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Convergence and stability analysis of mean-shift
algorithm on large data sets∗
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We present theoretical convergent analysis of mean-shift
type of clustering methods for large data sets. It is proved
that correct convergence for unsupervised mean shift type of
algorithms relies on its ability to successfully transform data
points to be clustered into data patterns of a multivariate
normal distribution. Our analytical stability analysis sug-
gests that a judiciously chosen supervision mechanism might
be essential for correct convergence in dynamical clustering.
The proposed theoretical framework could be used to study
other dynamical clustering methods.
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1. INTRODUCTION

Fukunaga and Hostetler (1975) [1] propose the famous
mean-shift algorithm. Given a kernel function K and a
weight function w, the generalized mean-shift operation is
given by

(1) T (x) =

∑
K(x, s) w(s) s∑
K(x, s) w(s)

.

This algorithm seems to originate from the intuitive idea of
moving data points to denser regions by following estimated
local gradient functions. There are many variations and ap-
plications of this algorithm in literature, including for exam-
ple, Comaniciu and Meer (2002) [2], Virmajoki (2002) [3],
Shi et al. (2005) [4], Woolfold and Braun (2007) [5], and
Wang et al. (2007a) [6]. Choi and Hall (1999) [7] provide
a mathematically rigorous demonstration of bias reduction
in density estimation through one or more iterations of the
mean-shift algorithm.

Although the algorithm is often found to be convergent
in applications, there is little theoretical assurance, besides
empirical or visual validations in low dimensions, that the
result is indeed correct. Choi and Hall (1999) [7] suggest
that too many iterations of the algorithm will lead to what
they term as “over-sharpening”. The choice and parameter
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of kernel functions are known to have significant impacts on
the outcome and validity of the partition as suggested in
Cheng (1995) [8]. Cheng (1995) [8] also points out that it is
often very difficult to see where the mean-shift method leads
to due to simultaneous movements of all the data points. It is
well known in clustering and optimization that convergence
does not mean correct convergence.

In this article, we provide theoretical convergence and
stability analysis for mean-shift type of clustering algo-
rithms for large data sets. When the sample size is large,
it is impossible to have a complete description of the be-
havior of a large data set as in statistical mechanics. The
successive movements of data points under the governance
of the mean-shift clustering algorithm can be viewed col-
lectively as an evolution process of a dynamical system. We
follow the argument of Einstein (1956) [9] and employ a the-
oretical framework using partial differential equations that
prescribes the collective or emergent behavior of large data
sets. Consequently, the focus is on the macroscopic dynam-
ics, i.e. large sample behavior of data points. Furthermore,
it might provide an analytical framework to study any in-
trinsic instability or deterministic/Hamiltonian chaotic be-
havior defined in physics, see for example Pettini (2007) [10].

We prove that correct convergence for the mean-shift al-
gorithm can only happen when the patterns to be clustered
can be successfully transformed into those from a multivari-
ate normal distribution with no dependence structure. Our
stability analysis suggests that, in general, a supervised clus-
tering using the mean shift method is preferred in order to
ensure correct convergence. The proposed analytical frame-
work for dynamical clustering is potentially useful to guide
further research on choosing a supervision function.

The rest of this paper is organized as follows. We present
an analytical framework for dynamical clustering in Sec-
tion 2. Section 3 presents theoretical analysis of the un-
supervised dynamical clustering. The stability and conver-
gence of a supervised dynamical clustering is presented in
Section 4. Section 5 contains demonstrative results from sim-
ulation studies and discussion on empirical supervision. The
discussion is provided in Section 6.

2. FRAMEWORK FROM STATISTICAL
MECHANICS

In traditional clustering analysis, a data set is a sample
drawn from an underling probability density function. For
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each particular sample to be clustered, observations are all
fixed and their values can not be altered in any way. In
dynamical clustering methods such as the mean-shift algo-
rithm, however, data points are no longer static. Their spa-
tial locations undergo constant changes until a convergence
is declared. Consequently, each data point can be viewed
as a particle under a gravitational field or an autonomous
agent governed by certain laws of attraction. To describe the
location, speed and direction of all the movements of such a
complex system, it would require many variables or param-
eters. Furthermore, such a full description of a complex sys-
tem might not be necessary or even possible for the purpose
of clustering since we are only concerned about emerging
patterns at the macroscopic level.

When studying collective behavior of small particles sus-
pended in a stationary liquid, Einstein (1956) [9] presents a
well known comprehensive framework which utilizes a dif-
ferential equation framework for diffusion based on an un-
derlying probability distribution. Since then, it is now the
standard analytical framework for statistical mechanics. El-
lis (1985) [11] provides a measure-theoretical justification
of such a probabilistic framework to study the macroscopic
properties of a system with a large number of data points.
From a statistical point of view, the underlying probabil-
ity distribution can be estimated by an empirical or kernel
density estimation with an arbitrary accuracy for a large
sample. Detailed description and discussions of theoretical
properties of kernel density estimation can be found in Si-
monoff (1996) [12]. We employ the analytical framework by
Einstein (1956) [9] to study the mean shift clustering algo-
rithm applied to a large number of data points. Since the
data points are constantly moving, the associated probabil-
ity density functions collectively define a spatial and tem-
poral process:

(2)

E ={ft |f(x; t) ≥ 0,∫
f(x; t)dx = 1, t ∈ N,x ∈ Rn}.

