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A comparison of methods for estimating
parameters of the type | discrete Weibull

distribution

ALESSANDRO BARBIERO

The type I discrete Weibull distribution can be used in
reliability problems for modeling discrete failure data, such
as the number of shocks, cycles, or runs a component or
structure can overcome before failing. This paper refines and
compares some existing methods for estimating its param-
eters and proposes and evaluates approximate confidence
intervals for large samples. A Monte Carlo simulation study
was performed in order to assess the statistical performance
of the methods for different parameter combinations and
sample sizes and then give some indication for their mindful
use. Examples are considered as a practical application of
the proposed procedures. A software implementation of the
model is provided as a contributed package in the R pro-
gramming environment, which reveals a useful and friendly
tool for the researcher who has to handle discrete Weibull
data.
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1. INTRODUCTION

Almost all reliability studies assume that time is con-
tinuous and continuous probability distributions, such as
exponential, gamma, Weibull, normal, and lognormal, are
commonly used to model the lifetime of a component or
a structure. These distributions and the methods for esti-
mating their parameters are well-known. In many practical
situations, however, lifetime is not measured with the calen-
dar time, for example, when the equipment works in cycles
or on demands and the number of cycles or demands prior
to failure is observed, or when the regular operation of the
equipment is monitored once per period, and the number of
time periods successfully completed is observed. Moreover,
reliability data are often grouped into classes or truncated
according to some censoring criterion. In all these situations,
lifetime is modeled as a discrete random variable (r.v.). In-
deed, not so much work has been done in reliability for
discrete data. Reference [1] provided an exhaustive survey
on discrete lifetime concepts and distributions. Generally,
most reliability concepts for continuous lifetimes have been

adapted to the discrete context; in particular, discrete coun-
terparts of continuous distributions have been introduced;
see for example [2]. In this context, geometric and negative
binomial distributions are known to be the corresponding
discrete alternatives for the exponential and gamma distri-
butions, respectively. Yet, discrete lifetime distributions can
also be defined without any reference to a continuous coun-
terpart.

As a discrete alternative to the Weibull distribution, three
main forms have been introduced. The first one, which this
article takes into consideration, was introduced in [3] and is
referred to as type I discrete Weibull; its use has been re-
cently extended to further fields of application, that is, for
modeling the distribution of pathogen counts in treated wa-
ter over time [4]. The second one was proposed and studied
in [5], the third in [6]. From a different perspective and with
a different objective, Roy and Dasgupta [7] proposed a dis-
cretization method for continuous r.v. for the computation
of reliability in complex stress-strength models, with a spe-
cific application to the Weibull r.v.; thus deriving another
alternative discrete Weibull distribution.

Type I discrete Weibull (henceforth simply discrete
Weibull) r.v. was originally defined in [3] by the following
probability mass function:

P(X =ux;q,8) = q””/j — q(‘"”l)[j x=0,1,...
with 0 < ¢ < 1 and 8 > 0. If one would confine the support
of this discrete r.v. to the positive integers only (see [8]), in
order to model discrete lifetimes that cannot assume zero
value, then the probability mass function becomes
(1)

P(X =2;q,8) = ¢(x;0,8) = ¢V —¢*”

r=12,...
and the corresponding cumulative distribution function is
F(x;q,8) = 1—q”36 r=1,2,...

again with 0 < ¢ < 1 and 8 > 0. Note that for § = 1,
the discrete Weibull r.v. reduces to the geometric r.v. with
parameter p =1 — q.

Its failure rate is

r(z;q,8) = P(X =2)/P(X > 2) =1 — ¢* ~@D"
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for x = 1,2,..., which is a monotone increasing function of
z for § > 1, a monotone decreasing function for 5 < 1, and
constant (equal to 1 — q) for g = 1.

The expected value is given by the following infinite con-
vergent series:

+oo +oo
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(2) B(X) =) a(q" " —¢") =) ¢
z=1 =0

its second-order moment is given by this other infinite con-
vergent series:
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The expected value of the reciprocal of the discrete Weibull
r.v. is computed as

+oo 1 5 5 +oo qxﬂ
BA/X) =D 6~ =1-3 oy
=1 =1

Note that for 8 = 1 (geometric distribution) E(X) =
(1 — a)/q and, being 3,2 ¢"/x = log[1/(1 — ¢)] and
SIRgle = g log[l/(1—q)l, E(/X) = (1 -
q)/qlog[1/(1 - q)].

This study first describes, refines, and discusses existing
procedures for the point estimation of parameters ¢ and 8
of the discrete Weibull r.v. and then suggests and exam-
ines large-sample interval estimators for the same parame-
ters (Section 2). An extensive Monte Carlo study assesses
and compares the performance of these estimators, for dif-
ferent combinations of the parameters and sample sizes; a
software implementation of the model in the R programming
environment is also briefly presented (Section 3). The esti-
mation procedures are applied to two datasets taken from
the literature (Section 4). Finally, some summarizing indi-
cations and remarks conclude the article (Section 5).

2. POINT AND INTERVAL ESTIMATION
OF THE PARAMETERS

Focusing on the point estimation of the parameters of the
discrete Weibull r.v., three techniques discussed in the lit-
erature are now described: the method of proportion, which
is strictly related to the specific features of the distribution
function of the discrete Weibull r.v.; the classical method of
moments; and the maximum likelihood method. Moreover,
an alternative method of moments will be introduced. All
the methods assume that both parameters of the distribu-
tion are unknown.

