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A note on moment-based sufficient dimension

reduction estimators

YUEXIAO DONG

The two main groups of moment-based sufficient dimen-
sion reduction methods are the estimators for the central
space and the estimators for the central mean space. The
former group includes methods such as sliced inverse regres-
sion, sliced average variance estimation and sliced average
third-moment estimation, while ordinary least squares and
principal Hessian directions belong to the latter group. We
provide unified frameworks for each group of estimators in
this short note. The central space estimators can be uni-
fied as inverse conditional cumulants, while Stein’s Lemma
is used to motivate the central mean space estimators.
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1. INTRODUCTION

Suppose X is a p dimensional predictor and Y is a uni-
variate response. Sufficient dimension reduction (SDR) (Li,
1991; Cook, 1994) aims to find subspace S such that

(1)

where I means statistical independence, and P,y denotes
the projection operator with respect to the standard inner
product. Under mild conditions (Yin, Li and Cook, 2008),
the intersection of all S satisfying (1) still satisfies (1). We
call this intersection the central space of regressing Y on X
and denote it by Sy|x. In the case when the focus is on
the regression mean E(Y|X), sufficient dimension reduction
targets at finding the subspace S satisfying

(2)

When the intersection of all S satisfying (2) still satisfies
(2), we call it the central mean space (Cook and Li, 2002)
and denote it by Sp(y|x)-

Let u = E(X) and ¥ = Cov(X). Then Z = £~12(X —p)
denotes the standardized predictor. Due to the invariance
property of the central space (Cook, 1998) and a simi-
lar property for the central mean space, we have Sy|x =

Y 1L X|PsX,

E(Y|X) LY|PsX.

271/2Sy|z and SE(Y\X) = 271/2SE(Y|Z)~ Hence one can
identify the Z-scale central space or the Z-scale central mean
space, and then transform them back to the X-scale spaces.

Without loss of generality, we work with the standardized
predictor, and assume throughout this paper that E(X) =0
and Var(X) = I.

Two of the most popular central space estimators are
sliced inverse regression (SIR; Li, 1991) and sliced average
variance estimator (SAVE; Cook and Weisberg, 1991). To
find additional structure in regression mixtures, Yin and
Cook (2003) proposed sliced average third-moment estima-
tion (SAT). By re-expressing these moments-based meth-
ods in terms of inverse conditional cumulants, we cast them
under one unified framework. A nice byproduct is that
the seemingly complicated SAT estimator is revealed to
have a simple form as inverse conditional third-order cu-
mulant.

Our second contribution is to provide a unified treatment
of moment-based central mean space estimators through
Stein’s Lemma. While it is well-known that first-order and
second-order Stein’s Lemmas lead to ordinary least squares
estimator (OLS; Li and Duan, 1989) and principal Hes-
sian directions estimator (PHD; Li, 1992) respectively, we
demonstrate that third-order Stein’s Lemma can be used to
motivate the illusive central mean space estimator proposed
in Yin and Cook (2004).

The rest of the paper is organized as follows. We study
inverse conditional cumulants for central space estimators in
Section 2. We use Stein’s Lemma to motivate central mean
space estimators in Section 3. We conclude the paper with
some discussions in Section 4.

2. INVERSE CONDITIONAL CUMULANTS
AND ESTIMATORS OF THE CENTRAL
SPACE

2.1 Review of estimators in Sy |x

Suppose (3 is a basis of Sy|x and denote Span(f3) as the
column space of 3. Let Ps = (87 3)~187 be the projection
matrix onto Span(8) and Q) = I — Pg be the projection
onto the orthogonal complement of Span(3). For the ease of
reference, we state the following conditions commonly seen
in the sufficient dimension reduction literature.

Cl. E(X|8TX) = PsX;
C2. Var(X |87 X) = Qg;
C3. B(A® AAT|BTX) =0, where A = X — E(X|37X).
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Here ® in C3 denotes the Kronecker product. All three con-
ditions are satisfied if the marginal distribution of X is nor-
mal.

The next proposition summarizes the common estimators
in the central space, and we state it without proof. Please
refer to Yin and Cook (2003) for details.

Proposition 1. Suppose (3 is a basis of Sy|x-

1. If C1 is true, then E(X|Y) C Sy|x.

2. If C1 and C2 are true, then Span{I — Var(X|Y)} C
SYlX.

3. If C1, C2 and C3 are true, then Span{ET(B ®
BBT|Y)} C Sy|x, where B=X — E(X[Y).

The results above lead to the SIR estimator in Li (1991),
the SAVE estimator in Cook and Weisberg (1991), and
the SAT estimator in Yin and Cook (2003) respectively.
Specifically, let Mgr = Var{E(X|Y)}, Mgave = E[{I —
Var(X|Y)}?] and Msar = E{ET(B ® BBT|Y)E(B ®
BBT|Y)}. Then the column space of Mgr, Mgaye and
Msar can all be used to recover the central space Sy |x.