At the macroscopic level, instead of modelling the individ-
ual movement of a particular data point, we examine pat-
terns generated by these transformations of the underlying
probability distribution. A dynamical clustering algorithm
aims to identify the true underlying probability distribution
through a dynamical self-organizing process.

In dynamical clustering, if an algorithm does not delete
data points from the clustering process, the rate of change
of the total number of particles or data points contained
in a fixed volume is equal to the influx of particles or data
points passing through the boundary. By using the conserva-
tion law, we now present a general differential form for high
dimensional cases. Denote an influx vector by q(x; t) and
the probability density function by f(x; t). We then have

(3)
d

dt

∫
V

f(x; t) dV = −
∫
S

(q.n) dS,

where dV is the volume element, dS is the surface element
of the boundary surface S, and n denotes the outward unit
normal vector to S with right-hand side measures to the
outward influx indicated by the minus sign.

On applying the Gauss divergence theorem and taking
d/dt inside of the integral on the left-hand side, we then
have

(4)

∫
V

(
∂f(x, t)

∂t
+∇ q(x, t)

)
dV = 0,

where ∇ is the divergence operator given by

(5) ∇q(x, t) =

n∑
i=1

∂2qi(x, t)

∂xi
,

and qi’s are components of the vector q(x, t).
Since the result is valid for any arbitrary volume V , the

integrand must be zero if it is continuous. The differential
form of the general conservation law is then given by

(6)
∂f(x, t)

∂t
+∇ q(x, t) = 0,

where q(x; t) = u(x; t)×f(x; t). We refer the detailed deriva-
tions and discussions of conservation laws and associated
differential forms to Debneth (2004) [13].

For supervised dynamical clustering, the trajectories of
data points are influenced by supervision. There are many
ways of injecting supervision in the process. One way is to
impose a source or sink function in the dynamical process
so data points will be absorbed into a given domain. Denote
such a supervision function by ψ(x, t). Consider an arbitrary
small volume Vε. By following the same argument as above,
we then have

(7)
∂f(x, t)

∂t
+∇q(x, t) = ψ(x, t).

When f(x, t) = 0, then it follows that q(x, t) = 0. Conse-
quently, we have ψ(x, t) = 0 which implies that there is no
need for supervision. When f(x, t) > 0 for this entire small
volume, then we can further control the movement of parti-
cles by introducing a supervising function. This essentially
changes the geometric properties of the probability density
function which is the solution of the differential form. If
we consider the underlying probability density function as
a manifold, then the supervising function would change the
intrinsic properties of the manifold such as the metric ten-
sors and other determining features of the manifold. The
exact impact of the supervising function, however, seems
to be analytically intractable due to the complexity of the
inhomogeneous PDE.

As an example, we consider the one dimensional case.
Denote the one dimensional influx of data points by q(x; t)
and the probability density by f(x; t) at the spatial location
x and time t. We then have

(8) q(x; t) = u(x; t)× f(x; t),
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where u(x; t) is the speed of particles at location x and time
t. In an unsupervised dynamical clustering, a constant flow
of data points passes through an arbitrarily small interval
using the laws of attractions is characterized by the speed
u(x, t) that will be specified in later sections. Data points
are assumed to be incompressible, and hence a standard
argument in fluid dynamics in one-dimension space yields
the conservation law given by

(9)
d f(x; t)

dt
+

d q(x; t)

dx
= 0.

This conservation law characterizes the functional connec-
tion between the probability density function and the influx
function of data points at a given spatial location and time.

3. NECESSARY CONVERGENCE
CONDITION WITHOUT SUPERVISION

In this section, we establish the necessary condition for
correct convergence of the mean-shift type of algorithm. We
show that correct convergence can only be achieved if the al-
gorithm can transform each individual cluster into the shape
of a cluster that is consistent with the patterns of a normal
distribution with zero covariances. This, however, does not
mean that the algorithm can only be applied to patterns of
normal distributions. It means that the algorithm can be ap-
plied to any shape of cluster. However, correct convergence
can only be achieved if the choice of parameter or kernel can
be chosen to transform the initial data patterns into those
from normal distributions.

3.1 Unsupervised mean shift type clustering

In mean shift type clustering methods, the movements
are governed by a law such that a data point is forced to
move to a local center along the direction of the gradient
while the size of such a move is adjusted by the value of the
current density function at current location. We now define
a class of mean-shift type clustering methods satisfying the
following assumption:

(10) u(x; t) = a2
∇f(x; t)

f(x; t)
.