Method of proportion The method, introduced in [8] and
extended, with the appropriate modifications, to the esti-
mation of the parameters of a discrete inverse Weibull dis-
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tribution, see [9], relies on the following equality, valid for
the discrete Weibull r.v.: P(X = 1) = 1 — ¢, by which an
estimate of ¢ is gp = 1— 1" | I;,=1/n = 1—y/n, where I,
is the indicator function, which equals 1 if A is true, and 0
if A is false, so that y = Y. | I,,—1 denotes the number of
1s in the sample. Following similar arguments, an estimate
of B is provided:

(4)  Bp =log{log(1 —y/n—z/n)/log(1 —y/n)} /log2

where z denotes the number of 2s in the sample: z =
>t Is;=2. The method fails if there are no 1s in the sam-
ple: in this case, gp = 1, which is a boundary value for g,
and, more importantly, 8p cannot be computed. This is par-
ticularly frequent for small samples and for high values of q.
The method fails in computing an estimate for § also if the
sample contains only 1s and 2s (y + z = n). Furthermore, if
some 1s are present in the sample, but there are no 2s (that
means y # 0 and z = 0), then by formula (4), the estimate
B p reduces to 0, which is a boundary value for 5.

Mazimum  likelihood  method Having  defined the
log-likelihood  function as (g, B;21,...,2n) =
log [Ty é(xi:0.8) = S log(qt™ ™" — ¢7), the

maximum likelihood estimates of ¢ and S are obtained
by maximizing [(q, 5;1,...,2,) with respect to ¢ and
B. The solution to the maximization of I(q, 5;21,...,%n)
(with the constraints that ¢ and 8 belong to their natural
parameter spaces) can be obtained only numerically, for
example, by using the packages nlm or Rsolnp in R [10],
which allow the user to solve nonlinearly constrained
minimization/maximization problems. It is worth noting
that even this method cannot be applied to every possible
sample; in particular, the method fails to provide a solution
if y + z = n. In this case, in fact, it can be easily proved
that the first-order partial 5 derivative of the log-likelihood
function is never null; the log-likelihood function does not
have an absolute maximum in the parameter space. Let
(Gmr, Bamr) denote the maximum likelihood estimates of
(¢, ), when they exist.

Method of moments The parameter estimates are obtained
solving the equations E(X) = p; = m; and E(X?) =
e = mg in terms of B and g, where m; and my are the
first- and second-order sample moments: m; = %Z:L:l T,
myg = %Z?zl x2. Since they cannot be solved analyti-
cally, as suggested in [8], one can minimize with respect
to ¢ and B the quadratic loss function L(q, 8;21,...,%n) =
(my — p1)? + (ma — p2)?. The task can be carried out, for
example, using again the packages nlm or Rsolnp in the R
environment. The solution is the couple (Gas, Bar).

A modified version of the method of moments can be
provided, following somehow a proposal for the Birnbaum-
Saunders distribution [11], by considering the expected value
of the reciprocal of X, p_; = E(1/X) (instead of the sec-
ond moment of X), and equating it to the sample analogous,
m_1 =1/nY"  1/z;. The parameter estimates can be ob-
tained by minimizing £*(q, 8;71,...,2,) = (m1 — p1)? +



(m_1 — pu_1)%. The solution of this modified method of mo-
ments is denoted as (BM*@M*)-

As starting values of 5 and q for the iterative algorithm of
the minimization procedure, one can set 3(°) = 1, then, by
substituting this value to 8 in the expression of F(X), one
obtains E(X) = Y4 ¢* = 1/(1—¢) and equating E(X) to
the first sample moment mq, a launch value for q is derived:
¢ = (my —1)/my.

When the sample contains only 1s and 2s, the method of
moments, as well as its modified version, is not applicable.
To see this, first, consider the probability mass function of
the discrete Weibull r.v. (1), and note that letting 8 tend to
400, it degenerates into a r.v. that takes only two values: 1
with probability 1 — ¢ and 2 with probability ¢. It is then
clear that if the sample is made up of a fraction r of 1s
and a fraction (1 — ) of 2s, the equality of both first and
second moments computed on the sample and on the original
r.v. holds for ¢ = 1 — r and 8 — 4oco. In this case, the
loss function L(q, 8;x1,...,x,) does not admit an absolute
minimum but only an inferior limit.

Given the complexity of the estimators listed in this sec-
tion (only the method of proportion provides an analytical
expression for them), not so much can be analytically de-
rived about their statistical properties for finite sample size.
When the method of proportion can be applied, it provides
an unbiased and consistent estimator for ¢; Sp has been
shown to be consistent as well, but nothing can be said about
its unbiasedness [8]. For large samples, the general proper-
ties of the estimators derived from the maximum likelihood
and moments methods can be recalled. The method of pro-
portion and the method of moments have been empirically
explored and compared for several parameter configurations
by [8], where their MC means and variances were computed.
The maximum likelihood method was not taken into consid-
eration there; it was later investigated through simulation
by [12], where it was applied to discrete Weibull censored
data, and concluded that the method performed well for
large values of ¢ and 8 > 1. The simulation results in [8],
even if not completely reliable since they are based on 100
MC replications only and on few parameter combinations,
at least highlight that the variance of 8p is often far greater
than that derived by Bjs. The bias (in absolute value) of the
estimators of ¢ and (8 derived by both methods is rather high
for ¢ = 0.5,8 = 0.5, even for large sample size (n = 100).
A more detailed study on maximum likelihood estimators
was performed in [1]. Summarizing the results, §prr overes-
timates ¢ when ¢ < 0.9 and underestimates it when g > 0.9;
its bias is independent of 3; By, slightly biased, shows more
variability than ¢, y,. The maximum likelihood method gives
good results for large values of ¢ and less reliable results for
small values of ¢. These findings confirm those of [12] for
censored data.