2.2 Inverse conditional cumulants

We review the definition of unconditional cumulants first.
Recall that X = (X1, Xa,...,X,)T € RP is a random vec-
tor. Denote p, = E(X,) as components of the mean vector
E(X), urs = E(X,Xs) as components of the second mo-
ment matrix, and p,.ss = F(X,X;X}) as the third moments.
For £ = (&1,...,&)T, the Taylor expansion of the moment
generating function Mx (£) = E{exp(¢7X)} is

P
Z Er&stirs

r,s=1

p
1
(3) o
+ ? Z 1§T§s£t,u/rst +--
r,8,t=

Consider the Taylor expansion of log Mx (§) as follows,

p p
1
log Mx (§) = Y &hir + 57 D Erbatins
r=1 T rs=1

(4) L
+ ? Zlfrfsftﬁrst‘i’"' .
T,8,t=

The cumulants are then defined as the coefficients k., ks
and kg in (4). By comparing (3) and (4), one can follow
McCullagh (1987) and establish the relationship between
the first few moments and cumulants as

Ry = [p,
Krs = Hrs — Hrfs,
Krst = Prst — Mrspbt — frtfbs — Wstfbr T+ 200 fhs fbg -

()

Conditional cumulants can be defined similarly. First de-

note inverse conditional moments i\ ¥ E(X,|Y), uistY =
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E(X,X,|Y), and i)Y = B(X,X,X,|Y). Parallel to (5), we

define inverse conditional cumulants as combinations of in-
verse conditional moments

XY _  X|V
Ky Y — 1% | ,
XY _  X|Y XY, X|Y
(6) lirsl - ursl = My ! M ! )
Xy _ XY Xy X|Y XY X|y
Krst = Hpst — Hps  Hy — M Mg
XY x|y Xy, X|y X|Y
— g XY 20 Y XY
XY X|y XY .
Recall that u;r | , ursl and urslt are essential components

of E(X|Y), Var(X|Y) and E(B ® BBT|Y) in Proposition
1. We now construct K1(X|Y) € RP, Ko(X|Y) € RP*P and
K3(X|Y) € RP*PXP a5 follows. Let the r** component of
K1(X]Y) be k¥ the (r,s)t" component of KCo(X|Y) be
ki, and the (r,s, )" component Ks3(X|Y) be nii‘ty.

In a parallel fashion, we can replace Y in the definitions
above with A7 X and define K1 (X |87 X), Ko(X |87 X) and
K3(X|BTX). Before we present our main result, we state
conditions C1, C2 and C3 in their equivalent forms

Cl. K1(X|BTX) = PsX;
C2'. Ko(X|8TX) = Qp;
C3. Ks(X|TX) =0.

For the ease of presentation, we also rearrange the third-
order inverse cumulant array K3(X|Y) as a p? x p matrix,

with the (£ — 1)p 4 s column of K¥(X|Y) being
K3H(XIY) = B(YX,X,|Y) - E(XX,[Y)E(X,|Y)
+2E(X|Y)E(X|Y)E(X]Y).

(7)

In another word, K5(X|Y) = (mﬁlty, el

e )L for st =
1,2,...,p. Similarly, we rearrange the array K3(X |37 X) as
a p? x p matrix. We now present SIR, SAVE and SAT as

inverse conditional cumulants.
Proposition 2. Suppose (3 is a basis of Sy|x-

1. If C1' is true, then K1(X]Y) C Sy|x.

2. If C1' and C2' are true, then Span{l — Ko(X|Y)} C
Sy|x-

3. If C1', C2' and C3' are true, then Span{K3 (X|Y)} C
Sy|x-

PROOF. From (6), the definition of K1 (X|Y) and the def-
inition of Ky(X|Y), we know K1(X|Y) = E(X]|Y) and
K2(XY) = E(XXT|Y) - E(X|Y)ET(X]Y) = Var(X|Y).
After replacing Y with 87X, we see immediately that C1
is equivalent to C1’, and C2 is equivalent to C2'. The first
two parts of Proposition 2 then follow directly from the first
two parts of Proposition 1.

For part 3, denote Mp = F(B ® BBT|Y) with B =
X — E(X|Y). From the definition of the Kronecker product,
the (£ — 1)p + s column of M7 is



g  ME=BUX - B, - B
{X: = E(X[Y)}Y].