Cheng (1995) [8] shows that the mean-shift algorithm in-
deed belongs to this category. All other variations based on
the mean-shift method are also embraced by this category.
A more general formulation of these movements in the tra-
ditional mean-shift method was discussed in Wang et al.
(2007b) [14], in which data points are pushed towards local
centers given by the conditional mean:

(11) xk+1 =

∫
B(xk,d)

t f(t) dt∫
B(xk,d)

f(t) dt
,

where B(xk, d) is a neighborhood with the center located at
xk and radius d. Wang et al. (2007b) [14] showed that, for

any α > 0 and d such that
∫
B(xk,d)

f(t)dt = α, α > 0, we

have

(12) xk+1 = xk +
n d2

n+ 2

∇f(xk; t)

f(xk; t)
+O(d3).

This is consistent with the assumption (10).
The gradient component forces each data point to fol-

low a trajectory to a local cluster center. This is known
as the mode seeking property in clustering. Any movement
is also proportional to the reciprocal value of the current
probability density function. This implies that data points
in sparsely populated areas will travel much longer distances
when compared with those in densely populated regions
even if the gradient functions assume the same value at these
two different locations. This is an important computational
advantage to speed up convergence.

3.1.1 Anti-diffusion and convergence for one-dimensional
case

Combining eqn (8) with the assumption (10), we obtain
the corresponding differential form as follows

(13)
∂

∂t
f(x; t) = −a2

d2f(x; t)

dx2
,

where a > 0 is a constant, with f(x, 0) = φ0(x) the initial
probability density function.

This is a one-dimensional anti-diffusion equation in
Kaashoek (1990) [15]. In comparison with classical and pop-
ular diffusion where data points move from high density re-
gions to lower ones, the movements in dynamical clustering
are in the opposite directions. We now present the exact
analytical solution to eqn (13).

Theorem 3.1. Under the assumption (10), the one-
dimensional anti-diffusion equation has one unique solution
and takes the following form

(14) f(x; t) =
1√

−4a2πt

∫ ∞

−∞
φ0(ξ)e

− (ξ−x)2

−4a2t dξ, t ≤ 0,

where f0(x) = φ0(x), the initial probability density function.

This theorem can be proved by considering the diffusion
equation u(x,−t) for forward time and applying well-known
results in linear reaction-diffusion equations. It differs from
the well-known theorem in diffusion by a sign. The fact
that the solution is specified uniquely only for t ≤ 0 im-
plies that the evolution of densities produces deterministic
causal events. Given the current probability density, there
is only one unique process or path in the functional space
that led to the present patterns.

The previous result about unsupervised clustering leads
naturally to the following convergence result for dynamical
clustering.

Theorem 3.2. Under the assumption (10), we have
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(i) convergence to a location μ0 of the clustering algorithm
can only occur at t = 0 for normal densities with mean
μ0 and variance; proportional to a2.

(ii) the first order derivative of the variance with respect to
time is given by

(15)
dσ2

t

dt
= −2a2,

where σ2
t denotes the variance of the normal density at

time t;
(iii) the converging rate of a data point at a location x at

time t is

(16) u(x; t) =
x− μ0

2a2(−t)
, t ≤ 0.

Proof. If the convergence at time t = 0 at a location μ0, it
implies that f0 = δ(x−μ0). By Theorem 3.1, it then follows
that

(17) f(x; t) =
1√

−4a2πt
e
− (x−μ0)2

−4a2t , t ≤ 0.

The variance takes the form 2a2(−t). Therefore,
dσ2

t

dt =
−2a2. The rest of the result follows from the assump-
tion (10).

The conclusion of this theorem shows that, for one-
dimensional data, convergence to a single point can only
occur for a normal density. In the next section, we will prove
that the same result holds true for higher-dimensional spaces
when there are multiple cluster centers.

3.1.2 Convergence in multi-dimensional space without su-
pervision

Under the assumption (10), it then follows that

(18) q(x, t) = u(x, t); f(x, t) = a2∇f(x, t).

Consequently, equation (6) now becomes

(19)
∂f(x, t)

∂t
+ a2 ∇2f(x, t) = 0,

where the Laplacian of f , ∇2f =
∑n

i=1 ∂
2f/∂x2

i , and the
boundary condition is given by f(x, 0) = f0(x).

The result for the one dimensional case can be generalized
to multi-dimensional cases when there are multiple cluster
centers.

Theorem 3.3. Under the assumption (10), the anti-
diffusion equation

(20)
∂f(x, t)

∂t
+ a2 ∇2f(x, t) = 0,

with the boundary condition f |t=0 = φ0 has the solution

(21) f(x, t) = (−4a2t)−n/2

∫
(η)

φ0(η) e
− (η−x)2

−4a2t dη,

where (η − x)2 =
∑n

i=1(ηi − xi)
2.

