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Transformed linear quantile regression
with censored survival data
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Quantile regression provides a flexible method for ana-
lyzing survival data, and attracts considerable interest in
survival analysis. In this article, we propose a new inference
procedure for a class of power-transformed linear quantile
regression models with survival data subject to condition-
ally independent censoring, and present a two-stage algo-
rithm that is computationally simple and easy to implement.
Consistency and asymptotic normality of the resulting es-
timators are established, and a simple resampling-based in-
ference procedure is developed for variance estimation. The
finite-sample behavior of the proposed methods is examined
through extensive simulation studies. An application to a
real data example from a health maintenance organization
is provided.
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1. INTRODUCTION

Quantile regression offers a valuable complement to the
Cox proportional hazards model (Cox, 1972) and the ac-
celerated failure time model (Buckley and James, 1979) in
survival analysis. It allows the covariate effects to vary at dif-
ferent tails of the survival time distribution. Such important
heterogeneity in the population may be neglected by using
the Cox model and the accelerated failure time model. In
addition, it provides straightforward interpretation on the
survival time, and allows covariate effects to vary across the
location of the survival time. Recently, quantile regression
has attracted considerable interest in survival analysis (Ying
et al., 1995; Yang, 1999; Koenker and Geling, 2001; Portnoy,
2003; Peng and Huang, 2008; Yin et al., 2008; Wang and
Wang, 2009; Qian and Peng, 2010).

For survival data, Powell (1984, 1986) first studied cen-
sored quantile regression for fixed censoring, where the cen-
soring time is always observed (see also Tang et al., 2012).
Ying et al. (1995) developed a semiparametric estimation
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procedure for a censored median regression model, and Hon-
ore et al. (2002) provided parallel extension of Powell’s ap-
proach under random censoring, where the censoring time
is assumed to be independent of the survival time and co-
variates. Under the usual independent censoring assump-
tion that the censoring time is independent of the survival
time conditional on covariates, Portnoy (2003) proposed
censored regression quantiles and developed a recursively
reweighted estimation procedure (see also Neocleous et al.,
2006); Peng and Huang (2008) suggested a novel quantile
regression method by utilizing the martingale feature as-
sociated with censored data; Wang and Wang (2009) pre-
sented a locally weighted censored quantile regression ap-
proach by adopting the redistribution-of-mass idea and em-
ploying a local reweighting scheme (see also Wang et al.,
2013); Huang (2010) proposed an estimation procedure for
censored quantile regression based on estimating integral
equations; Qian and Peng (2010) developed a censored quan-
tile regression method tailored to the partially functional
effect setting with a mixture of varying and constant ef-
fects.

Transformed quantile regression models are robust and
flexible, and can accommodate a wide variety of models
including the accelerated failure time model as a special
case. A class of power-transformed linear quantile regres-
sion models have been proposed for complete data without
any censoring (e.g. Powell, 1991; Buchinsky, 1995; Machado
and Mata, 2000; Mu and He, 2007). But when data are
subject to random censoring, inference for quantile regres-
sion is much more involved and challenging, especially for
transformed quantile regression models. Recently, Yin et al.
(2008) proposed a power-transformed linear quantile regres-
sion model for randomly censored survival data. However,
their methods require the unconditional independence be-
tween the survival time and the censoring time. It is well
known that when the unconditional independence assump-
tion is violated, the methods relying on such an assumption
may yield biased results. Recently, Leng and Tong (2014)
considered a class of power-transformed quantile regression
models at a particular quantile based on Wang and Wang
(2009)’s method. Note that a locally weighted Kaplan-Meier
estimator may have larger bias and slower convergence rate
due to the curse of dimensionality. Thus, when the dimen-
sionality of the covariates is high, Wang and Wang (2009)’s
and Leng and Tong (2014)’s estimates can have large biases
and sampling standard errors (Tong, 2014).
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In this article, we propose a new inference procedure
for a class of power-transformed linear quantile regression
models for survival data subject to conditionally indepen-
dent censoring. The estimation procedure consists of two se-
quential steps. First, for a given transformation parameter,
we can easily obtain the estimates of the regression coef-
ficients by utilizing the martingale-based framework (Peng
and Huang, 2008). Second, we can estimate the transforma-
tion parameter based on a cumsum process of residuals (Mu
and He, 2007). The resulting estimators are uniformly con-
sistent and asymptotic normal. Compared to existing pro-
cedures, the proposed method enjoys several distinctive ad-
vantages. First, our proposed procedure does not require
the local Kaplan-Meier estimator of the conditional distri-
bution function of the survival time as in Wang and Wang
(2009) and Leng and Tong (2014), and thus there is no curse
of dimensionality. Second, the proposed procedure does not
require iteration as in Yin et al. (2008). Third, the proposed
algorithm is computationally simple and easy to implement
based on existing software.

