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Energy bagging tree

TAOYUN CAO, XUEQIN WANG*, AND HEPING ZHANG

This paper introduces Energy Bagging Tree (EBT) for
multivariate nonparametric regression problems. The EBT
makes use of a measure of dispersion constructed from a
generalized Gini’s mean difference as node impurity, and
the tree split function therefore corresponds to the product
of energy distance and descendants’ proportions. As a non-
parametric extension of the between-sample variation in the
analysis of variance, this measure of dispersion serves well
for EBT in understanding certain complex data. Extensive
simulation studies indicate that EBT is highly competitive
with existing regression tree methods. We also assess the
performance of the EBT through a real data analysis on
forest fires.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G0S,
62H20; secondary 62P12.

KEYWORDS AND PHRASES: Multivariate nonparametric re-
gression, Energy bagging tree, Energy distance, Generalized
Gini’s mean difference.

1. INTRODUCTION

Multivariate data, where the focus of multivariate refers
to data with more than one response variable, have emerged
in many scientific areas such as ecology, biometrics, econo-
metrics, and medicine. It is often important to detect the
relationships between multivariate response variables and
explanatory variables. For instance, forest fires are a severe
environmental issue that endangers human lives. It is impor-
tant to timely assess the forest fire weather related factors
and spatial location including rain, wind, temperature, rel-
ative humidity, x-axis spatial coordinate, y-axis spatial co-
ordinate and examine the relationships with fuel moisture
codes containing Fine Fuel Moisture Code, Duff Moisture
Code, and Drought Code.

Multivariate regression trees (MRT), as a nonparamet-
ric data analysis tool, can explore the relationships between
multivariate response variables and explanatory variables by
building a tree-like model without assuming a specified re-
lationship or a distribution for the response variables. This
nonparametric regression method, as described by Death [6],
is flexible for analyzing complex data, involving imbalance
between covariates and nonlinear relationships between vari-
ables as well as high-order interactions, and its results are
intuitive for interpretation. Consequently, it has become a
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practical and useful regression tool as a complement to the
parametric regression models [6-12].

A number of impurity measures for MRT have been
proposed in the literature comprising multivariate sums of
squared deviations about the multivariate sample mean, the
sums of squared pairwise dissimilarities, and the Manhattan
distance [6]. The Mahalanobis distance is used as node im-
purity in [7]. Special cases and applications of MRT have
been considered and presented by various authors [8-12].

However, as Zhang and Wang [13] pointed out, tree-based
methods have two major limitations: tree structure can be
unstable even with minor data perturbations, resulting in
potentially unreliable prediction performance; and with a
large number of variables and/or observations, one tree is
either too complex or unlikely to summarize the essential in-
formation in the data. Bootstrapping and aggregating (Bag-
ging) [1, 22] offered one option to alleviate these problems.

Bagging is proposed to improve the stability and accuracy
of tree-based method used in nonparametric regression. It
belongs to a broader class of ensemble methods through vot-
ing or model averaging [2-5]. So far, the bagging method has
been developed primarily for a univariate response variable,
however. The goal of this article is to extend bagging to the
case with multivariate responses.

In this paper, we propose a novel bagging approach called
Energy Bagging Tree (EBT) to nonparametric regression.
EBT extends bagging by utilizing a measure of dispersion
based on the generalized Gini’s mean difference as the node
impurity. This measure possesses useful properties for node
splitting [14]. The split function turns out to be the product
of energy distance with the descendants’ proportions. And
EBT reduces to bagging when there is only one response
variable.

The energy distance was earlier introduced by Rizzo and
Székely [15] as a nonparametric measure of the difference
between two random variables. It can be used to compare
two sets of multivariate data with arbitrary but same di-
mension, and hence can be used to test the heterogeneity
(or homogeneity) of complex data.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces EBT, including impurity and split func-
tions and generalization error. We reassure in Section 3 that
bagging is a special case of EBT for a univariate response
variable. Simulation studies are presented in Section 4, fol-
lowed by a real data analysis. In our numerical examples,
EBT is compared with other impurity functions for multi-
variate responses. We conclude with a few remarks in Sec-
tion 5.


http://www.intlpress.com/SII/

2. ENERGY BAGGING TREE
2.1 Energy distance

Given two independent p-dimensional random variables
X and Y with E|| X ||*< o0, E[] Y ||*< oo for a € (0,2),
where || - || denotes the Euclidean norm. The energy distance
(with power «) between X and Y is defined as

£a(X,Y) = 2E||X - Y|* - E|IX - X'||* - E|ly —=Y"||%
where X’ and Y’ are the independent and identical random
realizations of X and Y, respectively [15].