Proof. The dynamical clustering can be characterized as

(22)
∂f(x, t)

∂t
+ a2 ∇2f(x, t) = 0,

with boundary condition f(x, 0) = φ0(x), a probability den-
sity function.

Denote the n-dimensional Fourier transformation by

(23)
Fn(s; t) =

(
1√
2π

)n ∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞

f(x, t)ei s·x dx1dx2 . . . dxn,

where s · x =
∑n

i=1 si xi.

Applying Fourier transformation on both sides of equa-
tion (22), we have

(24) ∂Fn(s, t)/∂t+ a2 ||s||Fn(s, t) = 0

where ||s|| =
∑n

i=1 s
2
i . The solution is given by

(25) Fn(s, t) = Fn(s, 0) e
−a2 ||s|| t.

where

(26) Fn(s, 0) =

(
1√
2π

)n ∫
(x)

φ0(x) e
i s·x dx.

Using inverse Fourier transformation, we get

(27) f(x, t) =

(
1√
2π

)n ∫
(s)

Fn(s, 0) e
−a2 ||s|| t−i s·xds,

therefore
(28)

f(x, t) =

(
1

2π

)n ∫
(s)

(∫
(η)

φ0(η)e
i s·ηdη

)
e−a2||s||t−i s·xds

where η = (η1, η2, . . . , ηn). By rearranging the order of in-
tegration and simplifying the same way in Theorem 3.1, we
then have

(29) f(x, t) = (−4a2tπ)−n/2

∫
(η)

φ0(η) e
− (η−x)2

−4a2t dη,

where (η − x)2 =
∑n

i=1(ηi − xi)
2.

The analytic form allows us to retract the probability
density function in the past and determine convergence from
a given initial probability density function. We now show
that the family of probability density functions that guaran-
tees correct convergence to distinct multiple cluster centres
must be a multivariate normal distribution with indepen-
dent correlation structures.
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Theorem 3.4. Under the assumption (10), a dynamical
shrinking or clustering converges to m distinct cluster cen-
ters if and only if the density function is a mixture of normal
distribution with equal variances, i.e.

(30) f(x, t) =

m∑
i=1

λi φi, t < 0.

where φi is the normal density function with mean μi and
variance −2a2t.

Proof. If a dynamical clustering process converges to a finite
number of focal points, i.e.,

(31) φ0(η) =
m∑
j=1

λjδ(η − μj), λj ≥ 0 and
m∑
j=1

λj = 1,

where μj = (μj1, μj2, . . . , μjn), and δ(η−μj) =
∏n

i=1 δ(ηj−
μji), then

(32) f(x, t) =

m∑
j=1

λj

(
1

2πσ2
t

)−n/2

e
− (x−μj)

2

2σ2
t ,

where σ2
t = −2a2t, t < 0.

This theorem also implies that the contraction rates of
dynamical shrinking or clustering must be homogenous in
all directions at some time point of the clustering process to
ensure correct convergence. A persistent heterogeneous con-
traction pattern therefore implies non-convergent behaviors.

4. STABILITY AND CONVERGENCE WITH
SUPERVISION

Despite the past success in applications of mean shift al-
gorithm and its intuitively appealing nature, our theoretical
analysis has shown that this type of dynamical clustering
algorithm actually might not be able to converge correctly
unless it can successively transform and arrange data into
independent Gaussian patterns. The necessary condition es-
tablished in the previous section is surprising since it is
counter intuitive. This section provides a theoretical expla-
nation of the source of deterministic chaotic behavior and
some theoretical guidance to resolve the instability problem.

4.1 Instability of unsupervised dynamic
shrinking

The instability of anti-diffusion for a one dimensional case
has been established in literature, see Kaashoek (1990) [15].
However, to the best of our knowledge, the results for higher
dimensions have not been established. In order to under-
stand more precisely stability of mean shift method for
higher dimensions, we now examine the temporal evolution
of the system using a quantity called energy function or
Lyapunov function. This function has been widely used in

dynamical systems and partial differential equations to de-
scribe the decay or growth of a system’s energy. Detailed
discussions can be found in Sastry (1999) [16]. In our case,
this is a functional of the following form:

(33) H(f) = −
∫

f(x) log f(x) dx,

In information theory, this is also called entropy, a measure
of uncertainty.

Theorem 4.1. Under the assumption (10), if

(34) lim
xi→∞

log f(x)
∂f(x)

∂xi
= 0, i = 1, 2, . . . ,m,

then

(35)
dH(ft)

dt
< 0.

Proof. Consider the first order derivative of H(ft) with re-
spect to t. We then have

dH(ft)

dt

=−
∫ ∞

−∞

∂

∂t
(f (x) log f (x)) dx

=−
∫ ∞

−∞

(
df(x)

dt
log f(x) +

1

f(x)
f(x)

df(x)

dt

)
dx

=−
∫ ∞

−∞
(1 + log f(x))

df(x)

dt
dx

=

∫ ∞

−∞
(1 + log f(x)) a2

(
∇2f(x, t)

)
dx

=

∫ ∞

−∞
(1 + log f(x)) a2

(
n∑

i=1

∂2f(x, t)

∂x2
i

)
dx

=−
∫ ∞

−∞
a2

1

f(x)

n∑
i=1

(
∂f(x)

∂xi

)2

dx

< 0.

