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A hybrid parametric and empirical likelihood
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The case-control design provides an effective way to col-
lect covariate information conditioning on subjects’ disease
status. The standard logistic regression model can be used to
model the interaction between two covariates under such a
design, but the prospective logistic regression method might
not be the most efficient one when certain appropriate con-
straints can be imposed on the covariate distribution. We
develop a hybrid approach for the statistical inference of the
interaction under the case-control design. We use a paramet-
ric model to characterize the conditional distribution of one
covariate given the another covariate in the control popula-
tion, while leaving the distribution of the later covariate to
be fully nonparametric. A maximum hybrid parametric and
empirical likelihood method is adopted for the evaluation of
all parameters. The estimator and the associated test de-
rived from the proposed semiparametric model are suitable
for evaluating the interaction between two covariates of var-
ious types (discrete or continuous). Asymptotic results for
both the estimators and the test statistics were established,
and the advantages of the proposed method over the exist-
ing ones are demonstrated through simulation results and a
real data example.

AMS 2000 subject classifications: Primary 62J12; sec-
ondary 62P10.
Keywords and phrases: Case-control, Genetic associa-
tion studies, Hybrid parametric and empirical likelihood,
Interaction test.

1. INTRODUCTION

In epidemiologic studies, it is often of interest to assess
whether there is any interaction between two variables once
they have been established as risk factors (covariate) for
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the disease under study. For example, due to the recent ad-
vances in high-throughput genomic technologies that allow
the simultaneous measurement of a large volume of bio-
logical markers (such as DNA variants and mRNA mark-
ers), there is growing enthusiasm for detecting gene-gene
and gene-environment interactions. An interaction exists if
the effect of one covariate depends on the level of another
one. A formal statistical definition for the interaction ef-
fect depends on the underlying statistical model. Under the
framework of generalized linear model, the interaction effect
is typically measured by the coefficient of the product of the
two covariates.

For epidemiological studies of rare diseases, the case-
control study design provides a cost-effective way of collect-
ing covariate information conditioning upon subjects’ dis-
ease status. Although samples are collected retrospectively,
it has been shown that inference based on the prospective
logistic regression model is asymptotically efficient if there
is no information on the distribution of covariates [1, 2, 3, 4].
However, if certain constraints derived from auxiliary infor-
mation can be imposed on the covariate distribution, the
standard logistic regression is still valid, but might not be
the most efficient one. For example, in genetic epidemiologic
studies of gene-environment interaction, sometimes it is ap-
propriate to assume that in the source population a subject’s
environmental exposure status is independent of his/her ge-
netic makeup. Under such a gene-environment independence
condition, a more efficient estimate for the interaction co-
efficient can be derived, such as the class of case-only esti-
mates that only use information collected among cases [5, 6],
and the more general semiparametric maximum likelihood
estimate that integrates information from both cases and
controls [7, 8].

Although the interaction estimates (or tests) derived un-
der the independence assumption tend to be more efficient
than the one based on the standard logistic regression, their
validity relies on the critical independence assumption. It
has been demonstrated that the case-only estimate (test)
can be highly distorted when the independence assumption
is violated [9]. An empirical Bayes-type estimate was pro-
posed in [10], which was a weighted average of two inter-
action estimates, one derived under the gene-environment
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independence assumption and the other more robust one
derived under the standard logistic regression without the
independence assumption. When there is an evidence of as-
sociation between the two covariates, the empirical Bayes-
type estimate puts more weight on the robust estimate, and
vice versa.

To relax the independence assumption between X and Y ,
Zhang et al. [11] proposed a copula function to relating X
and Y . In this paper, we develop an alternative approach for
estimating and testing the interaction between two covari-
ates (X and Y ) in case-control studies. Instead of assuming
an independent relationship between X and Y , we charac-
terize the relationship between X and Y in the control pop-
ulation by specifying a parametric model for the conditional
distribution of Y given X, while leaving the distribution for
the other components of the joint covariate distribution to
be fully nonparametric. The estimate and the associated
test derived from this proposed semiparametric model are
suitable for evaluating the interaction between two covari-
ates of various types, i.e., discrete by discrete, discrete by
continuous, and continuous by continuous. Therefore, our
method can be applied to evaluating gene by gene and gene
by environment interactions in genetic association studies.
It is also applicable to the study of interaction between two
continuous covariates in other epidemiology studies.

In the proposed method, we make an extra distribution
assumption compared with the standard logistic regression.
This method is a hybrid in the sense that the resulting log-
likelihood function is the summation of a parametric log-
likelihood and an empirical log-likelihood, as will be shown
in the next section. Such a hybrid method lies between the
traditional logistic regression for case-control design (corre-
sponding to an empirical likelihood) and the fully paramet-
ric method (corresponding to a parametric likelihood). Since
the hybrid method incorporates an additional assumption,
it could be intuitively more efficient than the standard lo-
gistic regression method provided the extra information is
accurate.

This paper is organized as follows. In Section 2, using
an empirical likelihood method [12], we describe a new
approach for assessing the interaction, and present some
asymptotic results as the basis for statistical inference. In
Section 3, we conduct some simulation studies to evaluate
the performance of the proposed procedure. In Section 4,
we demonstrate the application of the proposed procedure
through a real data example. We conclude this paper with
some discussions in Section 5.

2. MAIN RESULTS

Let D = 1 or 0 be the indicator of case/control status.
Let Y and X be the two covariates under investigation. The
common risk model for the binary outcome is the logistic
regression model:
(1)

P (D = 1|Y = y,X = x) =
exp(α∗ + yβ + γx+ ξxy)

1 + exp(α∗ + yβ + γx+ ξxy)
,

where α∗ is an intercept, β and γ are main effects and ξ is
an interaction effect. We are interested in testing the null
hypothesis of no interaction, i.e., H0 : ξ = 0.

