C4 is necessary since otherwise
the problem becomes singular.

Theorem 2. Under regularity conditions C1−C4, β̂ con-
verges to β0 in probability as n → ∞. Furthermore, n1/2(β̂−
β0) → N(0, A−1Σ(A−1)′), and n1/2(Ĥ(t)−H0(t)) converges
weakly to a Gaussian process. Moreover, A and Σ can be
consistently estimated by

Â =
1

n

n∑
i=1

∫ τ

0

πi{Zi − Z̄(t)}Z′
iλ̇{β̂

′
Zi + Ĥ(t)}Ri(t)dĤ(t),

Σ̂ =
1

n

n∑
i=1

π2
i

[∫ τ

0

{Zi − Z̄(t)}dM̂i(t)

]⊗2

−1− p̂

p̂

[
1

n

n∑
i=1

∫ τ

0

δi{Zi − Z̄(t)}dM̂i(t)

]⊗2

,

respectively, where

Z̄(t) =
1

2

[∑n
i=1 πiZiλ{β̂

′
Zi + Ĥ(Yi)}I(Yi ≥ t)B̂(t, Yi)∑n

i=1 πiλ{β̂
′
Zi + Ĥ(t)}Ri(t)

−
∑n

i=1 πiZiλ{β̂
′
Zi + Ĥ(Ai)}I(Ai ≥ t)B̂(t, Ai)∑n

i=1 πiλ{β̂
′
Zi + Ĥ(t)}Ri(t)

+

∑n
i=1 δiZiλ{β̂

′
Zi + Ĥ(Yi)}I(Yi ≥ t)B̂(t, Yi)∑n

i=1 πiλ{β̂
′
Zi + Ĥ(t)}Ri(t)

−
∑n

i=1 δiZiλ{β̂
′
Zi + Ĥ(Ṽi)}I(Ṽi ≥ t)B̂(t, Ṽi)∑n

i=1 πiλ{β̂
′
Zi + Ĥ(t)}Ri(t)

]
,

B̂(t, s) = exp

(∫ t

s

∑n
i=1 πiλ̇{β̂

′
Zi + Ĥ(x)}Ri(x)∑n

i=1 πiλ{β̂
′
Zi + Ĥ(x)}Ri(x)

dĤ(x)

)
,

M̂i(t) = Ni(t)−
∫ t

0

Ri(s)dΛ{β̂
′
Zi + Ĥ(s)}.

for t, s ∈ (0, τ ].

4. SIMULATION STUDIES

We conduct simulation studies to examine the finite sam-
ple performance of the proposed methodology. We present
two simulation studies. In both examples, let the hazard
function of ε be of the form λ(t) = exp(t)/{1 + v exp(t)},
with v = 0, 1, 2 (Dabrowska and Doksum, 1988). Note that
the proportional hazards and the proportional odds models
correspond to v = 0 and v = 1, respectively. The trans-
formation function H(t) is chosen as log(t) for v = 0, and
log( 1v e

vt−1) for v 	= 0. We set the sampling time ξ to be 100
and simulate the onset time of a stable disease, W 0, from
a uniform distribution over [0, 100]. Two covariates of Z1

and Z2 are chosen to be independent of each other with Z1

following the standard normal distribution and Z2 taking
values 0 or 1 with equal probability 0.5.

The first example focuses on covariate independent cen-
soring. The regression parameter is β = (β1, β2)

′ = (1, 1)′

and the censoring times are generated from a U(0, c) distri-
bution, where c is chosen such that the expected proportion
of censoring was 80%. Five hundred full cohorts with sample
size 1, 000 are simulated and then two case-cohort samples
are selected from each full cohort data set by simple ran-
dom sampling without replacement. The first case-cohort
study is designed to have the same number of controls and
cases while the second case-cohort study is designed to have
twice as many controls as cases. Simulation results are sum-
marised in Table 1, where CCI and CCII are the first and
second case-cohort design, FULL is the full cohort design.
Bias and SD are the empirical bias and empirical standard
deviation of 500 regression estimates, respectively. SE is the
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Table 1. Simulation results when censoring is covariate independent