So the Lyapunov function is non-increasing at all times
and hence, the dynamical clustering process is in violation
of the second law of thermodynamics. Thus the dynami-
cal clustering does not correspond to any natural (physical)
process and is unstable except for data with normal densi-
ties. To ensure correct convergence by using the mean shift
algorithm, a suitable intervention or supervision should be
implemented.

4.2 Convergence with supervision

Mathematically, one possible formulation of supervision
is to impose the so called sink or force function into the PDE
framework in the following form:
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(36)
∂f(x, t)

∂t
+ a2 ∇2f(x, t) = ψ(x, t),

where ψ is a continuous function.
We now show that correct convergence can be established

through non-normal densities with the help of supervision
function.

Theorem 4.2. Under the assumption (10), we have

(i) the PDE associated with supervised clustering has the
following solution
(37)
f(x, t)

= (−4a2tπ)−n/2

∫
(η)

φ0(η)e
− (η−x)2

−4a2t dη

+

∫ 0

t

∫
(ξ)

ψ(ξ, τ)[−4a2(t− τ)π]−n/2e
− (x−η)2

−4a2(t−τ) dξdτ,

t ≤ 0.

(ii) if the clustering process converges to m distinct focal
points, then
(38)
f(x, t)

=

m∑
j=1

λj

(
1

2πσ2
t

)−n/2

e
− (x−μj)

2

2σ2
t

+

∫ 0

t

∫
(ξ)

ψ(ξ, τ)[−4a2(t− τ)π]−n/2e
− (x−η)2

−4a2(t−τ) dξdτ,

t ≤ 0.

Proof. The general solution with the sink function in the
PDE can be decomposed into two parts:

(39) f(x, t) = g1(x, t) + g2(x, t),

where g1 is the solution for the PDE eqn (20) with boundary
condition g1(t = 0) = φ0 and g2 satisfying the PDE eqn (36)
with the boundary condition g2t=0 = 0. The function form
of g1 is given by Theorem 3.3. That is,

g1(x, t) = (−4a2tπ)−n/2

∫
(η)

φ0(η) e
− (η−x)2

−4a2t dη,

where

(η − x)2 =

n∑
i=1

(ηi − xi)
2.

To find g2, we consider a nonhomogeneous differential
equation of the form

(40) Lx u(x) = ψ(x, t),

where

(41) Lx u(x) =
∂u(x, t)

∂t
+ a2 ∇2u(x, t).

The Green function G(x, ξ) of this problem satisfies the
equation

(42) Lx G(x, ξ) = δ(x− ξ)δ(t− τ), Gt=0 = 0.

The solution for the partial differential equation (40) is then
given by

(43) u(x) =

∫ 0

t

∫
(ξ)

ψ(ξ, τ) G(x, t; ξ, τ) dξdτ,

where the Green function satisfying the following PDE

∂ G(x, t)

∂t
+ a2 ∇2G(x, t) = 0, G|t=τ = δ(x− ξ).

By Theorem 3.3 and replacing t by t− τ , the Green func-
tion is then given by

G(x, t)(44)

= [−4a2(t− τ)π]−n/2

∫
(η)

δ(η − ξ)e
− (η−x)2

−4a2(t−τ) dη

= [−4a2(t− τ)π]−n/2e
− (x−η)2

−4a2(t−τ) ,

where (x− η)2 =
∑n

i=1(xi − ηi)
2.

It then follows that
(45)

g2(x, t)

=

∫ 0

t

∫
(ξ)

ψ(ξ, τ)[−4a2(t− τ)π]−n/2e
− (x−ξ)2

−4a2(t−τ) dξdτ,

t ≤ 0.

Therefore,
(46)
f(x, t)

=
1

M
(−4a2tπ)−n/2

∫
(η)

φ0(η)e
− (x−η)2

−4a2t dη

+
1

M

∫ 0

t

∫
(ξ)

ψ(ξ, τ)[−4a2(t− τ)π]−n/2 e
− (x−ξ)2

−4a2(t−τ) dξdτ,

t ≤ 0,

where M is the normalizing constant to ensure that f(x, t)
is a proper probability density function.