Instead of prospectively collecting (D,Y,X), typically
one collects (Y,X) by conditioning on the status of D in
case-control studies. This is the so called retrospective sam-
pling or case-control sampling. Let

{(Yi1, Xi1), i = 1, 2, . . . , n1} and {(Yi0, Xi0), i = 1, 2, . . . , n0}

be the covariate data for cases (Di = 1) and controls (Di =
0), respectively, where n1 and n0 are the number of cases
and controls. Using Bayes’ formula, one obtains the density
functions of (Y,X) for cases and controls:

f(y, x|D = 1) =
P (D = 1|y, x)f(y, x)

P (D = 1)
,

f(y, x|D = 0) =
P (D = 0|y, x)f(y, x)

P (D = 0)
,

where f(y, x) is the marginal density function of (Y,X) (in
the general population). The case and control density func-
tions can be linked by the exponential tilting model [13]

(2) f(y, x|D = 1) = exp(α+ yβ + γx+ ξxy)f(y, x|D = 0),

where α = α∗+log{P (D = 0)/P (D = 1)}. Hereafter, we use
f0(y, x) and f1(y, x) to denote f(y, x|D = 0) and f(y, x|D =
1), respectively.

[14] showed that the semiparametric likelihood estimation
of the baseline distribution function

∫ y

−∞
∫ x

−∞ f0(t, s)dsdt
based on the exponential tilting model (2) had an asymp-
totic Bahadur representation and was more efficient than the
empirical distribution function estimation based on control
data only.

Without any auxiliary information on f0(y, x), one may
perform a prospective logistic likelihood analysis with the
log-likelihood function

∑n
i=1 logP (Di|Xi, Yi) equal to

�P :=

n1∑
i=1

(α+ βYi1 + γXi1 + ξXi1Yi1)(3)

−
n∑

i=1

log[1 + exp(α+ βYi + γXi + ξXiYi)].

Here we use {(Xi, Yi), i = 1, 2, . . . , n (= n0 +n1)} to denote
the pooled data {(Xi1, Yi1), i = 1, 2, . . . , n1; (Xi0, Yi0), i =
1, 2, . . . , n0}, and “:=” is used for a definition. Then one
may use the score or likelihood ratio test to test H0 : ξ = 0.

In the following, we model the dependence between X
and Y in the control population through a parametric model
f0(y|x) = f0(y|x,η). Then the joint density function of Y
and X for controls is f0(y, x) = f0(y|x)f0(x), where f0(x) is
the marginal density function of X for controls. According
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to the tilting model (2), the marginal density function for
cases (defined as

∫
f1(y, x)dy) is

f1(x) := exp(α+ γx)

∫
exp(βy + ξxy)f0(y|x,η)dyf0(x)

(4)

= exp(α+ γx)μ1(x, β, ξ,η)f0(x),

where

(5) μ1(x, β, ξ,η) :=

∫
exp(βy + ξxy)f0(y|x,η)dy.

For convenience, let

φ(x, β, γ, ξ,η) := γx+ logμ1(x, β, ξ,η),

then

f1(x) = exp{α+ φ(x, β, γ, ξ,η)}f0(x).

Thus, similar to model (2), the marginal density functions
f1(x) for cases and f0(x) for controls are linked again by
an exponential tilting model, but through a different link
function. Moreover, the conditional density function of Y
given X for cases (defined as f1(y, x)/f1(x)) is

(6) f1(y|x) = exp(βy + ξxy)f0(y|x,η)/μ1(x, β, ξ,η),

which is known up to parameters (β, ξ,η). Therefore, the
full data log-likelihood (defined as

∑n
i=1 logP (Yi, Xi|Di)) is

� = �c + �M ,

where

�c :=

n1∑
i=1

[βYi1 + ξYi1Xi1(7)

− logμ1(Xi1, β, ξ,η)] +

n∑
i=1

log f0(Yi|Xi,η)

is the conditional parametric log-likelihood and

(8) �M :=

n1∑
i=1

{α+ φ(Xi1, β, γ, ξ,η)}+
n∑

i=1

log f0(Xi)

is the marginal empirical likelihood.
We use the theory of empirical likelihood [12] to pro-

file out the high-dimensional parameters {f0(Xi), i =
1, 2, . . . , n}. Let pi be the jump size of

∫ x

0
f0(s)ds at Xi,

we seek to maximize the marginal likelihood with f0(Xi)
replaced by pi. Note that p1, . . . , pn satisfy the constraints∑n

i=1 pi = 1 and
∑n

i=1 pi exp(α + φ(Xi1, β, γ, ξ,η)) = 1.
Applying the result of [13], one obtains the maximizers

p̂i =
1

n

1

1 + ρ exp(α+ φ(Xi1, β, γ, ξ,η))
, i = 1, . . . , n,

where ρ := n1/n0. As a result, one has the log marginal
profile empirical likelihood

p�M :=

n1∑
i=1

{α+ γXi1 + logμ1(Xi1, β, ξ,η)}(9)

−
n∑

i=1

log[1 + ρ exp(α+ φ(Xi1, β, γ, ξ,η))}].

Define ω := (α, β, γ,η, ξ). Then, one may make inference
for ω based on the log hybrid parametric and empirical like-
lihood

(10) �H(ω) := �c(ω) + p�M (ω),

where �c and p�M are given in (7) and (9), respectively. Let
ω0 be the true value of ω and ω̂ be the maximum hybrid
parametric and empirical likelihood estimator. We have the
following asymptotic result for ω̂.

Theorem 1. Under some regularity conditions specified in
Appendix,

√
n(ω̂−ω0) converges in distribution to a multi-

variate normal distribution with expectation 0 and variance-
covariance matrix given in Appendix.

The hybrid likelihood ratio test statistic for H01 : ξ = 0
is defined as

R1 = 2

(
max

α,β,γ,ξ,η
�H(ω)− max

α,β,γ,ξ=0,η
�H(ω)

)
.

Theorem 2. Under some regularity conditions specified in
Appendix and under the null hypothesis H01, the hybrid like-
lihood ratio test statistic R1 converges in distribution to the
chi-square distribution with 1 degree of freedom.