Specially, if X is uniformly distributed in the set
A = (a1,...,a,) and Y is uniformly distributed in B =
(bl, vevy bm), let

1 n m
(1) —mZZHGi—ija,
i=1j=1
be a generalized Gini’s mean difference. Then, the energy
distance of X and Y can be written as follows,

(2)

Note that £,(A, B) = 0 if and only if A = B, that is two
sets A and B are exactly the same. £, (A, B) is an empirical
energy distance between X and Y if A and B are the samples
of X and Y, respectively.

€a(A,B) =2g4(A,B) — gu(A4,A) — g4 (B, B).

2.2 Node impurity and split functions

Suppose there is a set of observations A(t) = {Y;,j €
N(7)} in node 7, and let N(7) be the size of A(7). We
define the node impurity at 7 as the generalized Gini’s mean
difference in equation (1),

ia(T) = ga(A(7T), A(7)).

With a possible split s at 7, by the same token, A(7;,) and
A(7R) respectively denote the sets of observations in the left
daughter node 77, of node 7, and right daughter node 7x of
node 7, N(71) and N(7gr) denote their sizes and p(71) and
p(7r) denote their proportion in A(7). Namely,

p(TL) = ]J\G(TTL))7
p(Tr) = JX,((T;)

ia(7r) and i, (7R) respectively denote the impurity function
at two daughter nodes,

7L) = ga(A(T1), A(T1)),
Tr) = 9a(A(TR), A(TR)).

The split function is defined as
B)  dals,7) =ta(r)
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= p(71)ia(T2) — P(TR)ia(TR)-

It should be noted that
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ia(T) :ga(A(T)7A(T)) = N(T)2 ”Y Y”Q
=1 j=1
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So we have obtained the following equation,

(4) Pa(s,7)

The equation (4) connects the split function in equation
(3) with the energy distance defined in equation (2). By the
properties of the energy distance deduced in [15], ¢n (s, 7) is
a measure of between-node dispersion. If a takes the value of
2 and the response variable is univariate, ¢ (s, T) is propor-
tional to the between-sample variation (sum of squared devi-
ations from the mean) in the analysis of variance. However,
ifa =1, ¢1(s,7) differs from the between-sample dispersion
induced by the sum of absolute deviations in [6] even for a
univariate variable. Therefore, our proposed split function
is not an extension for the measure of dispersion induced by
L,-norm when 0 < o < 2.

We should note that the split function is closely related
to the energy distance, maximizing the split function is not
equivalent to maximizing the energy distance, because the
sizes of daughter nodes are not fixed. In fact, the split-
ting optimization tends to balance between the sizes of the
daughter nodes and the energy distance.

Once the node impurity function and splitting criterion
are defined, we can follow the same algorithm in [1] to grow
trees.

= p(mL)p(TR)Ea(A(TL), A(TR))-

2.3 Generalization error

After having the node impurity function and splitting
criterion, it is important to assess how closely a result of
predicted (function of the covariables or inputs) fits the data



(the outputs). This is now common practice in supervised
learning problems, generalization error has been regard as
an index for measuring. In the following we review it.