The fact that the original density function of the PDE is
a function of the supervision function implies that correct
convergence is dependent on the choice of the supervising
function. The assertion of the theorem indicates that a uni-
versally effective supervising function might not exist. A su-
pervising function then must be chosen judiciously to ensure
correct convergence. A self-adaptive learning algorithm will
also require that the sink function be a functional of the cur-
rent and historical densities, and this issue is left for future
studies. One such example is the crystallization processes
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Figure 1. The upper-left plot of this figure displays the 5 clusters of the Broken Ring data set (cf. Wang et al. (2007a) [6]),
which has 800 data points measured by 2 variables. The upper-right plot, bottom-left plot, and bottom-right plot show the

evolution of the convergence of the 800 data points towards the focal points after one, three and five iterations of the
K-nearest-neighbor mean-shift algorithm. The number of nearest neighbors were set to be K = 100.

as described in Teran and Bill (2010) [17]. It is stable due
to the fact that particles are accumulating and transformed
into solid with zero speed due to the crystallization. This
might inspire a certain choice of supervision for dynamical
clustering.

5. EMPIRICAL SUPERVISION AND
SIMULATION STUDIES

There are many variants of the general mean-shift type
of algorithms. In this section, we chose an adaptive ver-
sion called clues proposed in Wang et al. (2007a) [6]. The
algorithm clues employs K-nearest neighbour approach in
the dynamic clustering with supervision function to be de-
scribed in this section. To demonstrate the convergence and
stability issues associated with unsupervised mean-shift al-
gorithm, we present some clustering results on a simulated
data used in Wang et al. (2007a) [6].

This simulated data set has five well separated clusters.
Four clusters are in symmetric positions while one cluster
sits in the middle region. This data is referred Broken Ring
in Wang et al. (2007a) [6]. It is shown in Figure 1. Wang et
al. (2007a) [6] show that classical methods of clustering have
considerable difficulty to handle this simple data set. Wang
et al. (2007a) [6] proposed a robust version of mean-shift

algorithm while the local mean is replaced by the median
in conjunction with the employment of K-nearest neighbors
approach instead of a kernel function.

We present the impact of the robust version of the mean-
shift algorithm in Figures 1, 2 and 3 which contain the orig-
inal data set and positions of data points after one, three
and five iterations respectively. By using K = 100 in the
K-nearest neighbor approach, one can observe, in Figure 1,
that the robust mean-shift algorithm is shrinking data to-
wards several focal points. Although convergence is reached,
the algorithm produced 10 small clusters by splitting each
real cluster into two. By using K = 200, it can be seen from
Figure 2, that the middle cluster was incorrectly absorbed by
the two clusters. In both cases, convergence does not mean
correct convergence and the instability is obvious.

To achieve a reliable and robust result, one would need
a proper supervision. A theoretical supervision function is
currently out of reach due to the complexity and uncertainty
in clustering large data from non-normal densities. There-
fore one would need an empirical supervisions or guidance to
evaluate whether a generated clustering result is indeed rea-
sonable. These kind of empirical supervision must be done
without the knowledge of the true underlying cluster mem-
berships. They are therefore exterior measures in this sense.
These measures can be applied to evaluate clustering results
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Figure 2. The upper-left plot of this figure displays the 5 clusters of the Broken Ring data set (cf. Wang et al. (2007a) [6]),
which has 800 data points measured by 2 variables. The upper-right plot, bottom-left plot, and bottom-right plot show the

evolution of the convergence of the 800 data points towards the focal points after one, three and five iterations of the
K-nearest-neighbor mean-shift algorithm. The number of nearest neighbors were set to be K = 200.

and thus determine the path of clustering in the entire clus-
tering process. There are many measures of the strength
of clusters. For example Milligan and Cooper (1985) [18]
compared 30 measures of the strengths of clusters for de-
termining the number of clusters. Their simulation results
show that the Calinski and Harabasz index (CH index) has
the best performance. The CH index is defined as

(47) CH(g) =
B(g)/(g − 1)

W (g)/(n− g)

where g is the number of clusters,

(48) B(g) =

g∑
i=1

ni(ȳ
(i) − ȳ)(ȳ(i) − ȳ)T

is the between-groups sum of squares and products matrix,

(49) W (g) =

g∑
i=1

ni∑
j=1

(y
(i)
j − ȳ(i))(y

(i)
j − ȳ(i))T

is the within-groups sum of squares and products matrix, ni

is the size of the i-th cluster, y
(i)
j is the j-th data point in

the i-th cluster, ȳ(i) is the mean vector of the i-th cluster,
and ȳ is the overall mean of all data points.

Kaufman and Rousseeuw (1990) [19] proposed the Sil-
houette index to measure the strengths of clusters. The sil-
houette index is defined as

(50) s̄ =
1

n

n∑
i=1

si

where

(51) si =
bi − ai

max(ai, bi)

and ai is the average distance of the data point yi to other
points in the cluster A where yi belongs to, i.e.

ai =
1

(nA − 1)

∑
j∈A,j �=i

d(yi,yj),

and bi is the average distance to points in the nearest neigh-
bor cluster besides its own. Define

d(i, C) = average dissimilarity of the data point

yi to all data points in Cluster C.