Suppose that the conditional density function f0(·|x,η)
depends on x and η (= (η1, η2)) only through η1 + η2x, i.e.,

f0(y|x,η) = f0(y|η1 + η2x),

we can test the null hypothesis H02 : ξ = 0, η2 = 0 (i.e., X
and Y are independent in both case and control groups). The
hybrid likelihood ratio test statistic for testing H02 takes the
form

R2 = 2

(
max

α,β,γ,ξ,η1,η2

�H(ω)− max
α,β,γ,ξ=0,η1,η2=0

�H(ω)

)
.

Theorem 3. Under the null hypothesis H02, the hybrid
likelihood ratio test statistic R2 converges in distribution to
the chi-square distribution with 2 degrees of freedom.

The proofs of Theorems 1–3 are postponed to Appendix.

3. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the performance of the proposed method. The density ratio
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model (2), in general, is not convenient for generating ob-
servations for cases. Instead, we will use an approximation
method as described in the following. The basic idea comes
from the unequal weight sampling method used in survey
sampling. Noting that the joint density functions of (X,Y )
for cases and controls are linked by the exponential tilting
model

f1(y, x) = exp{α+ φ(y, x, β)}f0(y, x),

one can first generate a large number of random vectors
{(Xi, Yi), i = 1, 2...., N} from f0(y, x). Then, one may gen-
erate

f(Yi = y,Xi = x|Di = 1) :=
exp{φ(Yi, Xi, β)}∑N
i=1 exp{φ(Yi, Xi, β)}

.

If N is large enough, then f(Yi = y,Xi = x|Di = 1) can be
a good approximation of

f1(y, x) =
exp{φ(y, x, β)}f0(y, x)∫

exp{φ(y, x, β)}f0(y, x)dydx
.

More details on the unequal weight sampling or biased sam-
pling model can be found in [15, 16, 17, 18, 19].

We consider two scenarios, one for the interaction be-
tween two continuous variables, the other for the interaction
between a discrete variable and a continuous variable.

For comparison, we consider three estimation methods.
The first one is to estimate α, β, γ, and ξ based on the
prospective likelihood function. In this approach, the con-
ditional information of f0(y|x) := f0(y|x,η) in the control
group is not used, and η is estimated by maximizing the like-
lihood function for the control data alone. The second one
is the proposed method in this paper with (α, β, γ, ξ,η) be-
ing estimated by maximizing the hybrid likelihood function
�H = �c + p�M . The third one is the Chatterjee and Carroll
method as implemented in the R package CGEN, which as-
sumes that the gene and environment are independent in the
general population and Hardy-Weinberg equilibrium holds
for the studied marker.

For testing H0 : ξ = 0, we considered four test statis-
tics: 1) the hybrid likelihood ratio test given in Theorem 2,
2) the likelihood ratio test based on logistic regression with-
out using the conditional density information of f0(y|x,η),
3) the likelihood ratio test of Chatterjee and Carroll method,
and 4) Pearson’s correlation coefficient test between two co-
variates based on case-only data.

3.1 Study 1

We evaluate the interaction between two continuous vari-
ables.

For given covariates X and Y , the disease status D sat-
isfies the logistic regression model (1). Let η := (η1, η2, η3),
and assume that the conditional distribution of Y given

X = x for the control population is the normal distribu-
tion with expectation η1 + η2x and variance η23 . Therefore,
the marginal density function of X for cases is

f1(x) = f0(x) exp{α+ γx+ (η1 + η2x)(β + ξx)

+ 0.5(β + ξx)2η23},

and the conditional density function of Y given X = x for
cases is

f1(y|x) = exp[βy + ξxy − {(η1 + η2x)(β + ξx)

+ 0.5(β + ξx)2η23}]

× 1√
2πη23

exp
{
−0.5(y − η1 − η2x)

2/η23
}
.

Assuming that f0(x) is the standard normal density func-
tion, we have a closed form for the conditional distribution
of Y given X in the case population, that is,

Y |X = x ∼ N
(
β + ξx+ (η1 + η2x)/η

2
3 , η

2
3

)
.

Moreover, the marginal distribution of X in the case popu-
lation is N(μ, σ2), where

σ2 = (1− 2η2ξ − ξ2η23)
−1, μ = σ2(γ + η2β + η1ξ + βξη23).

The above reasoning shows that, if the two covariates are
jointly normally distributed in the control population, then
the joint distribution in the case population is also bivariate
normal, provided that the logistic regression model holds
true. Furthermore, the data generation is straightforward
under the above model.

We fixed the main effects at β = γ = 1, and η1 = 0,
η3 = 1. For different choices of interaction effect ξ and η2
that characterized the correlation between two covariates,
we generated the covariate data for 500 cases and 500 con-
trols, and applied to the simulated data the logistic regres-
sion method, the hybrid method (assuming a normal condi-
tional distribution), and the case-only method. The estima-
tion results and sizes/powers for testing interaction effect
are reported in Table 1 and Table 2, respectively.

We have the following observations. In all simulation
situations, both logistic regression method and the hy-
brid method produce little estimation bias, and the hybrid
method has smaller variance than the logistic regression
method, especially for the interaction effect. If the two co-
variates are independent in the control population (η2 = 0),
then the case-only method has type one error rate around
the nominal levels, and it has greater powers than the logis-
tic regression method and the hybrid method have (ξ = 0.2
and η2 = 0). The case-only method, however, is very sensi-
tive to the independence assumption, which could have type
one error rate close to 1 (ξ = 0 and η2 = −0.5). This re-
sult shows that one must be very cautious when using the
case-only method. This observation is consistent with the
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Table 1. Estimation bias (standard error) in the continuous situation∗