With regard to the interval estimation of the parameters
B and g, little work has been done so far. In [12], the (ap-
proximate) maximum likelihood estimators of 8 and ¢ for
type I censored data were considered, and their joint distri-

bution was proved to be asymptotically bivariate normal so
that customary confidence intervals were easily derived. In
fact, even if the maximum likelihood estimators for # and ¢
do not have a close expression, the Fisher information ma-
trix can be at least numerically derived, and the following
well-known asymptotic result holds for complete samples:

0w ((32)-(3)) 5 (3

where I71(q, 3) is the inverse of the Fisher information ma-
trix

qmL
Bumr

9% log ¢(wi;q,8)  0°log ¢(xi;q,8)
0q2 9q0p

9% log ¢(zi;q,8)  9°log ¢(wi;q,8)
0B0q 032

6) I(¢,8)=-E

Alternatively, the result in (5) can be expressed as

( 7324 )’“M( 3 ) 7(g,8)/m)

Letting f(qML,BML) denote the matrix obtained by sub-
stituting the sample means to the expected values and the
maximum likelihood estimates to the unknown parameters
into (6), I~*(4ar,Bmr) its inverse, and I;,*(darr, Barr),
f{;(@M L, B M) its diagonal elements, then approximate
confidence intervals for ¢ and 8 at 1 — « level can be pro-
vided:

(ar.qu) = (Gur F Zlfa/Q\/IAﬁl (Gurrs Barr) /)
(Br: Bu) = (Bur F Zl—a/Q\/fz_zl(QMLa Bu)/n)

Note that the CI are built independently for ¢ and 3, even
if independence between ¢y, and Sy, does not hold.

Here, the exact expression of the Fisher information ma-
trix I(q,8) is not presented since its derivation could be
cumbersome and its expression quite complex; nevertheless,
its sample analogous I (Gamrr, Barr) can be computed by well-
known statistical software programs, such as R and Mathe-
matica.

In the next section, a more complete and extensive simu-
lation study is presented, which has been performed in order
to investigate the performance of the estimation methods
discussed so far and outline some practical advice for their
employment.

3. SIMULATION STUDY

In this section, the design of a Monte Carlo simulation
study is first outlined, and then the results are presented
and discussed.

3.1 Simulation design

The Monte Carlo simulation study investigated the esti-
mators presented in the previous section; the point estima-
tors were compared in terms of percentage Monte Carlo rel-

ative bias (RB), defined as RB(0) = (Epc(0)—6)/6-100%,
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Table 1. Parameter combinations and corresponding expected value, standard deviation, and 0.99 quantile for the simulation

study
¢ B EX) SD(X) F 5099 ¢ B FEX) SD(X) F (0.99)

03 05 2.08 3.01 15 0.7 08 4.65 5.16 25
03 08 1.53 1.07 6 07 1  3.33 2.79 13
0.3 1 143 0.78 4 0.7 1.2 274 1.86 9
05 05 4.79 9.24 45 0.7 1.5 230 1.24 6
0.5 0.8 237 2.21 11 09 1 10 9.49 44
05 1 2 1.41 7 09 12 6.64 5.14 24
05 1.2 1.82 1.06 5 09 1.5 455 2.76 13

09 2 323 1.46 7

where 0 is an estimator of the parameter 6 (here, ¢ or f3),
and standard deviation (SD); the performance of the 95%
confidence intervals was stated in terms of coverage (C) and
average length (AL).

Several parameter combinations and sample sizes (n =
10,20, 50, 100) were considered. The values of the pair (g, /)
were chosen in order to explore a large spectrum of the dis-
crete Weibull distribution, in particular, to comprise increas-
ing, constant, and decreasing failure rates. At the same time,
the parameters were set in order to keep the discrete nature
of the distribution reasonable: values entailing a nonneg-
ligible probability for a large number of integers were de-
liberately excluded (in this case, a continuous r.v. should
be preferred to model failure data). Analogously, parame-
ter values ensuring a nonnegligible probability for just the
first integers were avoided (one assumes the component that
is monitored is likely to last for more than one or two cy-
cles). Table 1 shows the combinations of ¢ and 5 explored
in the simulation study, along with the corresponding ex-
pected value, standard deviation, and 99% quantile of the
distribution. A note about the computation of the expected
value and standard deviation is due: they are calculated nu-
merically (see formulas 2 and 3), considering the first 7myax
integers, with npy.x as large as possible (F~1(1 — ¢), with €
sufficiently small).

The Monte Carlo simulation study was based on 5,000
replications for each scenario and was carried out under the
R programming environment. The type I discrete Weibull
model has been implemented in the R environment through a
contributed package, DiscreteWeibull [15], freely available
on the CRAN website, which comprises several functions,
implementing the probability mass function, the cumulative
distribution function, the quantile function, the random gen-
eration, the computation of the first- and second-order mo-
ments, and the point and interval estimation. The package
also provides analogous routines for the competitor type III
discrete Weibull model.