β1 = 1 β2 = 1
Study Design CCI CCII FULL CCI CCII FULL

Scenario I : v = 0
BIAS 0.014 0.005 0.004 −0.041 −0.047 −0.049
SD 0.100 0.090 0.086 0.144 0.125 0.114
SE 0.119 0.105 0.094 0.156 0.163 0.126
CP 97.2 96.8 95.6 96.8 98.6 95.0
RE 0.74 0.91 1 0.63 0.83 1

Scenario II : v = 1
BIAS 0.019 0.007 0.001 −0.047 −0.046 −0.051
SD 0.194 0.167 0.156 0.309 0.268 0.248
SE 0.169 0.149 0.135 0.310 0.274 0.251
CP 92.0 93.2 93.0 95.6 95.6 95.2
RE 0.65 0.87 1 0.64 0.86 1

Scenario III : v = 2
BIAS −0.001 −0.002 −0.008 −0.006 −0.039 −0.038
SD 0.293 0.259 0.247 0.551 0.494 0.458
SE 0.278 0.237 0.230 0.524 0.464 0.433
CP 93.2 94.2 93.4 94.2 94.4 94.0
RE 0.71 0.90 1 0.69 0.86 1

BIAS, the empirical bias; SD, the empirical standard deviation; SE, the mean of estimated standard error; CP, the empirical
coverage probability of 95% confidence interval. RE, empirical relative efficiencies of our estimators, which is the ratio of sample
variance of our estimators with the full cohort design being a reference.

averaged robust standard error estimator. RE is the empir-
ical relative efficiency of our estimator, calculated by the
ratio of sample variance of our estimator with the full co-
hort design being the reference. CP is the empirical coverage
probability of 95% confidence interval. For all three hazard
functions, our proposed estimators CCI and CCII have sim-
ilar asymptotic results as the FULL estimator in terms of
Bias, SE and CP. It is easy to see from Table 1 that the SEs
of the proposed estimators are close to the corresponding
SDs, and CP approximates the nominal 95% confidence in-
terval. More importantly, CCI and CCII estimators do not
lose too much efficiency in comparison to the FULL estima-
tor according to the empirical relative efficiency RE values.
This implies that our proposed estimators perform very well.

The second set of simulation studies are conducted for
covariate dependent censoring. The settings are the same as
the first one except that the censoring times are generated
from βcZ2+U [0, c], βc is selected as 0.5 and 0.2 respectively
and c is chosen such that the expected proportion of cen-
soring is 0.75. Here only the first case-cohort design is used.
Simulation results are summarised in Table 2 which shows
that the estimators from the proposed method still performs
very well as the Table 1 when censoring is covariate depen-
dent.

5. A REAL DATA EXAMPLE

In this Section, we analyze the Oscar Awards data us-
ing our proposed method. The Oscar Awards are the most
prominent and most watched film awards ceremony in the

world. They are presented annually by the Academy of Mo-
tion Pictures Arts and Sciences. The detailed description of
the Oscar Awards data and the website where we can down-
load this dataset could be found in Han et al. (2011), so we
omit here. In the Oscar dataset, there are 766 people who
have been nominated, and only 327 died before the study
ended. This means that the censoring ratio is about 57.3%.

Several authors (Redelmeier and Singh, 2001; Sylvestre
et al., 2006; Han et al., 2011) have studied whether win-
ning an Oscar Award causes the actor’s/actress’s expected
lifetime to increase. They used different statistical meth-
ods but all view this dataset as a right-censored survival
dataset. Redelmeier and Singh (2001) fitted a Cox propor-
tional hazards model, where whether a performer ever won
an Oscar Award in his or her lifetime was treated as a time-
independent covariate and survival was measured from the
performer’s date of birth. They stated that life expectancy
was 3.9 years longer for Oscar Award winners than for other
less recognized performers. Sylvestre et al. (2006) pointed
out that this analysis suffers from immortal time bias. In
other words, performers who live longer have more oppor-
tunities to win Oscar Awards. To eliminate immortal time
bias, Sylvestre et al. (2006) fitted a Cox proportional haz-
ards model with winning status treated as a time-dependent
covariate and survival measured from a performer’s date of
first nomination. Sylvestre et al. (2006) estimated that win-
ning an Oscar Award had a positive effect on lifetime, but
the estimated effect was not significant. Although a valuable
step forward, Han et al.(2011) pointed that Sylvestre et al.’s
analysis still suffers from healthy performer survivor bias:
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Table 2. Summary of simulation results when censoring is covariate dependent