Given a sample S = {(X;,Y;),i=1,--- ,n}, where X; =
(Xi1, ..., Xiu) is the ith observed value of X = (X1, ..., X,)
and Y; = (Yi1,...,Y,)T is the ith observed value of Y =
(Y1,...,) i=1,---,n

First, we draw B bootstrap samples from S. Each boot-
strap sample is obtained by sampling with replacement. Sec-
ond, we grow the bth multivariate regression tree 7*° from
the bth bootstrap sample, 1 < b < B. Let /i**(-) denote the
bth prediction function for a new observation. A bagging
prediction of Y with explanatory variables X is obtained by
averaging the predictions:

ﬂbag (X) =

We use the out-of-bag (OOB) samples to assess the accuracy
of the above bagging prediction. For (X;,Y;) € S, let O; be
the set of indices of b’s such that the bth bootstrap sample
does not contain (X;,Y;). The OOB prediction of Y is

= o 2 X

beO;

foos(X;)

here |O;| denotes the size of O;.
Finally, we use the following generalization error as a
measure of prediction accuracy:

n

() PBiay = - (% ~ fioon (X)) (Yi ~ foos(X1).
i=1

3. UNIVARIATE REGRESSION BAGGING

In this section, we relate EBT for @ = 2 to bagging
method [1] where the sum of squares about the mean (SSM)
is used as the impurity function.

Specifically, in bagging, the node impurity () at node 7
was defined as follows:

N(T) i

i(T)ssm = Z (Yi =Y (1)),

=1

where Y is the average of Y;’s within node 7, N(7) is the
number of samples within node 7. And its split function was
chosen as follows:

(6) ¢(s,7)

where s is an allowable split, 77, and 7 are the left and right
daughter nodes of node 7 resulting from split s, respectively.

When a = 2, the node impurity i2(7) for EBT is written
as follows:

= i(T)ssm - i(TL)ssm - i(TR)ssm;

N(7) N(7)

N L =Y

=1 j=1

(7)

i27’=

where Y; and Y; are within node 7, N(7) is the number of
samples within node 7 as before. Equation (3) with a@ = 2
is its corresponding split function. Namely,

(8)  ¢a(s, 7) =ia(7)
It follows from equation (2.4) in [15] that

— p(71)i2(TL) — p(TR)i2(TR)-

(9) 7:2(7-) = N?T)Z(T)ssm
Thus

2
(10) P2(s,7) = m¢(577)

Considering that N(7) is a constant when splitting node
7, the impurity and split functions between EBT(a = 2)
and bagging are in effect the same for univariate response
variable.

4. MULTIVARIATE REGRESSION BAGGING

In this section, we report simulation experiments and
a real data analysis to demonstrate the potential of EBT
in tree construction for multivariate response variables. We
compare its performance with that of existing MRT meth-
ods in the context of bagging: bagging(SAM), bagging(SSM)
and bagging(SMD) in order to perform an unbiased compar-
ison. The bagging(SAM) uses the sums of the Manhattan
distance (the sums of absolute pairwise deviations) as the
impurity functions [6], and bagging(SSM) uses the sums of
squares about the mean as the impurity functions [6], and
bagging(SMD) exploits the sums of Mahalanobis distance
as the impurity function [7]. As presented in [6] and [7],
equation

d(s,7) =i(r) —i(rp) — i(TR),
is the corresponding split function in bagging(SAM), bag-
ging(SSM) and bagging(SMD).

Note that equations (9) and (10) still hold for multivari-
ate responses, and that EBT(a = 2) and bagging(SSM) are
equivalent. Therefore, we primarily compare the following
four methods, EBT(« = 1), bagging(SAM), bagging(SSM)
and bagging(SMD). Also notice that a = 1 is the simplest
choice within interval a € (0, 2] for energy distance, which
is why we consider EBT (v = 1).

4.1 General settings

To assess the performance, we consider the following
three criteria similar to those in [11] and [18].

1. 25% (Q1), 50% (median), 75% (Q3) quantiles of gener-
alization errors. The generalization errors have emerged
as one of the most commonly used indices to evaluate
the predictive power of ensemble methods.

2. Mean of tree complexity is measured by the number of
terminal nodes.

3. Frequency of a variable being selected in a tree.
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Table 1. Distributions of predictor variables
X = (X1, Xo, X3, X4, X5, Xg) used in example 1 and 2,
where Ga denotes Gamma distribution with shape parameter
k = 2 and scale parameter 6 = 2, three dependent structures
among the X variables: independent, weakly dependent,
strongly dependent

Independent = Weakly dependent  Strongly dependent
X1 Ga X4+ X5 X4 +0.1 Ga
X5 Ga Ga Ga
X3 Ga Ga Ga
X4 Ga Ga Ga
X5 Ga Ga Ga
X Ga Ga Ga

We simulated bivariate response variable Y = (Y1, Y2),
and normalized the values of the response variables to have
zero mean and unit variance. The sample size n is fixed to
be 100, and € = (e1,€2)" is a random error vector gener-
ated from the bivariate Cauchy distribution, the scale ma-
trix » = (ll) ‘1’), where correlation p is set to be 0, 0.5 and
0.8 to evaluate the impact of correlation of Y7 and Y5 on the
method. All simulations are replicated 100 times.