The package is an easy-to-use tool for any researcher or
user who has to handle this distribution, either for analyzing
discrete data that can be fitted by it or for assessing methods
or techniques of statistical analysis that require a massive
simulation of artificial data. Further details can be found in
the accompanying package manual.
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3.2 Simulation results

Tables 2 and 3 show the relative bias and standard de-
viation for each estimator derived from the four methods,
under each combination of the two parameters and with
n = 10,20, and n = 50,100, respectively. The study took
into account the drawback of the methods discussed above,
computing the MC quantities over the feasible samples only.
With this respect, the worst scenarios were those character-
ized by ¢ =0.3,8 =1, and ¢ = 0.9, 8 = 2, both for n = 10.
In the first case, 1,843 samples out of 5,000 (36.9%) were
nonfeasible in all the methods (they contained only 1s and
2s); in the second case, 1,721 samples were not feasible for
the method of proportion (34.4%; they did not contain any
1). Increasing the sample size strongly reduces the presence
of nonfeasible samples: for n = 50, just a few parameter
configurations are affected by this drawback, with a per-
centage of nonfeasible samples in any case smaller than 1%;
for n = 100 and for each parameter configuration, all the
samples are feasible.

As to the estimators of ¢, as said in Section 2, §p is an un-
biased estimator for g. This is empirically confirmed by the
simulation study results; in fact, the Monte Carlo percentage
relative bias is almost negligible under each combination of
parameters, especially for larger samples (in absolute value,
always smaller than 2.65%). The other three estimators of ¢
show a larger relative bias; in particular, ¢p; looks the most
biased: for n = 10, its relative bias reaches 36%, while gy,
never exceeds 18% and G 17%. As a general trend, the rel-
ative bias of qpr, Garr, and Gz« is larger for smaller values
of g. Surprisingly, ¢ar« shows a relative bias always smaller
than §ps for small samples (n = 10). For n = 100, §us,
qnrs+, and §prr are nearly unbiased. The standard deviation
of the estimator derived from the method of proportion is
overall greater than or close to those of its competitors. For
large samples and for small values of both ¢ and § (here,
g = 0.3 and § = 0.5), §p performance improves, and §p
shows to be even better than ¢, and comparable with the
other two estimators. The degradation of §p as g increases
is easily justified since it is based on the number of 1s in the
sample, whose expected value is proportional to 1 — ¢, and
neglects all the other information contained in the sample.
The greater the ¢, the smaller the number of 1s, and the



Table 2. Simulation results for point estimators (1). Legend: P = method of proportion, M = method of moments, M* =
modified method of moments, ML = maximum likelihood method, RB = percentage relative bias, SD = standard deviation