logistic regression hybrid method
distribution∗∗ ξ η2 γ β ξ γ β ξ

normal 0 0 .008(.096) .013(.098) -.013(.090) .001(.089) .006(.091) -.005(.064)
normal 0 -.5 .003(.091) .007(.083) -.008(.061) .001(.089) .004(.082) -.005(.053)
normal .2 0 .008(.107) .015(.109) -.012(.102) .000(.095) .006(.096) -.003(.064)
normal .2 -.5 .002(.095) .007(.086) -.008(.073) .000(.092) .005(.084) -.006(.060)
mixed 0 0 .001(.077) .003(.053) -.001(.053) .002(.075) .011(.055) -.002(.046)
mixed 0 -.5 .001(.078) .002(.051) .000(.044) .005(.077) .010(.053) .000(.041)
mixed .2 0 .000(.081) .002(.056) -.001(.057) .026(.077) .027(.060) -.030(.046)
mixed .2 -.5 .000(.081) .002(.053) .001(.054) .020(.080) .014(.056) -.018(.046)

t6 0 0 .002(.072) .001(.073) .001(.072) -.003(.071) -.097(.051) .010(.045)
t6 0 -.5 .000(.078) .001(.070) .000(.055) -.054(.074) -.095(.049) .015(.042)
t6 .2 0 .002(.075) -.001(.075) .000(.076) .008(.074) -.121(.045) -.036(.041)
t6 .2 -.5 -.001(.078) .000(.071) .001(.064) -.071(.072) -.118(.043) -.003(.044)
t10 0 0 .001(.073) .002(.072) -.001(.073) .002(.072) -.008(.068) -.008(.061)
t10 0 -.5 .000(.076) .002(.069) .000(.056) -.005(.076) -.011(.065) -.002(.051)
t10 .2 0 .000(.074) .003(.074) -.002(.076) -.002(.074) -.016(.067) -.012(.059)
t10 .2 -.5 .000(.078) .000(.07) .002(.063) -.014(.076) -.016(.064) .005(.056)

skewed 0 0 .003(.112) .002(.068) -.002(.069) .003(.107) -.001(.067) -.002(.06)
skewed 0 -.5 .002(.100) .001(.065) -.002(.054) .000(.099) -.003(.064) -.001(.05)
skewed .2 0 .005(.123) -.001(.075) -.002(.077) -.021(.107) -.010(.070) .010(.056)
skewed .2 -.5 -.002(.108) -.001(.069) .002(.064) -.031(.104) -.007(.066) .018(.057)

∗The working conditional distribution for the hybrid method was normal.
∗∗Underlying conditional distribution: “normal”, standard normal distribution; “mixed”, mixture of two standard
normal distributions with equal weights; “t6”, t distribution on 6 df; “t10”, t distribution on 10 df; “skewed”,
skewed normal distribution with shape parameter 2.

results found in [9] for testing interaction between two bi-
nary covariates. On the other hand, the hybrid method has
well controlled type one error rates (ξ = 0), and it is more
powerful than the logistic regression method (ξ = 0.2). The
power gain of the hybrid method over the logistic regres-
sion method can be very considerable. For example, when
ξ = 0.2 and η2 = −0.5, the power at 0.05 level of the hy-
brid method is 0.881, compared with 0.465 for the logistic
regression method.

To study the robustness of the proposed method to the
misspecification of the conditional distribution of Y givenX,
we considered three types of conditional distributions other
than the normal one. The first one was the mixture of two
standard normal distribution with equal weights, the second
one was the t distribution with six or ten degrees of freedom,
and the third one was the skewed normal distribution with
shape parameter two [20]. For each of these three conditional
distributions, we considered four parameter combinations as
described in the normal situation. In the hybrid method, we
specified the conditional distribution of Y given X to be
normal. The estimation results and sizes/powers are again
reported in Table 1 and Table 2, respectively.

Under the null hypothesis (ξ = 0), the hybrid method has
nearly unbiased estimates and good control of type one error
rates except in one situation (t6 distribution, ξ = η2 = 0),
with the type one error rate being slightly deflated in this sit-
uation. Under the alternatives (ξ = 0.2), the hybrid method

is still more powerful than the logistic regression method,
and the power gain over the logistic regression method is
satisfying in most situations. On the other hand, the case-
only method has an extremely distorted type one error rate
when X and Y are correlated (η2 = −0.5 and ξ = 0), and
it can lose power dramatically in some situations (t6 dis-
tribution, ξ = 0.2, η2 = −0.5; mixed normal distribution,
ξ = 0.2, η2 = −0.5). The above simulation results show that
the hybrid method performs pretty well except when the
conditional distribution is seriously misspecified (t6 distri-
bution).

The method developed in [11] used a copula function to
relate the distribution of X and Y . This method will be
termed “copula” hereafter. We conducted additional simu-
lations to compare the performance of the copula method
and the method developed in this manuscript (“hybrid”).
In the copula method, we used the gaussian copula func-
tion, and in the hybrid method, we specified the conditional
function of Y given X to be normal. We generated two co-
variates X and Y that were jointly normal (the marginal
distributions being standard normal) in the control popu-
lation, so that both the hybrid method and copula method
should work since the conditional distribution Y |X in the
controls is normal (work for the hybrid method) and the
copula function for the joint distribution is Gaussian (work
for the copula method). The true values of both β and γ in
the underlying tilting model were fixed at 0.5, ξ was either 0
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Table 2. Size/power in the continuous situation∗

logist hybrid case-only
distribution∗∗ ξ η2 .01 .05 .1 .01 .05 .1 .01 .05 .1

normal 0 0 .012 .047 .097 .012 .051 .102 .009 .049 .100
normal 0 -.5 .010 .054 .101 .010 .051 .102 1.000 1.000 1.000
normal .2 0 .236 .465 .587 .717 .881 .930 .968 .994 .997
normal .2 -.5 .541 .770 .859 .752 .907 .946 1.000 1.000 1.000
mixed 0 0 .008 .050 .099 .009 .047 .094 .012 .049 .097
mixed 0 -.5 .009 .044 .096 .010 .047 .100 1.000 1.000 1.000
mixed .2 0 .829 .947 .972 .874 .960 .980 .998 .999 1.000
mixed .2 -.5 .909 .976 .988 .919 .978 .989 .551 .776 .863

t6 0 0 .011 .051 .100 .004 .029 .069 .002 .018 .044
t6 0 -.5 .008 .052 .104 .009 .043 .096 1.000 1.000 1.000
t6 .2 0 .557 .770 .855 .845 .964 .984 .976 .997 1.000
t6 .2 -.5 .747 .898 .944 .959 .992 .997 .414 .721 .842
t10 0 0 .011 .055 .106 .008 .045 .094 .007 .047 .094
t10 0 -.5 .009 .051 .102 .009 .046 .097 1.000 1.000 1.000
t10 .2 0 .535 .757 .850 .722 .887 .941 .962 .992 .999
t10 .2 -.5 .746 .901 .946 .859 .951 .975 .997 1.000 1.000

skewed 0 0 .012 .053 .101 .009 .052 .101 .007 .047 .098
skewed 0 -.5 .010 .047 .102 .010 .045 .095 1.000 1.000 1.000
skewed .2 0 .519 .757 .835 .861 .959 .982 .993 .998 .999
skewed .2 -.5 .749 .897 .944 .903 .974 .988 .976 .997 .998