Then

bi = min
C �=A

d(i, C).
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Figure 3. The upper-left plot of this figure displays the 5 clusters of the Broken Ring data set (cf. Wang et al. (2007a) [6]),
which has 800 data points measured by 2 variables. The upper-right plot, bottom-left plot, and bottom-right plot show the
evolution of the convergence of the 800 data points towards to the focal points after one, three and five iterations of the

K-nearest-neighbor mean-shift algorithm. The number of nearest neighbors were set to be K = 150.

This index si can take values from −1 to 1. When the
index is zero, the data point yi has equal distance to its
cluster and its nearest neighbor cluster. If the index is posi-
tive, then the data point yi is closer to its cluster than other
clusters. If the index is negative, then the data point yi is
wrongly assigned to the current cluster. Thus, if all data
points are correctly assigned, then average of si’s should be
close to 1.

As one can see from Figure 3, with the help of supervision,
the algorithm proposed in Wang et al. (2007a) [6] can select
the correct clustering result among many candidates gener-
ated by different choices of K. The algorithm is implemented
in the package clues in the open-source statistical software
R [20]. Detailed instructions and description of this R pack-
age are available in Chang et al. (2010) [21]. However, this
is an end-of-process supervision and is much more compu-
tationally intensive than in-process ones. To find a proper
in-process supervising function remains an active research
topic.

6. DETECTING PROSTATE CANCER
SUBGROUPS BY USING CLUES

In this section, we demonstrate the convergence and sta-
bility issues associated with unsupervised mean-shift algo-

rithm by using a real data set prostate in biomedical research
field. The data set prostate is available in R [20] package El-
emStatLearn.

Prostate cancer (PcA) is the most common cancer among
men (after skin cancer). It may not cause signs or symptoms
in its early stages. Prostate-specific antigen (PSA) test has
been widely used to screen men for PcA. According to the
National Cancer Institute1, the PSA test measures the blood
level of PSA, a protein that is produced by the prostate
gland. The higher a man’s PSA level, the more likely it is
that he has PcA.

A PSA test is also used to monitor men who have been
diagnosed with PcA to see if their cancer has recurred af-
ter initial treatment or is responding to therapy. Stamey et
al. (1989) [22] examined the correlation between the level
of post-operative PSA and a number of clinical measures
(such as seminal vesicle invasion, cancer volume, gleason
score, prostate weight, amount of benign prostatic hyperpla-
sia, and capsular penetration) in 97 PcA patients measured
before they received a radical prostatectomy. Seminal vesicle
invasion is a binary variable and gleason score is an ordinal
variable taking values 6, 7, 8, and 9. The post-operative PSA
and the other clinical variables are continuous variables with

1http://www.cancer.gov/cancertopics/factsheet/detection/PSA
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Figure 4. This figure shows the parallel boxplots of log post-operative PSA level (lpsa) across the 5 clusters detected by the
clustering algorithm clues for the prostate cancer data set described in Section 6, in which four log transformed variables

(cancer volume, prostate weight, amount of benign prostatic hyperplasia, and capsular penetration) were used to group the 97
prostate cancer patients. Based on the prostate cancer data set, Stamey et al. (1989) [22] examined the correlation between
the level of post-operative PSA and a number of clinical measures, including the aforementioned 4 clinical variables. This

figure shows that the log post-operative PSA levels are different among the 5 clusters that were formed based on the 4 clinical
variables. In this figure, each boxplot corresponds to a cluster. The jittered red circles along the boxplot indicate the data

points in the cluster. (Color figure online)

skewed distributions and were log transformed (denoted as
lpsa, lcavol, lweight, lbph, and lcp, respectively).

We applied clues to the data set prostate to detect sub-
groups of the 97 PcA patients based on the 4 continuous clin-
ical variables lcavol, lweight, lbph, and lcp. We then checked
if the subgroups have different post-operative PSA levels. If
radical prostatectomy is effective, the post-operative PSA
levels would be low. Hence, subgroups having low post-
operative PSA levels would benefit more from radical prosta-
tectomy than subgroups having high post-operative PSA
levels.

We used the default setting of the clues function in clues
R package [21] to cluster the 97 PcA patients based on
lcavol, lweight, lbph and lcp. Silhouette index was used to
measure the compactness of the clusters. Five clusters were
obtained. The cluster sizes are 17, 19, 32, 18, and 11, re-
spectively.

Figure 4, which illustrates the parallel boxplots of the
log post-operative PSA levels (lpsa) across the 5 clusters,
shows that PcA patients in cluster 1 probably were more
responsive to the radical prostatectomy therapy than PcA
patients in cluster 5. Clusters 2 and 3 had similar lpsa level
and the two clusters had higher lpsa than cluster 1, but had

lower lpsa than cluster 4, which in turn had lpsa lower than
cluster 5.

By examining the median levels of the 4 log transformed
clinical variables for the 5 clusters (Table 1), we found that
cluster 1 had much smaller median cancer volume and cap-
sular penetration than cluster 5, but had similar median
weight and amount of benign prostatic hyperplasia before
the radical prostatectomy therapy. Although cluster 2 and
cluster 3 had similar post-operative lpsa, PcA patients in
cluster 2 had much smaller lbph and lcp than PcA patients
in cluster 3. PcA patients in cluster 4 had smaller lcavol
and lcp, but larger lweight and lbph than PcA patients in
cluster 5.