4.2 Simulation study

Example 1. In this example, data are generated as fol-
lows: X = (X3, ..., X) are six predictor variables, Y7,Y> are
response variables, and the distributions of the X variables
are given in Table 1. We consider three dependent struc-
tures among the X variables: independent, weakly depen-
dent, strongly dependent. And,

_ ()
(5 ) -0,
where
(1.&)2 f(X) = 2X1 —+ 2X2 —+ 2X3, or
(1.b): f(X) = B5X1XoI(A1) + exp(—/ X7 + X2)I[(A2) +
Sin(lOT(XlXQ)I(Ag) + (X1 + XQ)I(A4).

Here I(-) is the indicator function. A; = {X; < 4, Xy < 4},
Ay = {X1 >4, Xy < 4}7 Az = {X1 < 4,Xy > 4}, and
Ay = {X1 >4, Xy > 4}

It is worth noting that we included some noise variables in
the X that are irrelevant to the responses. Furthermore, the
regression function is linear in model (1.a), and contains a
piecewise function with interaction terms, exponential func-
tion, periodic and non-monotonous function terms in model
(1.b).

Table 2 provides a summary from 100 simulation runs.
We can see that EBT(a = 1) has advantage in balancing
between Q1, median, ()3 quantiles of generalization errors
and tree complexity. EBT(av = 1) owns the lowest degree of
tree complexity with the loss of the prediction performance.
Figure 1 displays the bar graphs of the frequencies when a

fX)+a
f(X) te
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Table 2. The 25% (Q1), 50% (median), 75% (Qs) quantiles
of generalization errors and the mean complexity in bagging
in 100 replications for model (1.a)

Independent X

method Q1 median Q3 Nodes

0 EBT(a=1) 1.120 1.588 2.074 10.7
bagging(SSM)  1.146 1.580 2.092 10.9
bagging(SAM)  1.176 1.557 1.981 18.1
bagging(SMD)  1.919 1.990 2.045 10.2

0.5 EBT(a=1) 1.105 1.651 2.003 10.8
bagging(SSM)  1.101 1.653 2.042 11.0
bagging(SAM) 1.127 1.609 1.980 18.5
bagging(SMD) 1.930 2.018 2.074 9.9

0.8 EBT(a=1) 1.051 1.694 2.126 10.1
bagging(SSM)  1.084 1.739 2.156 10.3
bagging(SAM) 1.073 1.652 2.058 17.7
bagging(SMD) 1.899 2.010 2.068 8.9

Weakly dependent X

p method (N median Qs Nodes
0 EBT(a=1) 1.169 1.599 2.080 10.1
bagging(SSM)  1.146 1.610 2.147 10.3
bagging(SAM) 1.130 1.537 2.106 17.3
bagging(SMD)  1.826 1.971 2.052 10.1

0.5 EBT(a=1) 0.912 1.282 1.741 10.7
bagging(SSM) 0.907 1.300 1.782 10.9
bagging(SAM)  0.917 1.298 1.729 17.8
bagging(SMD) 1.770 1.905 2.015 10.8

0.8 EBT(a=1) 0.919 1.384 1.983 10.1
bagging(SSM)  0.924 1.418 2.068 10.3
bagging(SAM) 0.932 1.345 1.939 17.5
bagging(SMD)  1.821 1.947  2.014 10.0

Strongly dependent X

p method Q1 median Qs Nodes
0 EBT(a=1) 1.223 1.581 1.997 10.5
bagging(SSM)  1.256 1.530 1.999 10.7
bagging(SAM) 1.168 1.505 1.859 17.8
bagging(SMD) 1.901 1.999 2.044 9.8