The rest of the paper is organized as follows. In Section
2, we introduce relevant notation, formulate the model, and
propose the estimation procedure for the model parame-
ters. In Section 3, asymptotic properties of the proposed
estimators are established. Some numerical results from
simulation studies for evaluating the proposed methods
are reported in Section 4. Section 5 applies the proposed
method to the health maintenance organization (HMO)
data, and some concluding remarks are given in Section 6.
The technical proofs are relegated to the Supplementary
Material (http://www.intlpress.com/SII/p/2016/9-2/SII-
9-2-MIAO-supplement.pdf).

2. MODEL AND ESTIMATION
PROCEDURES

Let T be the survival time, C be the censoring time,
and Z be the p × 1 vector of covariates. Define X = T ∧
C and δ = I(T ≤ C), where ∧ is the minimum operator
and I(·) is the indicator function. The observed data consist
of n independent and identically distributed replicates of
(X, δ,Z), denoted by {(Xi, δi,Zi), i = 1, ..., n}. It is assumed
that C is independent of T conditional on Z.

Let Hγ(·) be a family of monotonic transformation
indexed by a parameter γ, which includes the log-
transformation and the Box–Cox transformation as special
cases. Given the covariate Z and τ ∈ (0, 1), the τth con-
ditional quantile of a random variable, say Y , is defined as
Qτ (Y |Z) = inf{t : Pr(Y ≤ t|Z) ≥ τ}. The proposed power-
transformed linear quantile regression models take the form

(1) Qτ (Hγ(T )|Z) = ZTβ(τ),

where β(τ) is a vector of unknown regression coefficients,
which represents the effects of covariates on the τth quantile
ofHγ(T ) and may change with τ . The equivariance property
of quantiles to monotone transformations implies that

Qτ (T |Z) = H−1
γ {ZTβ(τ)},

where H−1
γ (·) is the inverse transformation of Hγ(·).

Define FT (t|Z) = Pr(T ≤ t|Z), ΛT (t|Z) = − log{1 −
Pr(T ≤ t|Z)}, Ni(t) = I(Xi ≤ t, δi = 1), and Mi(t) =
Ni(t) − ΛT (t ∧ Xi|Zi), i = 1, ..., n. Let β0(τ) and γ0 be
the true values of β(τ) and γ, respectively. Since Mi(t) is
the martingale process associated with the counting process
Ni(t) (Fleming and Harrington, 1991), we have

E
{
n−1

n∑
i=1

Zi

[
Ni (H

−1
γ0

{ZT
i β0(τ)})(2)

−ΛT (H
−1
γ0

{ZT
i β0(τ)} ∧ Xi |Zi)

]}
= 0.

Note that FT (H
−1
γ0

{ZT
i β0(τ)} |Zi) = τ . Then

ΛT (H
−1
γ0

{ZT
i β0(τ)} ∧Xi |Zi)

=

∫ τ

0

I[Xi ≥ H−1
γ0

{ZT
i β0(μ)}] dG(μ),

where G(μ) = − log ( 1− μ ) for 0 ≤ μ < 1. In view of (2),
for a given γ, we specify the following estimating equation
for β0(τ):

(3) Sn{β(τ); γ} = 0,

where

Sn{β(τ); γ} =
1

n

n∑
i=1

Zi

{
Ni(H

−1
γ {ZT

i β(τ)})

−
∫ τ

0

I[Xi ≥ H−1
γ {ZT

i β(μ)}] dG(μ)
}
.