∗The working conditional distribution for the hybrid method was normal. The sizes/powers for testing
interactions (H0 : ξ = 0) were calculated at nominal levels 0.01, 0.05, and 0.1.
∗∗Underlying conditional distribution: “normal”, standard normal distribution; “mixed”, mixture of
two standard normal distributions with equal weights; “t6”, t distribution on 6 df; “t10”, t distribution
on 10 df; “skewed”, skewed normal distribution with shape parameter 2.

or 0.25, and the correlation coefficient of X and Y was either
0, 0.2, or −0.2. We randomly draw 200 individuals from case
population and 200 individuals from control population, and
applied the hybrid method, the copula method, and the lo-
gistic regression method to the generated data. The simu-
lation results based on 1,000 replications of simulations are
reported in Table 3. Overall, the hybrid method has smaller
standard errors of the estimates than the copula method,
and estimation bias is also smaller for the hybrid method.
As for the power for testing interaction, the hybrid method
could have greater power than the copula method when the
later overestimates the interaction, and vice versa otherwise.
As expected, the standard logistic regression method is less
efficient (in terms of standard error) and less powerful than
both the copula method and the hybrid method.

3.2 Study 2

We evaluate interaction between a continuous covariate
X and a categorical covariate Y = 0, 1, 2. To be consistent
with notation used for gene-environment interaction study,
we replace Y by G and X by E.

Again, for given covariates (G,E), we assume that the
logistic regression (1) holds. Let

(11) η := (η1, η2, η3, η4),

and we consider the following polytomous regression model
for the controls:

w0(e,η) :=P0(G = 0|E = e)(12)

=
1

1 + exp(η1 + η2e) + exp(η3 + η4e)

w1(e,η) :=P0(G = 1|E = e)(13)

=
exp(η1 + η2e)

1 + exp(η1 + η2e) + exp(η3 + η4e)

w2(e,η) :=P0(G = 2|E = e)(14)

=
exp(η3 + η4e)

1 + exp(η1 + η2e) + exp(η3 + η4e)

Let f0(e|g) denote the conditional density function of E
given G = g, then the above model is equivalent to

f0(e|1) = f0(e|0) exp(η∗1 + η2e),

f0(e|2) = f0(e|0) exp(η∗3 + η4e),

where η∗1 = η1 + log{P (G = 1)/P (G = 0)}, η∗3 = η3 +
log{P (G = 2)/P (G = 0)}. In other words, given genotype
G = i, i = 0, 1, 2, the “environment variable” E has density
functions linked by the “exponential tilting model” with the
baseline density function f0(e|0) totally unspecified. There-
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Table 3. Estimation and test results with two normal covariates

logist hybrid copula case-only
ξ θ∗ bias (se)∗∗ power∗∗∗ bias (se)∗∗ power∗∗∗ bias (se)∗∗ power power∗∗∗

0 0 .005 (.116) .049 .003 (.104) .054 .007 (.104) .062 .058
0 .2 -.002 (.115) .046 -.007 (.099) .048 .018 (.102) .050 .783
0 -.2 .001 (.112) .044 .001 (.101) .044 -.014 (.102) .045 .823

.25 0 .004 (.126) .576 .022 (.107) .776 .057 (.120) .789 .959

.25 .2 .004 (.123) .573 .002 (.099) .765 .070 (.117) .832 1.000

.25 -.2 .005 (.128) .553 .000 (.109) .664 -.010(.108) .627 .084
∗The two covariates X and Y were jointly normal and the common marginal distribution was standard normal.
The true values of β and γ in the tilting model (2) were 0.5.
∗∗The correlation coefficient of two standard normal covariates in the control population.
∗∗∗Estimation bias (standard error) for the interaction effect ξ.
∗∗∗∗Size/power for testing interaction effect (H0 : ξ = 0) at nominal level 0.05.

fore, it follows from (4) that the marginal distribution func-
tions f1(e) and f0(e) of E for cases and controls satisfy the
relationship

f1(e) = exp{α+ γe+ logμ1(e)}f0(e),

where

μ1(e) :=

2∑
g=0

exp{(β + ξe)G}P0(G = g|E = e)

=w2 exp(2β + 2ξe) + w1 exp(β + ξe) + w0,

which is derived according to (5). In virtue of (6), the condi-
tional mass functions P1(G = g|E = e) and P0(G = g|E =
e) for cases and controls satisfy the relationship

P1(G = g|E = e) = exp{βg + ξeg − logμ1(e)}
× P0(G = g|E = e).

As a result, the conditional log-likelihood function (7) is

�c =

n1∑
i=1

{Gi1β + ξGi1Ei1 − logμ1(Ei1)}

+

n∑
i=1

{I(Gi = 0) logw0(Ei,η)

+ I(Gi = 1) logw1(Ei,η)

+ I(Gi = 2) logw2(Ei,η)}.