0.5 EBT(a=1) 1.139 1.728 2.201 10.2
bagging(SSM)  1.173 1.717 2.138 10.3
bagging(SAM)  1.147 1.704 2.045 17.2
bagging(SMD)  1.939 2.003 2.033 9.4

0.8 EBT(a=1) 1.122 1.652 2.174 10.0
bagging(SSM)  1.151 1.679 2.310 10.2
bagging(SAM) 1.183 1.645 2.089 17.7
bagging(SMD)  1.894 2.009 2.052 9.1

variable is selected in a tree by the four methods in model
(1.a). It suggests that when predictors X are independent,
EBT(« = 1) has higher probability of selecting true predic-
tors X1, X5 and X3, and the lowest probability of selecting
noise predictors X4, X5 and Xg. This is still the case for the
weakly dependent X variables. With strongly dependent X
variables, EBT(«v = 1) maintains the lowest probability of
selecting noise predictors X5 and Xg, and relatively high
probability of selecting the true predictors, especially for X5
and X3, while bagging(SAM) has the lowest probability of
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Figure 1. Frequencies of a variable selected by the four methods for model (1.a). Here in the rectangle oblique line (/) with
30°: EBT(« = 1), vertical line (|): bagging(SSM), oblique line (/) with 60°: bagging(SAM), backslash (\): bagging(SMD).
The distributions of X's and three dependent structures among the X variables are given in Table 1. Horizontal axis shows
frequencies of a variable selected, vertical axis shows six predictor variables. The first line denotes independent structure
among the X variables, weakly dependent structure and strongly dependent structure in the second line and third line,
respectively. And each line shows three values of p: 0, 0.5 and 0.8.

selecting X4 in the condition of strongly dependent between that EBT(«v = 1) owns the best prediction performance with
X5 and Xy. the lowest degree of tree complexity when predictors X are

Table 3 reveals that EBT(«a = 1) is superior to the other weakly dependent. In addition to this, EBT(« = 1) still has
methods when variables X are weakly dependent. It is clear advantage in balancing between ()1, median, ()3 quantiles
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Table 3. The 25% (Q1), 50% (median), 75% (Qs) quantiles
of generalization errors and the mean complexity in bagging
in 100 replications for model (1.b)

Independent X

p method Q1 median Qs Nodes
0 EBT(a=1) 1.372 1.748 2.109 11.2
bagging(SSM)  1.465 1.818  2.200 11.3
bagging(SAM)  1.192 1.643 1.956 15.7
bagging(SMD) 2.022 2.050 2.096 8.5
0.5 EBT(a=1) 1.115 1.466 2.016 11.4
bagging(SSM) 1171 1.523 2.042 11.7
bagging(SAM)  1.071 1.332 1.816 15.9
bagging(SMD) 2.014 2.048 2.093 8.3
0.8 EBT(a=1) 1.159 1.648 2.119 10.9
bagging(SSM)  1.255 1.679 2.180 11.2
bagging(SAM) 1.097 1.569 2.001 15.9
bagging(SMD) 2.014 2.036 2.098 7.5
Weakly dependent X
p method Q1 median Q3 Nodes
0 EBT(a = 1) 1278 1.646  2.077 84
bagging(SSM) 1.360 1.813 2.168 8.9
bagging(SAM) 1.359 1.769 2.070 12.7
bagging(SMD) 1.972 2.032 2.097 9.2
0.5 EBT(a =1) 1.131 1.609 2.166 8.3
bagging(SSM) 1.356 1.739 2.228 8.8
bagging(SAM)  1.328 1.703 2.086 12.8
bagging(SMD) 1.957 2.027 2.086 8.8
0.8 EBT(a=1) 1.100 1.506 2.055 8.3
bagging(SSM)  1.234 1.682 2.105 8.8
bagging(SAM)  1.195 1.687 2.057 13.1
bagging(SMD) 1.898 2.027 2.072 9.0
Strongly dependent X
p method Q1 median Qs Nodes
0 EBT(a=1) 1.166 1.516 1.871 10.8
bagging(SSM) 1.212 1.594 1.964 11.1
bagging(SAM)  1.130 1.477 1.785 15.1
bagging(SMD)  2.011 2.053  2.106 8.4
0.5 EBT(a=1) 0.993 1.425 1.799 10.8
bagging(SSM)  1.055 1.441 1.922 11.1
bagging(SAM)  0.930 1.319 1.787 15.1
bagging(SMD)  1.998 2.041 2.073 8.5
0.8 EBT(a=1) 1.153 1.453 1.838 10.9
bagging(SSM)  1.184 1.500 1.851 11.2
bagging(SAM) 1.044 1.414 1.761 15.3
bagging(SMD)  2.003 2.041 2.082 8.0