Because of the stochastic integration representation of
Sn{β(τ); γ}, following Peng and Huang (2008), we define

the estimator β̂(τ ; γ) as a right-continuous step function,
which is the solution to the above estimating equation (3)
and only jumps on a grid SL(n) = {0 = τ0 < τ1 < . . . <
τL(n) = τU < 1}, where τU is a constant subject to certain
identifiability constraints provided in the next section. In
this paper, we denote L ≡ L(n) for simplicity. Note that
Q0(T |Z) = 0 implies H−1

γ {ZTβ0(0)} = 0. Thus, we set

H−1
γ {ZT

i β̂(0; γ)} = 0 (i = 1, ..., n) for a given γ. By us-

ing the grid method, β̂(τj ; γ) (j = 1, ..., L) can be obtained
sequentially by solving the following monotone estimating
equation for β(τj):

1

n

n∑
i=1

Zi

{
Ni(H

−1
γ {ZT

i β(τj)})(4)

−
j−1∑
k=0

I[Xi ≥ H−1
γ {ZT

i β̂(τk; γ)}]

×{G(τk+1)−G(τk)}
}
= 0.
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As in Peng and Huang (2008), some simple algebra manipu-
lations show that solving equation (4) is equivalent to find-
ing the minimizer of the following L1-type convex objective
function:

�j(h, γ)

=

n∑
i=1

∣∣∣δi Hγ (Xi) − δi h
TZi

∣∣∣ +
∣∣∣R∗ − hT

n∑
i=1

(−δiZi)
∣∣∣

+
∣∣∣R∗ − hT

n∑
i=1

(
2Zi

j−1∑
k=0

I[Xi ≥ H−1
γ {ZT

i β̂(τk; γ)}]

×{G( τk+1 )−G( τk )}
)∣∣∣,

where R∗ is an extremely large positive number selected to
bound |hT

∑n
i=1 (−δiZi)| and

∣∣hT
n∑

i=1

(
2Zi

j−1∑
k=0

I[Xi ≥ H−1
γ {ZT

i β̂(τk; γ)}]

×{G( τk+1 )−G( τk )}
)∣∣

from above for all h’s in the compact parameter space for
β0(τj). In fact, the built-in rq function in R package quantreg
can be employed to find the minimizer of �j(h) (e.g., Peng
and Huang, 2008).

To estimate γ, following Mu and He (2007) and Yin et al.
(2008), we define a discrepancy measure based on the cum-
sum process of residuals, which can distinguish the right
transformation from a wrong alternative. Let γ̂ be the min-
imizer of

(5) Rn(γ) =
1

n

n∑
i=1

∫ τU

ν

D2
n(Zi, τ, γ) dτ for γ ∈ Υ,

where 0 < ν < τU , Υ denotes the parameter space for γ,
and

Dn(z, τ, γ) =
1

n

n∑
i=1

I(Zi ≤ z)
{
Ni(H

−1
γ {ZT

i β̂(τ ; γ)})

−
∫ τ

0

I[Xi ≥ H−1
γ {ZT

i β̂(μ; γ)}] dG(μ)
}
.

Here I(Zi ≤ z) means that each of the components of Zi is
not larger than the corresponding component of z. Although
Rn(γ) is not differentiable with respect to γ, the built-in R
function optimize can be used to find γ̂ = argminγ Rn(γ),
since Rn(γ) is a function of a single parameter γ. When γ̂

is available, β0(τ) can be estimated by β̂(τ) ≡ β̂(τ ; γ̂).
For a given search interval of γ such as [a, b], the built-in

R function optimize determines grid points by itself, such as
x1, ..., xK . Then for given τj (j = 1, . . . , L), the proposed
estimation procedure can be summarized as follows, which
is robust and effective in the simulation studies in Section 4.

Step 1. For each grid point xk (k = 1, ..,K), find β̂(τ0;xk)

satisfies H−1
xk

{β̂(τ0;xk)} = 0.

Step 2. For each xk (k = 1, ..,K) and j = 1, minimize

�j(h, xk) using the rq function to obtain β̂(τj ;xk).
Step 3. For each xk (k = 1, ..,K), set j = j+1, and go to

Step 2 to obtain β̂(τj ;xk) sequentially till j = L.

Step 4. Put β̂(τj ;xk) (j = 1, . . . , L) into (5), we can
obtain Rn(xk) (k = 1, ..,K), and find the optimal
γ̂ = argminxk,k=1,...,K Rn(xk). Finally, we use the rq

function to obtain β̂(τ) ≡ β̂(τ ; γ̂).

3. ASYMPTOTIC PROPERTIES

Define F (t|Z) = Pr(X ≤ t|Z), F̃ (t|Z) = P (X ≤ t, δ =
1|Z), f(t|Z) = dF (t|Z)/dt, and f̃(t|Z) = dF̃ (t|Z)/dt. In
order to study the asymptotic properties of the proposed
estimators, we need the following regularity conditions:

(R1) The covariate space is bounded; that is, supi ‖Zi‖ <
∞.