Compare (8) with the definition of K5(X|Y) in (7). By
noticing equalities such as

E{XX,E(X,|Y)|[Y} = E(XX,|Y)E(X,|]Y) and
E{XE(X,|Y)E(X:|Y)[Y} = E(X|Y)E(X,|Y)E(X:|Y),

it is easy to see that M5 = K5 (X |Y). It follows that Mp =
K3(X]Y). Denote M4 = E(A® AAT|BTX) with A = X —
E(X|B8TX). We can use a similar argument to show M4 =
K3(X|BT X), which guarantees the equivalence between C3
and C3’. Part 3 of Proposition 2 then follows from the last
part of Proposition 1. O

The insight of Proposition 2 is that SIR, SAVE and SAT
can be viewed as inverse conditional cumulants. In the case
of SAT, condition C3 can be replaced with a simpler condi-
tion K3(X|BTX) = 0, and its kernel matrix F(B® BBT|Y)
with B = X — E(X]Y) becomes just the third-order inverse
conditional cumulant array Ks(X|Y).

3. STEIN'S LEMMA AND ESTIMATORS OF
THE CENTRAL MEAN SPACE

3.1 Review of estimators in Sgy|x)

In the seminal paper of Li and Duan (1989), it was
demonstrated that without knowing the underlying link
function f(-), the classical ordinary least squares (OLS) es-
timator can recover the index ( in the single-index model
Y = f(BTX) + € correctly up to a constant multiplier. Here
€ is the random error independent of X. In the modern lan-
guage of Cook and Li (2002), we say that the OLS estimator
belongs to the central mean space Sg(y|x). The principal
Hessian directions estimator in Li (1992), as well as the es-
timator in Yin and Cook (2004), also belong to the central
mean space. Let vec(I) be the vectorization of the px p iden-
tity matrix I. Denote Mqopg = ./\/loMg, Mopup = MPM£
and Mvyc = ./\/lzﬂ/./\/ly7 where

Mo = E(XY),

Mp =E[{Y - E(Y)}XX"] and

My =E{Y —EY)} X0 XXT|-BYX)®I

—I® E(YX) —vec(I)ET (Y X).

We summarize these estimators in the next result with-
out proof. Please refer to Yin and Cook (2004) for details.
Note that in Section 2.1, the conditions C1, C2 and C3 are
assumed to be true for the basis of the central space. In the

next proposition, we assume conditions C1, C2 and C3 to
be true for the basis of the central mean space.

Proposition 3. Suppose 3 is a basis of Spy|x)-

1. If C1 is true, then Span(Movs) € Sgv|x)-
2. If C1 and C2 are true, then Span(Mpup) C Sp(v|x)-

3. If C1, C2 and C3 are true, then Span(Myc) C
SE(Y|X)-

Although the OLS and PHD estimators have relatively
simple forms, the estimator Mvyc is not easy to come up
with. The original derivation in Yin and Cook (2004) ac-
tually starts from the SAT estimator, and then gets Mvyc
after carefully delineating the components of SAT that be-
long to the central space. Just as we have seen in Section 2.2
that the third-order central space estimator SAT can be uni-
fied with the first-order method SIR and the second-order
method SAVE, we will cast central mean space estimators
Mors, Mpup and My in one unified framework.

3.2 Stein’s Lemma

Recall that for X = (X1, Xa,...,X,)T, we have assumed
that F(X) = 0 and Var(X) = I from the outset. To mo-
tivate central mean space estimators via Stein’s Lemma,
we further assume in this section that X; ~ N(0,1) for
i=1,2,...,pand X; 1L X; for i # j. In the famous paper of
Stein (1981), it is demonstrated that for any function g(X;)
with first through third order derivatives denoted by ¢'(X;),
g’ (X;) and ¢""(X;), we have

E{g (X))} = E{Xig(X3)},
E{g"(X:)} = E{(X? — 1)g(X;)}, and
E{g" (X))} = E{(X] - 3X;)g(X,)}.

Consider g(X) = E(Y|X) as a function of X. Denote par-
tial derivatives d, = 99(X)/0X,, d.s = 9*°9(X)/0X,0X,
and d,s = 939(X)/0X,0X,0X;. We construct D; € RP?,
Dy € RPXP and Dy € RPXPXP a5 follows. Let the r** compo-
nent of Dy be E(d,), the (r,s)!" component of Dy be E(d,),
and the (7, s,t)!" component D3 be E(d,;). For the ease of
presentation, we rearrange the third-order derivatives array
D5 as a p? x p matrix, where the entry in the r** column
and (t — 1)p + 5™ row is E(dpg).

The next result combines central mean space estimators
Mors, Mpup and Myc in one unified framework.

Proposition 4. Suppose X ~ N(0,1I).