of generalization errors and tree complexity when predictors
X are independent or strongly dependent. Figure 2 displays
the bar graphs of the frequencies when a variable is selected
in a tree by the four methods in model (1.b). EBT (o = 1)
has the highest probability of selecting true predictors X;
and X, and the lowest probability of selecting noise pre-
dictors X3, X4, X5, and X4 in the case of X are weakly
dependent. However, bagging(SAM) has the lowest proba-
bility of selecting X, in the condition of strongly dependent
between X; and X4 as in model (1.a). EBT(« = 1) and bag-
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ging(SSM) work very well in selecting the true variables X
and Xo, meantime excluding the noise variables for this rel-
atively complex regression function. We should remind that
bagging(SSM) is equivalent to EBT(a = 2).

Example 2. In the first example, the bivariate Y de-
pends on a single regression function f(X). In this example,
distributions of predictor variables are used as before, we
consider Y depending on two regression functions ¢g(X) and
h(X). That is,

_( ) _
()
Here,

(2.&)2 g(X) = Sin(ﬂXng) - Xg, h(X) = 5X1X2 + 2X3

We see that g(X) and h(X) are not linear and include
interaction and periodic terms.

As before, the advantage of EBT(« = 1) in terms of bal-
ancing between )1, median, Q3 quantiles of generalization
errors and tree complexity are clear from Table 4 no mat-
ter what the dependent structures the variables X have. It
should be noted that bagging(SAM) also has comparable
performance with EBT (o = 1) and bagging(SSM) based on
Figure 3. Moreover Figure 3 confirms the favorable perfor-
mance of the three methods relative to bagging(SMD) for
model (2.a).

Example 3. In this example, we have constructed data
similar as the regression function involving five variables
in [25]. We first simulate X7, Xo,..., X0 @.i.d. from Uni-
form(0,1). Then, the values of Y is defined as follows:

()= G )

(3.a): f(X) = 10sin(rX1X2)+20(X3—0.5)*+ 10X, +5X5.

Note that Xg, X7,..., X710 are noise variables. And lin-
ear terms, interaction terms, periodic terms and high-order
terms appear in model (3.a).

Table 5 compares the performance of the four methods
in this example, and EBT(« = 1) is favorable to the other
methods in terms of balancing between 1, median, Q3
quantiles of generalization errors and tree complexity. It is
clear from Figure 4 that EBT(a = 1) can distinguish the
true variables X1, Xo, X3, X4, X5 from the noise variables
Xe, X7, X3, Xo, X10.

In summary, through three simulation examples and
four models, Tables 2—-5 and Figures 1-4 demonstrate that
EBT(a = 1) performs better than the competing methods
from the view of three criteria presented in Section 4.1. And
EBT has an obvious advantage in distinguishing the true
variables from the noise variables for all models in simu-
lation study. It is of great importance for variable selec-
tion.

g(X) + €1 )
hMX)+e J°

f(X)+e
].Of(X) + €2
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Figure 2. Frequencies of a variable selected by the four methods for model (1.b). Here in the rectangle oblique line (/) with
30°: EBT(« = 1), vertical line (|): bagging(SSM), oblique line (/) with 60°: bagging(SAM), backslash (\): bagging(SMD).
The distributions of X's and three dependent structures among the X variables are given in Table 1. Horizontal axis shows
frequencies of a variable selected, vertical axis shows six predictor variables. The first line denotes independent structure
among the X variables, weakly dependent structure and strongly dependent structure in the second line and third line,
respectively. And each line shows three values of p: 0, 0.5 and 0.8.