To make sure that the Hardy-Weiberg equilibrium holds
true in the control population, we chose the parameters
(η1, η2, η3, η4) = (1.54, 0, 1.195, 1). This is equivalent to
the choice that in the control population E|G = 0 ∼
N(0, 1), E|G = 1 ∼ N(0, 1) and E|G = 2 ∼ N(1, 1), and
P0(G = 0) = 0.09, P0(G = 1) = 0.42, P0(G = 2) = 0.49.
The choice of genotype frequencies corresponded to a domi-
nant genetic model. For the parameters of interest (β, γ, ξ),
we chose (1, 1, 0). We randomly generated 200 case data and

200 control data and applied to the data the standard lo-
gistic regression method, the hybrid method (assuming a
polytomous regression), Chatterjee and Carroll’s method
implemented in the R package CGEN (this method is called
CGEN hereafter), and the case-only method. The bias and
variance of the estimates and sizes/powers at levels of 0.01,
0.05, and 0.1 based on 1,000 replications of simulations are
reported in Table 4. Compared with the logistic regres-
sion method without using the auxiliary model information
P0(G = g|E = e), the hybrid method has smaller variances
for all parameters. On the other hand, the CGEN method
has inflated type one error rates and biased estimations of
(β, γ, ξ). This is not surprising as the conditions required by
the CGEN method do not hold to be true under our setup.

To test the robustness of the proposed test statistic,
we also conducted simulations by assuming a misspecified
model P0(G = g|E = e). The true underlying model for
P0(G = g|E = e) was assumed to be either the proportional
odds ratio model or the multi-probit model, but the “work-
ing model” is still the polytomous regression model. For the
proportional odds ratio model, we used

P0(G = 0|E = e) =
exp(0 + 1× e)

1 + exp(0 + 1× e)
,

P (G ≤ 1|E = e) =
exp(1 + 1× e)

1 + exp(1 + 1× e)
,

P0(G = 2|E = e) = 1−P0(G = 0|E = e)−P0(G = 1|E = e).

For the choice of (β, γ, ξ) = (1, 1, 0) or (1, 1, 0.5), the sim-
ulation results with sample sizes of n1 = n0 = 200 based
on 1,000 replications are reported in Table 5. We can ob-
serve that for the estimation of (β, γ, ξ), the bias due to the
misspecification of P0(G = g|E = e) is small. The type one
error rates for testing no interaction between G and E are
also close to the nominal levels. Again the CGEN method
produces biased results for the estimation of (β, γ, ξ) and
inflated type one error rates. This is also due to the fact
that the conditions required by CGEN were not satisfied.
Similar result was observed when the true underlying model
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Table 4. Estimation and testing results for gene-environment interaction∗

power∗∗∗

method∗∗ result β γ ξ η1 η2 η3 η4 .01 .05 .1

true 1 1 0 1.540 0 1.195 1
hybrid bias .024 .005 .007 .051 .003 .046 .016 .008 .036 .088

var. .129 .199 .059 .069 .062 .084 .080
logist bias .050 .066 -.025 .049 -.007 .046 .013 .008 .037 .082

var. .147 .270 .081 .079 .081 .090 .092
CGEN bias -.122 -.387 .242 - - - - .054 .192 .309

var. .098 .143 .042
case-only bias - - - - - - - .939 .985 .992

∗In the hybrid method, the true conditional model was the polytomous model determined by
(12)–(14) and it was correctly specified.
∗∗“hybrid”, the proposed hybrid method; “logist”, logistic regression method; “CGEN”, the method
implemented in the R package CGEN.
∗∗∗Size/power for testing interaction between gene and environment (H0 : ξ = 0) at nominal levels
0.1, 0.05, 0.01.

Table 5. Estimation and testing results with misspecified
conditional model∗

power∗∗∗

method∗∗ result β γ ξ .01 .05 .1

true 1 1 0
hybrid bias .002 -.006 .019 .015 .056 .106

var. .023 .034 .018
logist bias .014 .018 .002 .009 .046 .108

var. .025 .039 .022
CGEN bias .534 .191 .029 .031 .092 .155

var. .051 .056 .032

method result β γ ξ .01 .05 .1

true 1 1 .5
hybrid bias -.029 -.042 .064 .925 .985 .993

var. .032 .042 .021
logist bias .015 .021 .014 .574 .797 .881

var. .041 .057 .035
CGEN bias .517 -.204 .369 .986 .993 .996

var. .073 .077 .047
∗In the hybrid method, the true conditional model was the pro-
portional odds model, but it was misspecified to be the polyto-
mous regression model determined by (12)–(14).
∗∗“hybrid”, the proposed hybrid method; “logist”, logistic regres-
sion method; “CGEN”, the method implemented in the R pack-
age CGEN.
∗∗∗Size/power for testing interaction between gene and environ-
ment (H0 : ξ = 0) at nominal levels 0.1, 0.05, 0.01.

P0(G = g|E = e) was generated from the multinomial pro-
bit model (result not shown here).

4. A LUNG CANCER EXAMPLE

It is well known that cigarette smoking is a major
risk factor for lung cancer. Recent genome-wide associa-
tion studies (GWAS) also identified a few chromosome re-

gions (e.g., chromosome 15q25, 515, and 6p21) harboring
genetic variants underlying the susceptibility for lung can-
cer [21, 22, 23, 24, 25, 26, 27]. In particular, the chromo-
some 15q25 region has been shown to be associated with
both lung cancer and smoking behavior. It is of great in-
terest to test whether there is any interaction between the
genetic variants in 15q25 and smoking on the risk of lung
cancer. We applied the proposed method to evaluating a
potential gene-smoking interaction in the Environment and
Genetics in Lung Cancer Etiology Study (EAGLE) [27]).
In particular, we used the average intensity of cigarettes
smoking (in terms of the averaged number of packs per day)
defined for ever-smoking subjects in the EAGLE study to
represent the smoking behavior, and denoted it as CPD.
We evaluated the interaction between CPD and each of the
39 relatively common bi-allelic genetic variants called SNPs
(single-nucleotide polymorphisms) within the 15q25 region.
Genotypes on these 39 SNPs were obtained from the GWAS
on lung cancer [27].