(R2) The transformation Hγ(t) is strictly increasing with
respect to t and twice-continuously differentiable in
t ∈ (0,∞) and γ ∈ Ωγ0 , where Ωγ0 is a neighborhood
of γ0.

(R3) If H−1
γ1

{ZTβ1} = H−1
γ2

{ZTβ2}, then γ1 = γ2 and β1 =
β2.

(R4) (a) Each component of E[ZN(H−1
γ0

{ZTβ0(τ)})] is a

Lipschitz function of τ ; (b) f(t|Z) and f̃(t|Z) are con-
tinuous differentiable in t and Z.

(R5) (a) f̃{H−1
γ (ZTβ)|Z} > 0 for any β ∈ Ωβ0 and γ ∈ Ωγ0 ;

(b) Each component of

E[Z⊗2f{H−1
γ (ZTβ)|Z}

∂H−1
γ (t)

∂t
|t=ZTβ ]

× (E[Z⊗2f̃{H−1
γ (ZTβ)|Z}

∂H−1
γ (t)

∂t
|t=ZT β ])

−1

is uniformly bounded in β ∈ Ωβ0 and γ ∈ Ωγ0 , where
Ωβ0 is a neighborhood containing {β0(τ) : τ ∈ (0, τU ]}.

(R6) infτ∈[ν,τU ] eigminE[Z⊗2f̃{H−1
γ0

(ZTβ0(τ))|Z}
∂H−1

γ0
(t)

∂t ]>

0 for any ν ∈ (0, τU ), where t = ZTβ0(τ) and eigmin(·)
denotes the minimum eigenvalue of a matrix.

Conditions (R1), (R4), (R5) and (R6) are standard for
quantile regression methods in analyzing failure time data,
which are analogous to those in Peng and Huang (2008).
Conditions (R2) and (R3) ensure the unique parameteri-
zation of the transformation, and the identifiability of the
transformation and regression parameters, which are the
same as those in Yin et al. (2008). For example, when Hγ is
the Box–Cox transformation and Z includes one continuous
covariate with a nonzero effect, Condition (R3) can be re-
placed by the linear independence of Z (see Yin et al., 2008).

The asymptotic properties of γ̂ and β̂(τ) are shown in the
following theorems, whose proofs are given in the Supple-
mentary Material.

Theorem 1. Assume that conditions (R1)–(R6) hold, and
limn→∞ ‖SL‖ = 0. Then
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γ̂
P→ γ0 and sup

τ∈[ν,τU ]

‖β̂(τ)− β0(τ)‖
P→ 0,

where 0 < ν < τU .

Theorem 2. Assume that conditions (R1)–(R6) hold, and
limn→∞ n1/2‖SL‖ = 0. Then n1/2(γ̂ − γ0) is asymptotically

normal with mean zero and n1/2{β̂(τ) − β0(τ)} converges
weakly to a zero-mean Gaussian process for τ ∈ [ν, τU ],
where 0 < ν < τU .

Note that the limit distributions of n1/2(γ̂ − γ0) and

n1/2{β̂(τ)− β0(τ)} involve unknown density functions, the
nonparametric estimation of which may be unstable for fi-
nite samples. In order to obtain stable variance estimates
of γ̂ and β̂(τ), we adopt a resampling technique following
Jin et al. (2001), Cai et al. (2005) and Peng and Huang
(2008). Specifically, let {ζ1, ..., ζn} be independent and iden-
tically distributed nonnegative random variables following a
known distribution with mean 1 and variance 1, such as the
standard exponential distribution. Then using the estima-

tion procedure in Section 2, we obtain γ̂∗ and β̂
∗
(τ), with

�j(h, γ) and Rn(γ) replaced by �∗j (h, γ) and R∗
n(γ), respec-

tively, where for j = 1, ..., L,

�∗j (h, γ)

=

n∑
i=1

∣∣∣ζiδi Hγ (Xi) − ζiδi h
TZi

∣∣∣

+
∣∣∣R∗ − hT

n∑
i=1

(−ζiδiZi)
∣∣∣

+
∣∣∣R∗ − hT

n∑
i=1

(
2ζiZi

j−1∑
k=0

I[Xi ≥ H−1
γ {ZT

i β̂
∗
(τk; γ)}]

×{G( τk+1 ) − G( τk )}
)∣∣∣,

R∗
n(γ) =

1

n

n∑
i=1

∫ τU

ν

{D∗
n(Zi, τ, γ)}2 dτ ,

and

D∗
n(z, τ, γ) =

1

n

n∑
i=1

I(Zi ≤ z)
{
ζiNi(H

−1
γ {ZT

i β̂
∗
(τ ; γ)})

−
∫ τ

0

ζiI[Xi ≥ H−1
γ {ZT

i β̂
∗
(μ; γ)}]dG(μ)

}
.