β1 = 1 β2 = 1
Model βc Bias SD SE CP Bias SD SE CP

v = 0 0.5 0.014 0.088 0.098 97.0 −0.026 0.113 0.124 96.4
0.2 0.012 0.087 0.096 97.0 −0.028 0.124 0.137 96.6

v = 1 0.5 −0.007 0.174 0.158 93.4 −0.037 0.311 0.290 93.0
0.2 0.010 0.162 0.157 94.6 −0.024 0.284 0.281 94.6

v = 2 0.5 −0.020 0.260 0.245 94.2 −0.048 0.442 0.449 95.8
0.2 0.021 0.309 0.262 95.6 −0.053 0.609 0.493 95.4

β1 = 0 β2 = 0
v = 0 0.5 0.001 0.055 0.054 95.0 −0.067 0.144 0.154 95.0

0.2 −0.002 0.056 0.053 93.2 −0.020 0.108 0.112 95.8
v = 1 0.5 0.001 0.108 0.109 95.2 −0.055 0.232 0.227 94.2

0.2 −0.004 0.129 0.124 93.4 −0.019 0.247 0.249 95.0
v = 2 0.5 0.002 0.201 0.202 95.0 −0.081 0.410 0.396 94.2

0.2 −0.007 0.214 0.219 95.8 −0.033 0.455 0.428 93.4

Table 3. Estimated regression coefficients of the semiparametric transformation model for the Oscar data under the first
case-cohort design

v = 1 v = 2 v = 0
Effect Estimate (SE) p-value Estimate (SE) p-value Estimate (SE) p-value

SEX 0.981 (0.209) <0.001 1.381 (0.286) <0.001 0.558 (0.126) <0.001
USA 0.362 (0.194) 0.062 0.570 (0.270) 0.035 0.228 (0.122) 0.062
NOFF −0.076 (0.017) <0.001 −0.105 (0.023) <0.001 −0.045 (0.010) <0.001
NOW −0.314 (0.443) 0.479 −0.495 (0.689) 0.473 −0.074 (0.235) 0.754
NON 0.039 (0.073) 0.597 0.076 (0.105) 0.472 0.043 (0.042) 0.310
WIN 0.247 (0.519) 0.634 0.039 (0.805) 0.961 −0.055 (0.291) 0.849

SE, estimated standard error; SEX: male=1, female=0; USA: whether born in USA, yes=1, no=0; NOFF: number of four star
films; NOW: number of times the person won an Oscar; NON: number of times the person was nominated for an Oscar; WIN:
whether the person has won an Oscar, yes=1, no=0

Candidates who are healthier will be able to act in more
films and have more chances to win Oscar Awards. Han et
al. (2011) adapt Robins’ rank preserving structural acceler-
ated failure time model and g-estimation method, and there
is no strong evidence that winning an Oscar increases life
expectancy.

Interestingly, let T denote survival time, the time from
birth to death. We denote by A the time between the per-
former’s birth year and the first Oscar nomination year.
Based on the formal test proposed by Addona and Wolf-
son (2006), we found that the Oscar data can be treated as
the length-biased data. The p-value of this form test is about
0.3, which means that the data set satisfies the stationarity
assumption and we can use the proposed method to analyze
the data. The observation of survival time subject to right
censoring due to study end. Then, the Oscar data can be
treated as length-biased right-censored data.

The main interest here is also to assess the association be-
tween the performer’s lifetime and the winning of an Oscar
Award. The first case-cohort study is designed to have the
same number of controls and cases. Other covariates such
as sex (male=1, female=0), born in USA (yes=1, no=0),

number of four star films, number of times the person won
an Oscar and number of times the person was nominated
for an Oscar are also included. Table 3 presents the esti-
mates of the regression parameters, their estimated stan-
dard errors and the p-values based on Wald test. The three
models give similar results, and the results shows that there
is no evidence that winning an Oscar increases the per-
former’s lifetime. The results are in agreement with those
obtained by Sylvestre et al. (2006) and Han et al. (2011).
Here only Sex and number of four star films are significant
with p < 0.05.