4.3 Case study We use the Forest Fires dataset with a total of 517 entries,

Forest fires are a severe environmental issue while endan- Which is available from UCI Machine Learning Repository.
gering human lives. A fast detection is critical to control and Paulo Cortez and Anibal Morais [16] used the data to predict
prevent such a disaster. the burned area of forest fires via Data Mining approach. In

Energy bagging tree 177



Table 4. The 25% (Q1), 50% (median), 75% (Qs) quantiles
of generalization errors and the mean complexity in bagging
in 100 replications for model (2.a)

Table 5. The 25% (Q1), 50% (median), 75% (Qs) quantiles
of generalization errors and the mean complexity in bagging
in 100 replications for model (3.a)

Independent X p method Q1 median Qs Nodes
p method Q1 median Q3 Nodes 0 EBT(a=1) 1.265 1.422 1.684 12.3
0 EBT(a=1) 1.318 1.415 1.584 10.5 bagging(SSM) 1.259 1.459 1.701 12.5
bagging(SSM) 1.327 1.434 1.602 10.7 bagging(SAM) 1.270 1.421 1.610 19.7
bagging(SAM)  1.260 1.374 1.494 17.9 bagging(SMD)  1.793 1.885 1.954 11.9
bagging(SMD)  1.962 2.000 2.058 9.8 0.5 EBT(a = 1) 1.229 1.438 1.677 12.3
0.5 EBT(a=1) 1.295 1.395 1.525 10.7 bagging(SSM) 1.221 1.449 1.745 12.5
bagging(SSM)  1.319 1.427 1.552 10.9 bagging(SAM)  1.227 1.414 1.612 19.8
bagging(SAM) 1.273 1.371 1.506 18.3 bagging(SMD) 1.803 1.889 1.972 11.7
bagging(SMD) 1.959 2.016 2.069 10.1 0.8 EBT(a=1) 1.219 1.416 1.696 12.2
0.8 EBT(a=1) 1.300 1.404 1.579 10.3 bagging(SSM) 1.228 1.442 1.781 12.5
bagging(SSM)  1.344 1.456 1.605 10.5 bagging(SAM)  1.241 1.377 1.628 19.7
bagging(SAM)  1.253 1.407 1.571 17.6 bagging(SMD)  1.791 1.908 1.970 115
bagging(SMD) 1.978 2.021 2.088 9.8
Weakly dependent X
o method Q1 median Qs Nodes Table 6. The 25% (Q1), 50% (median), 75% (Q3) quantiles
0 EBT(a=1) 1.249 1.374 1.481 10.7 of generalization errors in Forest Fires data set in 100
bagging(SSM) 1.279 1.390 1.543 10.9 replications
bagging(SAM)  1.223 1.321 1.421 18.2 ,
bagging(SMD)  1.892 1.936 1.993 10.4 method 23] median O
05  EBT(a=1) 1203 1402 1518 103 EBT(a=1) 1722 1.957 2.670
bagging(SSM)  1.320 1416  1.542 10.5 Dagging(SSM) 1.693 1.982 2.791
bagging(SAM)  1.262  1.369  1.474 17.8 Dagging(SAM) 1.722 1.984 2.721
bagging(SMD)  1.886  1.947  2.017 10.1 bagging(SMD) 2.258 2.539 3.206
0.8 EBT(a=1) 1.260 1.369 1.474 10.8
E:ggg;lgg((giﬁ)) 1%2 1228 1323 122 eralization errors are relatively lower than the other meth-
bagging(SMD)  1.902  1.955 2026 105 ©0ds- , o
Strongly dependent X Figure 5 suggests that temperature and relative humidity
P method On median Qs Nodes are vital for FFMC, DMC and DC. Not surprisingly, the se-
0 EBT(a = 1) 1.976 1.382 1.555 10.4 lected variables are important weather conditions for forest
bagging(SSM)  1.313 1.436 1.598 10.6 fires.
bagging(SAM)  1.242 1.349 1.464 17.9
bagging(SMD)  1.936  2.000  2.059 9.8 5. DISCUSSION
0.5 EBT(a=1) 1.240 1.369 1.524 10.4
bagging(SSM) 1.278 1.409 1.584 10.6 Bagging is known to be effective in exploring complex
bagging(SAM) 1.208 1.327 1.469 17.8 data structures. However, the conventional bagging method
bagging(SMD) 1.929 1.976 2.031 10.1 is generally used for univariate response only. In this pa-
0.8 EBT(a=1) 1.256 1.354 1.520 10.6 per, we have attempted to generalize bagging method for
bagging(SSM) 1.286 1.412 1.564 10.8  handling multivariate responses by using generalized Gini’s
bagging(SAM) ~ 1.225 1.351 1.488 18.1  mean difference as node impurity in constructing a tree dur-
bagging(SMD) 1911 1.969 2.030 102 ing bagging. As such, the node split function corresponds to