q P M M* ML B P M M* ML
n =10
09 RB -0.04 0.31 -0.18 0.29 2 RB -21.42 16.57 19.36 18.50
SD 0.095 0.071 0.080 0.074 SD 0.798 0.701 0.883 0.825
09 RB -0.04 0.65 -0.24 0.25 1.5 RB -26.09 16.75 16.78 16.92
SD 0.095 0.067 0.078 0.073 SD 0.770 0.484 0.594 0.549
09 RB -0.04 1.08 -0.28 024 12 RB -29.68 18.01 15.53 16.67
SD 0.095 0.064 0.077 0.073 SD 0.723 0.371 0.446 0.434
09 RB -0.04 1.51  -0.37 0.23 1 RB -31.59 1883 14.06 16.50
SD 0.095 0.060 0.076 0.072 SD 0.682 0.293 0.348 0.358
0.7 RB 0.00 2.64 0.77 201 15 RB 8.03 19.92 16.51 19.59
SD 0.144 0.128 0.136 0.134 SD 0.788 0.594 0.671 0.686
0.7 RB 0.00 3.69 0.73 1.88 1.2 RB 8.06 2230 16.31 19.03
SD 0.144 0.125 0.134 0.134 SD 0.740 0.456 0.502 0.502
0.7 RB 0.00 4.92 0.69 1.75 1 RB 843 2494 16.10 18.53
SD 0.144 0.122 0.133 0.133 SD 0.692 0.374 0.401 0.404
0.7 RB 0.00 7.35 0.75 1.73 0.8 RB 7.39 30.15 16.18 18.23
SD 0.144 0.118 0.132 0.133 SD 0.651 0.295 0.307 0.315
0.5 RB 0.14 7.91 4.24 5.71 1.2 RB 5.17 21.48 14.57 17.86
SD 0.158 0.144 0.149 0.151 SD 0.649 0.464 0.493 0.508
0.5 RB 0.14 8.82 3.57 4.89 1 RB 7.25 2727 17.73  20.72
SD 0.158 0.143 0.149 0.152 SD 0.620 0.409 0.432 0.454
0.5 RB 0.14 11.22 3.00 4.09 0.8 RB 8.60 34.13 19.97 22.17
SD 0.158 0.143 0.149 0.153 SD 0.579 0.337 0.353 0.376
0.5 RB 0.14 22.91 2.74 3.36 0.5 RB 10.75 5545 24.07 23.57
SD  0.158 0.144 0.150 0.155 SD 0.479 0.223 0.226 0.245
0.3 RB 2.65 24.10 16.91 17.88 1 RB -13.26 17.42 6.87 8.47
SD 0.138 0.128 0.132 0.137 SD 0.546 0.369 0.399 0.430
0.3 RB 2.65 25.01 14.75 1530 0.8 RB -8.00 30.36 15.69 16.43
SD 0.138 0.128 0.132 0.137 SD 0.508 0.326 0.353 0.386
0.3 RB 2.65 35.85 12,55 11.93 0.5 RB -1.33  61.55 31.93  29.02
SD 0.138 0.135 0.131 0.141 SD 0.430 0.250 0.271 0.300
n =20
09 RB -0.17 0.06 -0.22 0.08 2 RB -1.06 7.23 7.97 7.63
SD 0.068 0.051 0.057 0.053 SD 0.768 0.430 0.529  0.447
09 RB -0.17 0.24 -0.26 0.04 15 RB -2.01 7.63 7.00 7.14
SD 0.068 0.050 0.056 0.052 SD 0.738 0.309 0.365 0.323
09 RB -0.17 0.48 -0.28 0.04 12 RB -3.28 8.57 6.60 7.05
SD 0.068 0.049 0.055 0.052 SD 0.702 0.245 0.279 0.255
09 RB -0.17 0.72 -0.33 0.03 1 RB -4.30 9.29 6.10 6.98
SD  0.068 0.047 0.054 0.052 SD 0.671 0.199 0.222 0.212
0.7 RB -0.21 1.21 0.11 0.81 1.5 RB 5.26 9.04 6.83 8.35
SD  0.102 0.093 0.097 0.096 SD 0.581 0.353 0.378 0.369
0.7 RB -0.21 1.96 0.16 0.80 1.2 RB 5.31 10.40 6.69 8.03
SD 0.102 0.091 0.096 0.095 SD 0.541 0.277 0.291 0.287
0.7 RB -0.21 2.84 0.16 0.75 1 RB 5.72 12.26 6.72 7.91
SD 0.102 0.091 0.095 0.095 SD 0.503 0.234 0.237 0.238
0.7 RB -0.21 4.60 0.20 0.75 0.8 RB 5.85 15.77 6.86 7.81
SD 0.102 0.090 0.094 0.094 SD 0.472 0.193 0.185 0.188
0.5 RB -0.02 2.98 0.84 1.66 1.2 RB 4.63 12.68 8.64 10.37
SD 0.111 0.107 0.109 0.110 SD 0.455 0.322 0.335 0.341
0.5 RB -0.02 4.12 0.84 1.56 1 RB 450 14.71 8.95 10.36
SD 0.111 0.106 0.108 0.109 SD 0.426 0.271 0.279 0.288
0.5 RB -0.02 6.49 0.96 1.51 0.8 RB 4.43 18.52 9.58 10.47
SD 0.111 0.106 0.107 0.109 SD 0.395 0.221 0.222 0.232
0.5 RB -0.02 16.91 1.21 1.51 0.5 RB 4.64 3261 11.05 10.27
SD 0.111 0.106 0.107 0.109 SD 0.321 0.147 0.136 0.144
0.3 RB 0.30 8.98 5.22 5.84 1 RB -1.35  14.03 7.62 8.89
SD  0.102 0.097 0.098 0.099 SD 0.403 0.296 0.314 0.327
0.3 RB 0.30 10.04 3.99 433 0.8 RB 2.11  21.89 12,55 13.10
SD 0.102 0.098 0.098 0.100 SD 0.383 0.262 0.276 0.291
0.3 RB 0.30 20.46 3.52 3.1 0.5 RB 5.37 39.68 19.13 17.03
SD 0.102 0.105 0.099 0.101 SD 0.320 0.187 0.195 0.208
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Table 3. Simulation results for point estimators (2). Legend: P = method of proportion, M = method of moments, M* =
modified method of moments, ML = maximum likelihood method, RB = percentage relative bias, SD = standard deviation