We focused on ever-smokers and removed subjects with
missing genotypes. There were a total of 1,738 lung can-
cer cases, and 1,336 controls in the final dataset. First, we
applied the standard logistic regression to evaluating the
interaction between CPD and each of the 39 SNPs. The in-
teraction with the SNP rs12912946 had the lowest p-value
(p-value = 0.042). Then, we applied our new method to
studying the interaction by modeling the relationship be-
tween CPD and a SNP with a polytomous regression model.
Again, the interaction with the SNP rs12912946 turns out
to have the smallest p-value (p-value = 0.014), which is
very close to the one produced by CGEN (p-value = 0.012).
Noting that the correlation between the SNP rs12912946
and the smoking intensity is not significant at level 0.05
(p-values for η2 and η4 are 0.052 and 0.373, respectively),
and the Hardy-Weinberg equilibrium holds in the controls
(p-value = 0.121), it is not a surprise to see that CGEN per-
forms similarly to ours since the conditions for the validity
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Table 6. Interaction effect of rs12912946 × smoking intensity
on lung cancer∗

method parameter est. s.e. z value P (>|z|)
logist (Intercept) -.805 .110 -7.293 3.02e-13

gene -.268 .138 -1.948 .051
smoking 1.143 .108 10.544 5.42e-26

gene × smoking .276 .136 2.032 .042
hybrid (intercept) -1.062 .106 -10.066 7.82e-24

gene -.280 .121 -2.320 .020
smoking 1.138 .103 11.035 2.59e-28

gene × smoking .288 .117 2.450 .014
η1 -.094 .102 -.925 .355
η2 -.209 .108 -1.945 .052
η3 -1.882 .199 -9.454 3.27e-21
η4 -.190 .213 -.891 .373

CGEN (intercept) -.798 .105 -7.596 3.06e-14
gene -.283 .119 -2.370 .018

smoking 1.134 .103 11.019 3.11e-28
gene × smoking .293 .117 2.508 .012

∗In the hybrid method, the conditional model was specified to be
the polytomous regression model determined by (12)–(14).

of CGEN nearly hold. More detailed results are reported in
Table 6. Even though the p-value generated by our method
is smaller than that from the standard logistic regression
model, it is still not significant after the multiple compari-
son adjustment. This could be due to the limited power, or
the possibility that there is no interaction between smok-
ing and genetic variants in 15q25. Further investigations are
needed to better understand how the smoking behavior and
genes in 15q25 are interacted.

5. DISCUSSIONS

In this paper we have proposed a hybrid approach for
testing the interactions between two covariates in case-
control studies. By appropriately modelling the conditional
distribution of one covariate conditioning on the other one in
the control population, we are able to obtain a more pow-
erful test than the one derived from the standard logistic
regression model. We choose to model the conditional dis-
tribution in the control population instead of in the general
population, in order to avoid the thorny issue in the estima-
tion of disease prevalence probability as it is not estimable
in a standard case-control study. By the symmetric prop-
erty, one may also model the conditional distribution in the
case population.

Chatterjee and Carroll [7] assumed that in the general
population the gene and environment are independent of
each other. They showed that the disease prevalence is es-
timable under this extra assumption. Lin and Zeng [28] as-
sumed a parametric model for Y given X in the general pop-
ulation. If the disease prevalence is low, then approximately
our method and Lin and Zeng’s method are equivalent. On

the other hand, if the disease prevalence is high, both Chat-
terjee and Carroll’s and Lin and Zeng’s methods might have
a convergence problem unless the true disease prevalence is
known.

Furthermore, if the sampling is unbiased (the true disease
prevalence rate matches the sampling fraction of n1/(n1 +
n0)), then both Chatterjee and Carroll’s method and Lin
and Zeng’s method have no improvement over the standard
logistic regression estimation provided that the distribution
f(x, y) does not carry any information on interested param-
eters. We can demonstrate this as follows.

Suppose there are n individuals and the sampling de-
sign is prospective. It ends up to n1 cases and n0 controls.
Then one takes all cases and controls from n1 cases and
n0 controls. The full likelihood can be decomposed either
prospectively or retrospectively as

n∏
i=1

[
exp{di(α∗ + βyi + γxi + ξxiyi)}
1 + exp(α∗ + βyi + γxi + ξxiyi)

f(yi, xi)

]

=

{ n1∏
i=1

f(y1i, x1i|D = 1)

}{ n0∏
j=1

f(x0j , y0j |D = 0)

}

×
{
Pn1(D = 1)Pn0(D = 0)

}

Usually the density function f(y, x) is unrelated to the pa-
rameters (α∗, β, γ, ξ) and the corresponding likelihood is fac-
tored out from the prospective likelihood. Therefore, the full
likelihood

n∏
i=1

[
exp{di(α∗ + βyi + γxi + ξxiyi)}
1 + exp(α∗ + βyi + γxi + ξxiyi)

f(yi, xi)

]

is exactly equivalent to the prospective likelihood even if
f(y, x) is completely known. As a result, the retrospective
likelihood

{ n1∏
i=1

f(y1i, x1i|D = 1)

}{ n0∏
j=1

f(x0j , y0j |D = 0)

}

is usually less informative than the prospective likelihood,
and one cannot expect any improvement over the prospec-
tive likelihood by using the retrospective likelihood and aux-
iliary information on f(y, x).

Since in the proposed model we have made a parametric
assumption for the conditional density function of Y givenX
directly in the case or control population, our method could
produce improved estimation for the underlying parameters
when the sampling is biased. This fact is observed in our
simulation studies.

Moreover, the proposed method has potential applica-
tions in secondary outcome analysis where one may be in-
terested in studying the relationship between Y and X in
the control (or case) population. The proposed method can

A hybrid parametric and empirical likelihood model 155



utilize information from both cases and controls effectively,
even though the focus is on the model in controls.

In practice, the underlying conditional model for a covari-
ate given another one is usually unknown. One may adopt a
two-step approach. In the first step, a model of most likeli-
hood for the covariates is identified using some kind of model
checking technique; in the second step, the hybrid method
can be applied by assuming the identified conditional model.