this work, we mainly explore the relationships between fuel
moisture codes and six predictors, where fuel moisture codes
contain Fine Fuel Moisture Code (FFMC), Duff Moisture
Code (DMC), and Drought Code (DC). The six predictors
are rain, wind, temperature, relative humidity, x-axis spatial
coordinate, y-axis spatial coordinate.

In our analysis, we made use of the resampling method.
In every run, we chose 100 bootstrap samples, and replicated
100 times. Table 6 provides the three quantile results of the
generalization errors. We can see that EBT(a = 1)’s gen-
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an adjusted energy distance. It should be noted that the
split function of EBT is not an extension to the measure
of dispersion induced by L,-norm, 0 < a < 2. The results
from both simulation and real data analysis show that the
proposed Energy Bagging Tree, EBT (o = 1) has its advan-
tage than the existing MRT methods—bagging(SSM), bag-
ging(SAM) and bagging(SMD)—when they are modified for
bagging. We also noted that bagging(SSM) is equivalent to
EBT(a = 2).

The advantage of bagging(SSM) lies in normal distribu-
tion for random error vector €. Bagging(SAM) has advan-
tage for analysis of complex data structure, such as eco-
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Figure 3. Frequencies of a variable selected by the four methods for model (2.a). Here in the rectangle oblique line (/) with
30°: EBT(aw = 1), vertical line (|): bagging(SSM), oblique line (/) with 60°: bagging(SAM), backslash (\): bagging(SMD).
The distributions of X's and three dependent structures among the X variables are given in Table 1. Horizontal axis shows
frequencies of a variable selected, vertical axis shows six predictor variables. The first line denotes independent structure
among the X variables, weakly dependent structure and strongly dependent structure in the second line and third line,
respectively. And each line shows three values of p: 0, 0.5 and 0.8.

logical data with high-order and logarithm relationships
between variables. And Bagging(SMD) has advantage for
analysis of data with the simultaneous cooccurrence of sev-
eral dependent variables, due to its impurity function is

a variation of the approach of deal
data.

ing with longitudinal

The main advantage of our proposed EBT is in two as-
pects: one is that it works for multivariate response variables
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Figure 4. Frequencies of a variable selected by the four methods for model (3.a). Here in the rectangle oblique line (/) with
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Figure 5. Frequencies of a variable selected by the four methods in the Forest Fires. Here in the rectangle oblique line (/) with
30°: EBT(a. = 1), vertical line (|): bagging(SSM), oblique line (/) with 60°: bagging(SAM), backslash (\): bagging(SMD).
Horizontal axis shows frequencies of a variable selected, vertical axis shows six predictor variables. Here T: temperature, RH:

relative humidity, W: wind, RA: rain, X: x-axis spatial coordinate, Y: y-axis spatial coordinate.

and extends the scope of bagging tree. In the meantime, it
covers bagging as a special case for univariate response vari-
able and it covers multivariate sums of squared deviations
about the multivariate sample mean [6] as a special case for
multivariate response variables. The other is that it has the
potential to be applied to variable selection because EBT
has obvious advantage in distinguishing the true variables
from the noise variables for four models in simulation stud-
ies.

Some issues deserve further study. For example, it may
be interesting to explore whether we can choose « values
to further improve the performance of EBT. We should
note the limitation of our proposed EBT in that it deals
with the quantitative response variables only. For multi-
variate discrete responses we need to further develop our
method.
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