(10)

1. Dleo.
2. Dy = Mp.
3. DgZMY.

4. Span(Dl) - SE(Y\X); Span(Dg) - SE(Y|X) and
Span(D3) C Sp(v|x)-
PrROOF. From the first equation in (10), we know
E{0E(Y|X)/0X,} = E{X,E(Y|X)} = E(X,Y). The left-
hand side and the right-hand side are the r*" entry of D,
and Mg respectively. Thus we have D; = M.
To find the (r, s)'" component of Dy, we need to treat the
two cases 1 # s and r = s separately. If r # s, we have

E{@QE(Y|X)/8XT8XS} = E[X,{0E(Y|X)/0X,}]
— B{X,X.E(Y|X)} = B(X,X.Y)
— B{Y — E(Y)}X, X.],
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where the last equality is true because E(X,X,) = 0. If
r = s, we use the second equation in (10) and get
E{O*E(Y|X)/0X7} = B{(X] - DE(Y|X)}
= B{(X} - DY} = E[{Y - E(Y)}X]],
where the last equality is true because E(X?2) = 1. Together
with the definition of Mp in (9), we have Dy = Mp.

To find the (r,s,t)!" component of Ds, there are three
separate cases. When r, s and ¢ are all distinct, we have

(11)

When two of r, s and t are the same, we assume without
loss of generality that » = s # t. Then we have

E{O*BE(Y|X)/0X,0X,0X;} = B(X, X, X;Y).

(12) E{O*B(Y|X)/0X20X,} = B{(X? - 1)X,Y}.

When r = s = t, we use the third equation in (10) and get

(13)  B{OE(Y|X)/0X%} = B{(X? - 3X,)V}.

Now we turn to My = E[{Y — BE(Y)}X ® XX7T] -
EYX)®I—-I® EYX)—vec(I)ET(YX) € RF"XP de-
fined in (9), and denote its entry in the r*" column and
(t—1Dp+ s row as My (r, s,t). For the ease of presenta-
tion, we view My as a p X p X p array, where the (r,s,t)!"
entry is My (r, s, t).

When r, s and t are all distinct, the last three terms in the
definition of My all become 0, and the (r, s,t)"* component
of My becomes E[{Y — E(Y)} X, X;X}], which matches the
right-hand side of (11) as E(X, X;X;) = 0. Whenr = s =1,
all four terms in the definition of My remain. The (r, s, t)"
component of My becomes E[{Y — E(Y)}X?3] -3E(Y X,),
which matches the right-hand side of (13) by noting that
E(X3?) = 0. When two of r, s and ¢ are the same, only one of
the last three terms in the definition of My remains. For in-
stance, if we have r = s # t, the (r, s,t)*" component of My
becomes E[{Y — E(Y)}X2X,;]— E(Y X;), which matches the
right-hand side of (12) because E(X2X;) = 0. Together we
have shown D3 = My-.

It remains to prove part 4. Let 3 be a basis of Spy|x)-
From the definition of the central mean space in (2), we
know E(Y|X) = E(Y|STX). As a result,

OE(Y|X) OE(Y|fTX) 07X 0E(Y|BTX)
ox 0X O 0X 0BTX

Because 9BTX/0X = [, we have Span(D;) =
Span(E{0E(Y|X)/0X}) C Span(f) = Sgv|x). Follow-
ing similar arguments, we have Span(Dz) C Sg(y|x) and
Span(D3) C Sk(v|x)-

Although we assume normality to facilitate the connec-
tions between the central mean space estimators, we have
seen in Proposition 3 that the normality assumption can be
replaced with weaker conditions C1, C2 and C3. The in-
sight of Proposition 4 is that just as OLS and PHD can be
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motivated from first and second-order partial derivatives of
E(Y|X), we can use the third-order partial derivatives of
E(Y|X) to construct the much more complicated estimator
in Yin and Cook (2004).

4. DISCUSSIONS

We provide a general treatment of moment-based suffi-
cient dimension reduction estimators in this note. On one
hand, popular central space estimators such as SIR, SAVE
and SAT are cast under the unified framework of inverse
conditional cumulants. On the other hand, Stein’s Lemma is
used to motivate central mean space estimators such as OLS,
PHD and the estimator in Yin and Cook (2004). Although
the focus of the paper is to reveal connections between ex-
isting moment-based estimators, we provide possibilities to
come up with new sufficient dimension reduction estima-
tors. For example, one can follow the principle of Proposi-
tion 4, and construct new estimators in the central mean
space based on fourth-order partial derivatives of E(Y|X).

Stein’s Lemma is not limited to motivate estimators in
the central mean space. Actually one can construct a general
family of sufficient dimension reduction estimators through
Stein’s Lemma. Instead of choosing g(X) to be E(Y|X), we
can set g(X) = E(Y*|X) for any integer k and apply Stein’s
Lemma. This will lead to the central kth moment space
estimators studied in Yin and Cook (2002). An interesting
case here is that when we choose g(X) = E(e'Y|X) and
apply Stein’s Lemma, we will get estimators in the central
space (Zhu, Zhu and Wen, 2010).

Received 20 March 2014
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