We further examined if the 5 clusters detected by clues
are separate from each other in the 4-dimensional space
spanned by lcavol, lweight, lbph, and lcp. The separateness
between each pair of clusters was measured by the separa-
tion index proposed by Qiu and Joe [23]. The separation
index takes values from −1 (totally overlapping) to 1 (to-
tally separated). A separation index value 0 indicates the 2
clusters are just “touching”.

Table 2 shows the matrix of the pairwise separation
indices. All pairwise separation indices are positive or
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Figure 5. This figure shows the 1-dimensional projection of a pair of clusters along the optimal projection direction based on
the method proposed by Qiu and Joe [23]. The colored ticks on x-axis indicate the positions of data points along the optimal
projection direction. The red color ticks are for the 1st cluster in the pair, while the blue color ticks are for the 2nd cluster in
the pair. Li and Ui are the lower and upper 2.5-th sample percentile of the cluster i along the optimal projection direction,

i = 1, 2. Density estimates of the pair of clusters are also shown in the figure. The 1-D projections in this figure are for 2 pairs
of clusters among the 6-cluster partition of the prostate cancer data set (97 data points in 4 dimensional space) described in
Section 6. The 6-cluster partition was obtained by the K-nearest-neighbor mean-shift algorithm, which moved the 97 data

points in a 4-dimensional space toward 6 focal points (K = 15). The 2 plots in this figure are the 1-D projection for clusters 1
and 2 (left panel) and for clusters 3 and 4 (right panel), respectively, This figure shows that clusters 3 and 4 are

overlapping (separation index value = −0.17), while clusters 1 and 2 are slightly overlapping (separation index value = −0.10).
(Color figure online)

Table 1. Cluster medians for the 4 log transformed clinical
variables

cluster size lcavol lweight lbph lcp

1 17 −0.45 3.27 −1.39 −1.39
2 19 1.61 3.62 −1.39 −0.60
3 32 1.11 3.78 1.62 −1.39
4 18 2.03 3.75 1.42 1.40
5 11 2.83 3.58 −1.39 2.17

Table 2. Pairwise separation index for the 5 clusters obtained
by clues. −1 indicates totally overlapping; 0 indicates just

touching; 1 indicates totally separated.

c1 c2 c3 c4 c5

c1 −1.00 −0.08 0.38 0.37 0.44
c2 −0.08 −1.00 0.36 0.22 −0.01
c3 0.38 0.36 −1.00 0.03 0.44
c4 0.37 0.22 0.03 −1.00 0.14
c5 0.44 −0.01 0.44 0.14 −1.00

close to zero, indicating the 5 clusters detected by clues
are separated in the 4-dimensional space spanned by
lcavol, lweight, lbph, and lcp. The online supplementary
figure (http://www.intlpress.com/SII/p/2016/9-2/SII-9-2-
WANG-supplement.pdf) illustrated the magnitude of sep-
aration along the estimated optimal one-dimensional pro-
jection for each pair of clusters.

In comparison, if we directly set the number of nearest
neighbors as K = 15 and ignore the supervision guided by
Silhouette index, we obtained 6 clusters. By examining the
pairwise separation indices among the 6 clusters, we found

that cluster 3 and cluster 4 are overlapped with separation
index −0.17; and (2) cluster 1 and cluster 2 are slightly over-
lapped with separation index −0.10. Figure 5 illustrates the
magnitudes of overlapping between clusters 1 and 2 and be-
tween clusters 3 and 4 along the optimal projection direc-
tions that separate the 2 clusters in each pair of clusters.
The separation index value −0.17 and Figure 5 indicates
that clusters 3 and 4 probably should be in one cluster.
Hence, the 6-cluster partition of the prostate cancer data set
obtained by using unsupervised mean-shift algorithm seems
unreasonable.

7. DISCUSSION

We fill a critical theoretical gap in the literature between
the reported successes in various applications and the lack of
convergence and stability analysis of mean shift type of dy-
namical clustering algorithms. We employ the conservation
law from physics and establish a general partial differen-
tial equation framework that prescribes the spatio-temporal
evolution of dynamical clustering processes. We show that,
in the absence of supervision, mean shift clustering and its
variations may not result in correct convergence in general
unless the underlying probability distribution can be trans-
formed to normal densities. The non-decreasing backward
in time of the Lyapunov function and the anti-diffusion na-
ture of these dynamical clustering algorithms render them
universally highly unreliable without a proper supervision.
Therefore a supervised mean shift clustering should be pre-
ferred and a supervision function must be chosen carefully
to ensure valid clustering results. The theoretical analysis of
the role of a supervision function is useful on how to choose
such a function in practice. This is our future research.
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