q P M M* ML B8 P M M* ML
n = 50
09 RB -0.01 0.08 -0.03 0.11 2 RB 5.76 2.90 3.02 3.10
SD 0.042 0.032 0.036 0.033 SD 0.670 0.251 0.293 0.256
09 RB -0.01 0.13  -0.05 0.09 15 RB 6.95 3.11 2.71 2.92
SD 0.042 0.032 0.034 0.032 SD 0.626 0.186 0.206 0.186
09 RB -0.01 0.19  -0.07 0.09 12 RB 7.56 3.50 2.57 2.90
SD 0.042 0.033 0.034 0.032 SD 0.587 0.154 0.159 0.147
09 RB -0.01 0.25 -0.10 0.09 1 RB 8.11 3.82 2.38 2.86
SD 0.042 0.033 0.033 0.032 SD 0.555 0.129 0.129 0.122
0.7 RB -0.02 0.58 0.11 042 15 RB 2.15 3.71 2.72 3.37
SD 0.063 0.059 0.061 0.060 SD 0.341 0.210 0.218 0.212
0.7 RB -0.02 0.95 0.13 042 1.2 RB 2.14 4.42 2.68 3.26
SD 0.063 0.059 0.060 0.059 SD 0.320 0.170 0.170 0.167
0.7 RB -0.02 1.41 0.13 0.41 1 RB 2.17 5.39 2.71 3.22
SD 0.063 0.061 0.059 0.059 SD 0.300 0.147 0.139 0.138
0.7 RB -0.02 2.42 0.17 0.42 0.8 RB 1.81 7.40 2.82 3.22
SD 0.063 0.064 0.059 0.059 SD  0.277 0.127 0.109 0.110
0.5 RB 0.08 1.38 0.37 0.75 1.2 RB 2.07 5.58 3.68 4.43
SD 0.070 0.068 0.069 0.069 SD 0.281 0.199 0.201 0.202
0.5 RB 0.08 2.01 0.40 0.73 1 RB 2.09 6.48 3.67 4.25
SD 0.070 0.069 0.068 0.068 SD 0.259 0.168 0.164 0.166
0.5 RB 0.08 3.40 0.46 0.74 0.8 RB 2.11 8.53 3.88 4.24
SD 0.070 0.070 0.068 0.068 SD 0.236 0.140 0.130 0.133
0.5 RB 0.08 10.69 0.61 0.73 0.5 RB 2.10 17.48 4.61 4.16
SD 0.070 0.077 0.068 0.068 SD 0.192 0.100 0.081 0.082
0.3 RB -0.06 2.43 0.69 0.99 1 RB 3.17 9.56 6.41 7.03
SD 0.064 0.063 0.063 0.064 SD 0.288 0.225 0.231 0.235
0.3 RB -0.06 3.91 0.68 0.85 0.8 RB 2.89 11.89 6.88 7.10
SD 0.064 0.064 0.064 0.064 SD 0.254 0.182 0.183 0.189
0.3 RB -0.06 12.16 1.09 0.87 0.5 RB 2.48  20.68 7.98 6.81
SD 0.064 0.069 0.063 0.064 SD 0.201 0.121 0.113 0.116
n = 100
09 RB -0.02 0.01  -0.03 0.04 2 RB 2.83 1.37 1.49 1.50
SD 0.030 0.023 0.025 0.023 SD 0.443 0.172 0.200 0.174
0.9 RB -0.02 0.02 -0.04 0.03 1.5 RB 3.40 1.42 1.32 1.41
SD 0.030 0.023 0.025 0.023 SD 0.416 0.128 0.141 0.126
09 RB -0.02 -0.01 -0.06 0.02 1.2 RB 3.75 1.46 1.23 1.39
SD 0.030 0.024 0.024 0.023 SD 0.388 0.108 0.110 0.101
09 RB -0.02 -0.03 -0.08 0.02 1 RB 3.90 1.46 1.13 1.37
SD 0.030 0.024 0.024 0.023 SD 0.366 0.090 0.089 0.084
0.7 RB -0.07 0.22 -0.01 0.14 1.5 RB 1.00 1.79 1.33 1.61
SD  0.047 0.043 0.044 0.043 SD 0.242 0.146 0.152 0.146
0.7 RB -0.07 0.39 0.00 0.13 1.2 RB 1.01 2.10 1.29 1.52
SD  0.047 0.043 0.044 0.043 SD 0.228 0.118 0.118 0.114
0.7 RB -0.07 0.64 0.02 0.14 1 RB 0.87 2.64 1.33 1.54
SD  0.047 0.045 0.043 0.043 SD 0.212 0.104 0.096 0.095
0.7 RB -0.07 1.18 0.02 0.13 0.8 RB 0.89 3.72 1.35 1.51
SD 0.047 0.049 0.043 0.043 SD 0.194 0.091 0.076 0.076
0.5 RB 0.04 0.65 0.17 0.34 1.2 RB 1.13 2.67 1.78 2.09
SD 0.050 0.049 0.049 0.049 SD 0.193 0.135 0.135 0.135
0.5 RB 0.04 0.96 0.17 0.32 1 RB 1.22 3.19 1.82 2.06
SD 0.050 0.050 0.049 0.049 SsD 0.180 0.117 0.111 0.112
0.5 RB 0.04 1.71 0.20 0.32 0.8 RB 1.29 4.30 1.91 2.05
SD 0.050 0.052 0.049 0.049 SD 0.165 0.100 0.088 0.089
0.5 RB 0.04 6.67 0.26 0.32 0.5 RB 1.26 10.16 2.26 2.03
SD 0.050 0.062 0.048 0.049 SD 0.134 0.076 0.055 0.055
0.3 RB -0.18 0.96 0.06 0.21 1 RB 1.88 4.74 3.11 3.39
SD 0.046 0.046 0.046 0.046 SD 0.201 0.155 0.156 0.157
0.3 RB -0.18 1.92 0.14 0.22 0.8 RB 1.56 5.86 3.12 3.19
SD 0.046 0.046 0.045 0.045 SD 0.176 0.125 0.121 0.122
0.3 RB -0.18 7.43 0.34 0.23 0.5 RB 1.46 11.59 3.66 3.05
SD 0.046 0.052 0.045 0.045 SD 0.139 0.088 0.075 0.076
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Figure 1. Boxplot of § (left) and j3 (right) (¢ = 0.7, 8 = 1.2, n. = 50).

less reliable its estimate ¢p. The standard deviation of gy«
is overall larger than that of ¢y, especially for n = 10; the
difference diminishes, increasing the sample size.

As to the estimators of [, their relative bias is not so
negligible: even for n = 100, it is never less than 0.8% under
the scenarios considered. All the estimators but B p always
overestimate 3. For n = 10 and ¢ = 0.3, 3 = 0.5, the rela-
tive bias of B, Bars, and Barr gets up to 62%, 32%, and
29%, thus making the estimates very unreliable. B p in this
sense is preferable since its relative bias in absolute value is
kept down, yet for some combinations of the parameters, it
underestimates 8. Performances get better for larger values
of n; 313 and, as a second choice, BM* are overall prefer-
able.