6. REMARKS

In this paper, we use the time-independent weight to an-
alyze the length-biased and right-censored data under the
case-cohort design. In fact, referred to Kulich and Lin (2004)
and Chen and Zucker (2009), we also can consider the time-
dependent weighted estimator for p given by

p̂(t) =

n∑
i=1

ξi(1− δi)mi(t) /

n∑
i=1

(1− δi)mi(t),
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where mi(t) is a weight function. Various versions of the
weight mi(t) have been suggested in Kulich and Lin (2004)
for the Cox model. Thus, we can replace p in the definition
of ρi, leading to a new weight πi(t) = δi + (1− δi)ξi/p̂(t) to
replace πi in the estimating equations (6) and (7) to improve
the estimation efficiency.

APPENDIX A

Proof of Lemma 1: Under length-biased sampling, we
have

E[dN1(t) | Z1 = z]

= P (δ1 = 1, t− dt < Y1 ≤ t | Z1 = z)

=

∫ t

t−dt

∫ s

0

f(s | z)
μ(z)

G(a | z)dads

=
f(t | z)
μ(z)

ωc(t | z)dt,

where ωc(t | z) =
∫ t

0
G(u | z)du.

Furthermore, since

P (A1 ≤ t ≤ Y1 | Z1 = z)

=

∫ ∞

t

∫ t

0

f(s | z)
μ(z)

G(t− a | z)dads

=
S(t | z)
μ(z)

ωc(t | z),

and

P (δ1 = 1, Ṽ1 ≤ t ≤ Y1 | Z1 = z)

=

∫ ∫
v≤t≤s

f(s | z)
μ(z)

G(v | z)dvds

=
S(t | z)
μ(z)

ωc(t | z).

Therefore

E[R1(t) | Z1 = z]

=
1

2

[
P (A1 ≤ t ≤ Y1 | Z1 = z)

+P (δ1 = 1, Ṽ1 ≤ t ≤ Y1 | Z1 = z)
]

=
S(t | z)
μ(z)

ωc(t | z).

Hence E[dM1(t)] = 0.
Proof of the Theorem 2: The details of the proof are fol-

lowed by Kim et al. (2013) and Shen (2011). Here we only
give the sketch of the proof. Following Chen et al. (2012)
and Kim et al. (2013), we divide the sketch of proof into
two steps.

Step 1: We show that 1
n

∂
∂βU{β, Ĥ(·,β)} |β=β0

converges
to −A. Let a > 0 and b be fixed finite numbers and define

λ∗{H0(t)} = B(t, a), Λ∗(x) =

∫ x

b

λ∗(s)ds,

for t > 0 and x ∈ (−∞,∞). We choose finite a > 0 and b to
ensure that the integrals are finite. It is easy to see that

B(t, s) = λ∗{H0(t)}/λ∗{H0(s)},
dλ∗{H0(t)} = [λ∗{H0(t)}/B2(t)]B1(t)dH0(t).

We have

1

n

n∑
i=1

πiMi(t)

=
1

n

n∑
i=1

∫ t

0

πiRi(s)

·
[
dΛ{β′

0Zi + Ĥ(s,β0)} − dΛ{β′
0Zi +H0(s)}

]

=
1

n

n∑
i=1

∫ t

0

πiRi(s)

· d
(
λ{β′

0Zi +H0(s)}
λ∗{H0(s)}

[
Λ∗{Ĥ(s,β0)} − Λ∗{H0(s)}

])

+ op(n
− 1

2 )

=

∫ t

0

B2(s)

λ∗{H0(s)}
d
[
Λ∗{Ĥ(s,β0)} − Λ∗{H0(s)}

]
+ op(n

− 1
2 ).

Therefore, for t ∈ [0, τ ],

Λ∗{Ĥ(t,β0)} − Λ∗{H0(t)}

=
1

n

n∑
i=1

∫ t

0

πi
λ∗{H0(s)}

B2(s)
dMi(s) + op(n

− 1
2 ).

Differentiating (7) with respect to β, we have that

1

n

n∑
i=1

∫ t

0

πiRi(s)

· d
[
λ{β′Zi + Ĥ(s,β)}

{
Zi +

∂

∂β
Ĥ(s,β)

}]
= 0.

for every t ∈ [0, τ ]. Hence we have

1

n

n∑
i=1

∫ t

0

πiRi(s)

· d
[
λ{β′

0Zi +H0(s)}
{
Zi +

∂

∂β
Ĥ(s,β) |β=β0

}}
= op(1).