In the Supplementary Material, we show that the asymp-
totic distributions of n1/2(γ̂−γ0) and n1/2{β̂(τ)−β0(τ)} can
be approximated by the conditional distribution n1/2(γ∗−γ̂)

and n1/2{β̂∗
(τ)−β̂(τ)} given the observed data. To estimate

the variances of γ̂ and β̂(τ), we obtain a large number of re-

sampling estimators, say γ̂∗
k and β̂

∗
k(τ) (k = 1, ...,K), by re-

peatedly generating the random samples {ζ1, ..., ζn} with the
data at their observed values. Thus, for a fixed τ ∈ [ν, τU ],

the variances of γ̂ and β̂(τ) can be approximated by the sam-

ple variances of γ̂∗
k and β̂

∗
k(τ) (k = 1, ...,K), respectively.

4. SIMULATION STUDIES

In this section, some simulation studies are performed to
evaluate the finite sample property of the proposed estima-
tors. In these studies, the covariate vector Z = (Z1, Z2)

T

was generated as Z1 ∼ U(0, 1) and Z2 ∼ Bernoulli(0.5).
We considered the Box–Cox transformation linear quantile
regression model:

(6) Hγ(T ) =
T γ − 1

γ
= β1Z1 + β2Z2 + ε,

where β1 = 0.5, β2 = 1, and γ = 0, 0.5 or 1. The error ε was
simulated from N(0, 0.252) (i.e., normal error). Then model
(1) held with Z = (1, Z1, Z2)

T and β0(τ) = (Qε(τ), β1, β2)
T .

Here we focus on the case of τ = 0.5. The censoring time
C was generated from a uniform distribution U(0.1Z2, V ),
with V varying to yield censoring rates of 0%, 20% and 40%,
respectively. The results presented in Tables 1–4 are based
on 1,000 replications with sample size n = 200. To obtain
the standard errors of the parameter estimates, we set K =
250 in the resampling method with {ζ1, ..., ζn} generated
from the standard exponential distribution. We adopted an
equally spaced grid with ‖SL‖ = 0.01. The built-in R func-
tion optimize was employed to find γ̂ = argminγ Rn(γ) in
the interval [γ − 0.5, γ + 0.5], and the built-in rq function

was used to obtain β̂(τj ; γ).
Table 1 presents the simulation results on the estimates

of β1 and β2 when γ is taken as unknown. The table in-
cludes the biases (Bias) given by the sampling mean of the
estimate minus the true value, the sample standard devi-
ation of the estimate (SD), the average of the estimated
standard error (SE) based on the resampling method, and
the coverage probability (CP) of the 95% confidence interval
based on a normal approximation. It can be seen from the
table that the proposed estimation procedures perform well
for the situations considered here. Specifically, the proposed
estimators are practically unbiased, and the estimated stan-
dard error based on the resampling method is close to the
empirical standard error. Also the coverage probabilities of
the 95% confidence intervals are reasonable.

For comparison, we conducted simulation studies using
the same setup as in Table 1, when γ is taken as a known
parameter, which is termed as conditional inference as in Mu
and He (2007) and Yin et al. (2008). The results are pre-
sented in Table 2, which shows that the estimates of β1 and
β2 are much more stable when γ is assumed to be known.
The biases of the estimates are very small, there is a good
agreement between the estimated and empirical standard
errors, and the empirical coverage probabilities are main-
tained at around 95%. By comparing Table 1 with Table 2,
we can see that conditional inference for β1 and β2 is much
more efficient than that when γ needs to be estimated. This
implies that taking γ as an unknown parameter highly in-
flates the variability for the regression parameter estimates.