APPENDIX

We give proofs for the theorems in Section 2. First, we
present some regularity conditions for Theorems 1 to 3:

1) f0(y|x,η) and f1(y|x,ω1) satisfy the regularity condi-
tions given by Lehmann (1983, Chapter 6) on the nor-
mality of the maximum likelihood estimator in fully
parametric models.

2) The regression model P (D = 0|x, y) = {1 + exp(α +
βy + γx + ξxy)}−1 satisfies regularity conditions for
the standard logistic regression model.

3) min(n0, n1) → ∞ and n1/n0 → ρ, where 0 < ρ < 1.

Proof of Theorem 1. The parameters of interested are ω =
(α, β, γ,η, ξ). Denote Ω1 = (β, γ,η, ξ). Notice that the log
hybrid likelihood can be decomposed as

(15) �H = �c + p�M ,

where

�c =

n1∑
i=1

log f1(yi1|xi1,ω1) +

n0∑
i=1

log f0(yi0|xi0,η)

is the conditional log likelihood and

p�M =

n1∑
i=1

{α+φ(xi1,ω1)}−
n∑

i=1

log[1+ρ exp{α+φ(xi,ω1)}]

is the profile marginal log likelihood. Differentiating �H with
respect to ω, we have

∂�H
∂ω

=
∂�c
∂ω

+
∂p�M
∂ω

,

where

∂�c
∂ω

=

n1∑
i=1

∂ log f1(yi1|xi1,ω1)

∂ω
+

n0∑
i=1

∂ log f0(yi0|xi0,η)

∂ω
.

Let

g =
∂�H
∂ω

=
∂�c
∂ω

+
∂p�M
∂ω

be the score estimating equation. Since E[�c|x1, .., xn] = 0,
the two terms in g are orthogonal to each other. By the
standard result for the parametric likelihood, one has that

n−1/2 ∂�c(ω0)

∂ω
→ N(0, Vc) in distribution

where

Vc =ρ1E

(
∂ log f1(y|x,ω0)

∂ω

∂ log f1(y|x,ω0)

∂ωT

)

+ ρ0E

(
∂ log f0(y|x, η0)

∂ω

∂ log f0(y|x, η0)
∂ωT

)
.

On the other hand, using the results in [13], we have

n−1/2 ∂p�M (ω0)

∂ω
→ N(0, VM ) in distribution,

where

VM =
ρ

1 + ρ
A− ρ

(
A0

AT
1

)
(A0, A1), A =

(
A0 A1

AT
1 A2

)
,

and

A0=

∫
exp{α+ φ(x,ω1)}

1 + ρ exp{α+ φ(x,ω1)}
dF0(x),

A1=

∫
exp{α+ φ(x,ω1)}

1 + ρ exp{α+ φ(x,ω1)}
∂φ(x,ω1)

∂ω1
dF0(x),

A2=

∫
exp{α+ φ(x,ω1)}

1 + ρ exp{α+ φ(x,ω1)}
∂φ(x,ω1)

∂ω1

∂φ(x,ω1)

∂ωT
1

dF0(x).

Furthermore, by using the information identity for the para-
metric likelihood model, we have

n−1 ∂2�c
∂ω∂ωT

→ −Vc in probability.

Similar to [13], we can derive that

n−1 ∂2p�M
∂ω∂ωT

→ − ρ

1 + ρ
A in probability.

Write

g(ω) =
1√
n

∂�H(ω)

∂ω
.

Finally by expanding g(ω̂) at ω0, we have

(16) n1/2(ω̂ − ω0) = −
(
1

n

∂2�H(ω0)

∂ω∂ωT

)−1

g(ω0) + op(1).

Easily we can show that

n1/2(ω̂ − ω0) → N(0,Σ) in distribution,

where

(17) Σ = (Vc+ρA/(1+ρ))−1(Vc+VM )(Vc+ρA/(1+ρ))−1.

Proof of Theorem 2. Denote ω2 = (α, β, γ,η) and ω̂ =

(ω̂2, ξ̂). Let ω̃2 be the constrained maximum hybrid like-
lihood estimation of ω2, i.e. it maximizes �H(ω2, ξ0), where
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ξ0 is the true interaction effect between Y and X. Denote
ω̃ = (ω̃2, ξ0).

Expand �H(ω̃) at ω̂, we have

�H(ω̃)− �H(ω̂) =
1

2
(ω̃ − ω̂)T

∂2�H(ω̂)

∂ω∂ωT
(ω̃ − ω̂) + op(1).

By using regularity conditions for uniform convergence, one
can show that

1

n

∂2�H(ω̂)

∂ω∂ωT
→ U = −Vc − ρA/(1 + ρ) =:

(
U11 U12

U21 U22

)

in probability, which together with (16) follow that

(18)
√
n(ω̂ − ω0) = −U−1g(ω0) + op(1),

Expanding ∂�H(ω̃2, 0)/∂ω2 = 0 at ω0
2 = (α0, β0, γ0, η0), one

has

√
n(ω̃2 − ω0

2) = −U−1
11

1√
n

∂�H(ω0)

∂ω2
+ op(1).

This can be written as

(19)

( √
n(ω̃2 − ω0

2)
0

)
= −

(
U−1
11 0
0 0

)
g(ω0) + op(1).

Taking the difference between (18) and (19), one has

√
n(ω̂ − ω̃) =U−1

[
I − U

(
U−1
11 0
0 0

)]
g(ω0)

:=U−1Bg(ω0),

where I is an identity matrix and

B = I − U

(
U−1
11 0
0 0

)
=

(
0 0

−U21U
−1
11 I

)
.

Therefore, the hybrid likelihood ratio statistic is

R1(ξ0) = −2[�H(ω̃)− �H(ω̂)] = −gT (ω0)B
TU−1Bg(ω0).

Let W = −BTU−1B. In order to show Theorem 2, we only
need to prove the conditions in Ogasawara-Takahashi’s The-
orem [29] (page 188) hold true, i.e.

VWVWV = VWV, rank(WV ) = p,

where V = VM + Vc. This can be done by the standard
matrix algebra method.

Proof of Theorem 3. The proof is similar to that of Theo-
rem 2, so we omit the details.
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