Then ∫ t

0

BZ
1 (s)dH0(s)

=
1

n

n∑
i=1

∫ t

0

πiRi(s)Ziλ̇{β′
0Zi +H0(s)}dH0(s) + op(1)
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= − 1

n

n∑
i=1

∫ t

0

πiRi(s)

· d
[
λ{β′

0Zi +H0(s)} ·
∂

∂β
Ĥ(s,β) |β=β0

]
+op(1)

= − 1

n

n∑
i=1

∫ t

0

πiRi(s)

·d
[
λ{β′

0Zi +H0(s)}
λ∗{H0(s)}

· λ∗{H0(s)} ·
∂

∂β
Ĥ(s,β) |β=β0

]
+op(1)

= − 1

n

n∑
i=1

∫ t

0

πiRi(s)λ{β′
0Zi +H0(s)}

λ∗{H0(s)}

· d
[
λ∗{H0(s)} ·

∂

∂β
Ĥ(s,β) |β=β0

]
+op(1)

= −
∫ t

0

B2(s)

λ∗{H0(s)}
d

[
λ∗{H0(s)} ·

∂

∂β
Ĥ(s,β) |β=β0

]
+op(1).

Hence

∂

∂β
Ĥ(t,β) |β=β0

= − 1

λ∗{H0(t)}

∫ t

0

λ∗{H0(s)}
B2(s)

· E[πZλ̇{β′
0Z+H0(s)}R(s)]dH0(s)

+op(1)

= −
∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s) + op(1).

It follows from the law of large numbers that

1

n

∂

∂β
U{β, Ĥ(·,β)} |β=β0

= − 1

n

n∑
i=1

∫ ∞

0

πiZiRi(t)

·d
[
λ{β′

0Zi + Ĥ(s,β0)}
{
Zi +

∂

∂β
Ĥ(s,β) |β=β0

}′]

= −
∫ τ

0

E
[
π{Z− μz(t)}Z′λ̇{β′

0Z+H0(t)}R(t)
]
dH0(t)

+op(1).

Here

μz(t) =
1

2

[
E[πZλ{β′

0Z+H0(Y )}I(Y ≥ t)B(t, Y )]

E[πλ{β′
0Z+H0(t)}R(t)]

−E[πZλ{β′
0Z+H0(A)}I(A ≥ t)B(t, A)]

E[πλ{β′
0Z+H0(t)}R(t)]

+
E[ΔZλ{β′

0Z+H0(Y )}I(Y ≥ t)B(t, Y )]

E[πλ{β′
0Z+H0(t)}R(t)]

−E[ΔZλ{β′
0Z+H0(Ṽ )}I(Ṽ ≥ t)B(t, Ṽ )]

E[πλ{β′
0Z+H0(t)}R(t)]

]

Step 2: Here we show the asymptotic normality of
U{β0, Ĥ(·,β0)}. Using the results of step 1 and some em-
pirical process approximation techniques, we can write

U{β0, Ĥ(·,β0)}

=
n∑

i=1

∫ τ

0

πiZi

[
dNi(t)−Ri(t)dΛ{β′

0Zi + Ĥ(t,β0)}
]

=

n∑
i=1

∫ τ

0

πiZidMi(t)

−
n∑

i=1

∫ τ

0

πiZiRi(t)

·
[
dΛ{β′

0Zi + Ĥ(t,β0)} − dΛ{β′
0Zi +H0(t)}

]

=
n∑

i=1

∫ τ

0

πi[Zi − μz(t)]dMi(t) + op(n
− 1

2 )

=

n∑
i=1

∫ τ

0

[Zi − μz(t)]dMi(t)

+

n∑
i=1

∫ τ

0

(πi − 1)[Zi − μz(t)]dMi(t) + op(n
− 1

2 ).

Similarly to Kulich and Lin (2000) and Lu and Tsiatis
(2006), it is easy to show that the first two terms on the
right side of the above equation are uncorrelated. The first
term is the sum of n independent zero-mean random vec-
tors, which converges in distribution to a zero-mean normal
random vector with covariance matrix

Σ1 = E

[∫ τ

0

{Z− μz(t)}dM(t)

]⊗2

.