The standard deviations of all the four estimators of 3
decrease as 3 decreases, for fixed ¢ and n. For fixed 8 and
n, a clear monotonic relationship between the standard de-
viations of the Bs and ¢ is not apparent. Obviously, under
the same combination of parameters ¢ and 3, the standard
deviations decrease as the sample size increases. The stan-
dard deviations of BM and BM* look quite similar to each
other and overall greater than but comparable to that of
5 Mmr- For all sample sizes, and even for the largest one, ﬁ M,
B M+, and B ML present far smaller standard deviations than
ﬁ p, except for a very few scenarios.

Note that the general findings about the maximum like-
lihood method agree with the previous ones in [12], [1].

To better visualize the simulation results, the boxplots
of the MC sample distribution of the four estimators are
displayed for ¢ = 0.7, 8 = 1.2, and n = 50 (see Figure 1):
they show a similar behavior for the estimators of ¢, and a
higher variability, partially compensated by a lower bias, of
[p versus its competitors.

From this discussion, it is clear that there is not a “best”
estimator (in terms of bias or variability) for the parameters

q and S, a fortiori for the couple (g, ). As a general recom-
mendation, one should use the method of proportion — if
applicable — for small sample sizes (say smaller than 50)
as long as the sample contains a decent number of 1s and
2s, and one of the methods of moments or the maximum
likelihood method for larger sample sizes (say greater than
50) or when the sample does not contain many 1s or 2s.

Table 4 shows the simulation results (coverage and aver-
age length) for the 95% confidence intervals based on the
maximum likelihood estimates and Fisher approximation.
The performance of the confidence intervals for ¢ and [
based on maximum likelihood estimates are overall satis-
factory in terms of coverage even for moderate samples: the
coverage is never smaller than 87% for ¢ with n > 20 and
always close to 95% for 8. When n = 10, the confidence in-
terval for ¢ shows indeed a poor performance, especially for
high values of ¢; on the contrary, with the same sample size,
the confidence interval for 5 achieves coverage rates sensibly
larger than the nominal level (up to 97.7%).

Even if ¢ and 8 take values on different ranges, and then
a direct comparison cannot be carried out, one should ob-
serve that the confidence intervals for 8 are on average much
larger than those for q.

4. APPLICATIONS

In this section, we provide two examples of applications
of the inferential methods proposed so far. The first exam-
ple, based on a small-size dataset, allows us to illustrate also
the criticality of estimation procedures; the second example,
based on a larger sample, allows us a deeper statistical anal-
ysis.

4.1 Lifetimes of electronic components

The methods that have been illustrated and empirically
investigated in the previous sections are applied to a dataset

A comparison of methods for estimating parameters of the type I discrete Weibull distribution 209



Table 4. Simulation results for interval estimators. Legend: C = coverage rate, AL = average length of the confidence interval

q B q B q B q B q B
n=10 n =20 n = 50 n = 100
09 2 C 0816 0.971 0.873 0.953 0.916 0.954 0.929 0.951
AL 0.227 2622 0.187 1.172 0.126 0.964 0.090 0.668
09 15 C 0811 0953 0.873 0953 0.916 0.951 0.932 0.952
AL 0.226 1.835 0.187 1.172 0.124 0.706 0.089 0.490
09 1.2 C 0813 0952 0.872 0951 0.920 0.952 0.930 0.950
AL 0.225 1450 0.187 0.930 0.124 0.561 0.088 0.389
09 1 C 0813 0.951 0.874 0950 0.922 0.952 0.930 0.950
AL 0.225 1.202 0.187 0.772 0.123 0.466 0.088 0.323
0.7 15 C 0873 0975 0.907 0962 0.934 0.949 0.938 0.945
AL 0481 2211 0363 1.352 0.234 0.801 0.166 0.554
0.7 1.2 C 0872 0966 0.911 0956 0.937 0.951 0.943 0.947
AL 0478 1.693 0.360 1.059 0.232 0.632 0.165 0.437
07 1 C 0.875 0.962 0.908 0.954 0.936 0.951 0.943 0.945
AL 0477 1384 0.359 0.876 0.231 0.524 0.164 0.363
0.7 0.8 C 0872 0960 0.910 0.953 0.935 0.950 0.939 0.945
AL 0476 1.125 0.357 0.697 0.230 0.417 0.163 0.289
05 1.2 C 0890 0977 0.931 0.966 0.938 0.947 0.944 0.949
AL 0576 1971 0.420 1.302 0.269 0.762 0.190 0.523
05 1 C  0.885 0974 0.925 0.958 0.938 0.945 0.943 0.949
AL 0.574 1.676 0.418 1.073 0.267 0.628 0.190 0.432
05 08 C 0878 0965 0.927 0955 0.938 0.942 0.942 0.948
AL 0.572 1.354 0417 1.024 0.267 0500 0.189 0.344
05 05 C 0874 0960 0.927 0954 0.939 0.944 0.942 0.946
AL 0.570 0.856 0.415 0.529 0.266 0.311 0.188 0.214
03 1 C  0.937 0969 0.958 0.969 0.940 0.952 0.942 0.947
AL 0.552 1.834 0.396 1.397 0.251 0.874 0.178 0.587
0.3 08 C 0949 0972 0.953 0.967 0.939 0.949 0.941 0.946
AL 0.547 1589 0.394 1.162 0.250 0.688 0.177 0.461
0.3 05 C 0960 0970 0.947 0.959 0.939 0.947 0.941 0.947
AL 0540 1.120 0.391 0.752 0.250 0.424 0.177 0.285

of 20 lifetimes of electronic components taken from dataset
13.1 [13]:

2,3,6,6,7,9,9,10,10,11,12,12,12, 13,13, 13, 15, 16, 16, 18

If the data are assumed to follow a type I discrete Weibull
distribution, its parameters can be estimated through one
of the methods described in Section 2. Note that since the
sample does not contain any 1, the method of proportion for
the point estimation of 8 cannot be applied. The estimates
from the methods of moments and of maximum likelihood,
and the asymptotic confidence interval relying on the Fisher
information matrix are reported in Table 5. The estimates
of ¢q are all very close to 1; the estimates of £ are less close
to each other: the two methods of moments, in particular,
provide quite different values from the maximum likelihood
method.