By a slight extension of Hájek’s (1960) central limit theo-
rem for simple random sampling, the second term converges
in distribution to a zero-mean normal random vector with
covariance matrix

Σ2 =
1− p

p
E

{
(1− δ)

[∫ τ

0

{Z− μz(t)}dM(t)

]⊗2
}

−1− p

p

{
E

[
(1− δ)

∫ τ

0

{Z− μz(t)}dM(t)

]}⊗2

.

Therefore, n−1/2U{β0, Ĥ(·,β0)} is asymptotically zero-
mean normal with covariance matrix Σ = Σ1+Σ2. By simple
algebra, we show that

Σ = E

{
{δ + (1− δ)/p}

[∫ τ

0

{Z− μz(t)}dM(t)

]⊗2
}
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−1− p

p

{
E

[
δ

∫ τ

0

{Z− μz(t)}dM(t)

]}⊗2

.

By Taylor’s expansion and some empirical process ap-
proximation techniques, n1/2(β̂−β0) is asymptotically zero-
mean normal with covariance matrix A−1ΣA−1.

To show the weak convergence of
√
n{Ĥ(t, β̂) − H0(t)},

we have

√
n{Ĥ(t, β̂)−H0(t)}

=
√
n{Ĥ(t, β̂)− Ĥ(t,β0)}+

√
n{Ĥ(t,β0)−H0(t)}

=
√
n

∂

∂β
Ĥ(t,β)|β=β0

(β̂ − β0)

+
√
n{Ĥ(t,β0)−H0(t)}+ op(1).

The first term on the right hand side equals

n−1/2D(t)A−1
n∑

i=1

∫ τ

0

πi[Zi − μz(t)]dMi(t) + op(1),

where

D(t) = −
∫ t

0

B(s, t)

B2(s)
BZ

1 (s)dH0(s).

To tackle the second term, observe that

n∑
i=1

πidMi(t)

=

n∑
i=1

πiRi(t)

·
[
dΛ{β′

0Zi + Ĥ(t,β0)} − dΛ{β′
0Zi +H0(t)}

]

=

n∑
i=1

πiRi(t)

· d
[
λ{β′

0Zi +H0(t)}{Ĥ(t,β0)−H0(t)}
]

+op(n
−1/2)

=

n∑
i=1

πiRi(t)λ̇{β′
0Zi +H0(t)}[Ĥ(t,β0)−H0(t)]dH0(t)

+
n∑

i=1

πiRi(t)λ{β′
0Zi +H0(t)}d[Ĥ(t,β0)−H0(t)]

+op(n
−1/2).

Let

Jn(t) =

∑n
i=1 πiRi(t)λ̇{β′

0Zi +H0(t)}∑n
i=1 πiRi(t)λ{β′

0Zi +H0(t)}
,

and J(t) = limn→∞ Jn(t). Then we have∑n
i=1 πidMi(t)∑n

i=1 πiRi(t)λ{β′
0Zi +H0(t)}

= Jn(t)[Ĥ(t,β0)−H0(t)]dH0(t)

+d[Ĥ(t,β0)−H0(t)] + op(n
−1/2).

Therefore,

exp

{∫ t

0

J(s)ds

}
(Ĥ(t,β0)−H0(t))

=
n∑

i=1

∫ t

0

exp{
∫ s

0
J(u)du}πidMi(s)∑n

j=1 πjRj(t)λ{β′
0Zj +H0(t)}

+ op(n
−1/2).

It follows that

Ĥ(t,β0)−H0(t)

=
1

n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
πidMi(s) + op(n

−1/2).(10)

Combining the above two equations, we have

√
n{Ĥ(t, β̂)−H0(t)}

=
1√
n
D(t)A−1

n∑
i=1

∫ τ

0

πi[Zi − μz(t)]dMi(t)

+
1√
n

n∑
i=1

∫ t

0

B(s, t)

B2(s)
πidMi(s) + op(1).(11)

By the Hájek’s (1960) central limit theorem,
√
n{Ĥ(t, β̂)−

H0(t)} converges in finite dimensional distribution to a
mean-zero Gaussian process.
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