4.2 Repair times for an airborne
communications receiver

Here, we consider a dataset containing the repair times
(in hours) for 46 failures of an airborne communications re-
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Table 5. Estimates of the parameters of the discrete Weibull
for the dataset of Section 4.1

point estimators

qm Bum qnr« Bar« dur  Bmer
0.9919 2.008 0.9903 1.902 0.998 2.636
large sample CI
qL qu Br Bu
0.9942  1.0000 1.655 3.618

ceiver (example 4.8 in [14]). Such data are indeed reported
as numbers with one decimal value; to adapt them to our
case, we round them up to the closer integer, in order to get
positive integer values. If the data are assumed to follow a
type I discrete Weibull distribution, its parameters can be
estimated through one of the methods described in Section
2. In this case, differently from the previous example, all the
estimation techniques can be applied. The estimates from
the methods of proportion, of moments, and of maximum
likelihood and the asymptotic confidence interval relying on
the (observed) Fisher information matrix are reported in



Table 6. Estimates of the parameters of the discrete Weibull for the dataset of Section 4.2

Point Estimators

qr Bp qum B Qs B« qur BurL
0.6304 0.7652 0.6090 0.7062 0.6251 0.7339 0.6213 0.7289
large-sample CI
qr qu AL Bu
0.4908 0.7518 0.5315 0.9263

Table 6. All the couples of point estimates are (pairwise)
very close to each other. This fact may let us expect that
the data can be fitted well by the discrete Weibull distribu-
tion.

In order to check the null hypothesis Hy, “The repair
times come from a dicrete Weibull random variable,” ver-
sus the alternative hypothesis Hy, “The repair times do not
come from a dicrete Weibull random variable,” we resort
to the classical goodness-of-fit x? test. To this aim, plug-
ging the maximum likelihood estimates of ¢ and S into the
probability density function, we compute the probabilities
for each integer value 0 < < max{z;,i=1,...,n} = 25.
Then we group the ordered observed values in order to build
classes whose theoretical absolute frequencies (denoted as
np;, where p; is the probability of the i-th class) are greater
than 5. Such classes and the corresponding observed and
expected frequencies are reported in Table 7. Finally, we
compute the usual x? statistic

k
P Z(nz —np;)?/(np;) = 0.0766
i=1

If the discrete Weibull model holds, that is, under Hy, x? is
asymptotically distributed as a chi-squared r.v. with k—1—p
degrees of freedom, where p is the number of parameters to
be estimated. In this case, K — 1 — p = 2, and the p-value
associated to the observed value x? is 0.9624. This means
that we accept Hy at any significance level « smaller than or
equal to 0.9624; in other words, the discrete Weibull model
fits the data very well.

5. CONCLUSIONS

This paper examined several estimators for the param-
eters of the type I discrete Weibull r.v. Due to the par-
ticular form of its probability mass function, only one of
the presented methods provides a closed form for both
the estimators, while the others (maximum likelihood and
method of moments, in its original and modified versions)
provide the estimates as numerical solution to a minimiza-
tion/maximization problem. It follows that not so much can
be said about the statistical properties of the estimators for
a finite sample size; then an extensive Monte Carlo simula-
tion study was carried out in order to assess their behav-
ior. Far from giving a definitive solution to the problem, the
study highlighted that the method of proportion provides an

Table 7. Observed and theoretical distribution for the dataset
of Section 4.2

class 1 2 3-4 5-8 >8
;i 17 8 9 7 5
np; 1742 7.68 846 T7.17 5.27

unbiased and reliable estimate for the first parameter, even
for small sample sizes, whereas the estimator of the second
parameter is empirically biased and suffers from an excessive
variability. The other methods provide estimates for the first
parameter affected by bias, which is nonnegligible for small
and moderate sample sizes and under some specific scenar-
ios and is on the contrary negligible for larger sample sizes
and under complementary configurations; the estimators of
the second parameter provided by these methods are biased
as well but overall more reliable in terms of precision than
the analogous provided by the method of proportion. The
study stressed that small size samples may make the method
of proportion and, less often, the method of moments and
of maximum likelihood unusable. The approximate confi-
dence intervals based on maximum likelihood estimates re-
veal themselves quite satisfactory even for moderate sample
sizes. The coverage rates are overall close to the nominal
level (here, set at 95%), especially for the interval estimator
of the second parameter (yet paid in terms of a large av-
erage length); the interval estimator of the first parameter
may provide a poor coverage for values close to 1 and small
samples.

Although the type I discrete Weibull model has met some
obstacles to its diffusion within the scientific community,
presumably due to the burdensome tractability of its prob-
ability mass function, nevertheless, it can be fruitfully used
and easily handled, as proved by the applications and soft-
ware implementation here presented.

A potential point of future research is further refining the
estimators presented in this work, improving their statisti-
cal performance. In this sense, the application of some kind
of resampling procedure (e.g., parametric bootstrap) may
provide some useful prompts.
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