We also conducted simulation studies to examine the per-
formance of the proposed method with skewed and het-
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Table 1. Simulation results with normal error when γ is unknown

β1 = 0.5 β2 = 1.0 γ
c% Bias SD(SE) CP Bias SD(SE) CP Bias SD(SE) CP

γ = 0.0
0 0.0054 0.1596(0.1471) 0.944 0.0240 0.2181(0.1871) 0.932 -0.0067 0.2688(0.2243) 0.944
20 0.0029 0.1626(0.1515) 0.944 0.0195 0.2103(0.1863) 0.944 -0.0108 0.2580(0.2208) 0.946
40 0.0188 0.1614(0.1627) 0.942 0.0503 0.2121(0.2286) 0.954 0.0050 0.2501(0.2161) 0.946

γ = 0.5
0 -0.0001 0.1395(0.1349) 0.938 0.0147 0.1764(0.1542) 0.940 -0.0072 0.2590(0.2168) 0.942
20 -0.0055 0.1458(0.1440) 0.944 0.0011 0.1707(0.1863) 0.950 -0.0285 0.2418(0.2138) 0.938
40 -0.0008 0.1515(0.1593) 0.954 0.0073 0.1712(0.1879) 0.956 -0.0225 0.2403(0.2087) 0.956

γ = 1.0
0 -0.0021 0.1301(0.1292) 0.940 0.0077 0.1460(0.1358) 0.960 -0.0129 0.2399(0.2133) 0.966
20 -0.0039 0.1357(0.1398) 0.958 0.0048 0.1445(0.1398) 0.948 -0.0176 0.2327(0.2095) 0.966
40 -0.0052 0.1498(0.1579) 0.948 0.0008 0.1537(0.1431) 0.952 -0.0339 0.2324(0.2054) 0.948

Note: c% stands for the censoring rate.

Table 2. Simulation results with normal error when γ is known

β1 = 0.5 β2 = 1.0
γ c% Bias SD SE CP Bias SD SE CP
0.0 0 0.0030 0.0789 0.0809 0.950 0.0004 0.0451 0.0462 0.952

20 0.0020 0.0810 0.0895 0.945 0.0006 0.0466 0.0492 0.952
40 0.0011 0.0914 0.0978 0.947 0.0030 0.0527 0.0575 0.953

0.5 0 0.0030 0.0790 0.0812 0.943 0.0011 0.0437 0.0465 0.957
20 0.0041 0.0860 0.0890 0.945 0.0020 0.0479 0.0513 0.947
40 0.0031 0.0993 0.1006 0.946 0.0054 0.0557 0.0584 0.943

1.0 0 0.0003 0.0785 0.0806 0.952 0.0003 0.0440 0.00465 0.953
20 0.0000 0.0870 0.0895 0.947 0.0009 0.0500 0.0516 0.954
40 0.0055 0.0953 0.1021 0.955 0.0032 0.0585 0.0597 0.946

Note: c% stands for the censoring rate.

Table 3. Simulation results with skewed or heteroscedastic errors when γ is unknown

β1 = 0.5 β2 = 1.0 γ = 0.5
c% Bias SD(SE) CP Bias SD(SE) CP Bias SD(SE) CP

Skewed
0 -0.0064 0.4077(0.4115) 0.964 0.0240 0.2848(0.2923) 0.968 -0.0117 0.2387(0.2074) 0.932
20 -0.0331 0.4356(0.4557) 0.952 -0.0111 0.3113(0.3430) 0.964 -0.0163 0.2297(0.2057) 0.966
40 0.0157 0.5256(0.6121) 0.966 0.0482 0.3424(0.3183) 0.957 -0.0034 0.2190(0.2040) 0.972

Heteroscedastic
0 -0.0253 0.4146(0.4763) 0.962 0.0149 0.3502(0.3445) 0.956 -0.0345 0.2541(0.2240) 0.980
20 0.0352 0.5201(0.5358) 0.942 0.0962 0.4002(0.5010) 0.940 -0.0031 0.2374(0.2110) 0.952
40 0.0456 0.6040(0.6678) 0.969 0.3088 0.7811(0.8073) 0.981 0.0158 0.2137(0.2032) 0.976

Note: c% stands for the censoring rate.

eroscedastic errors. For the skewed error case, we considered
model (6), and took the error ε from a shifted chi-squared
distribution with 1 degree of freedom and a median of 0.
For the heteroscedastic error case, we considered the fol-
lowing Box–Cox transformation linear quantile regression
model:

(7) Hγ(T ) = β1Z1 + β2Z2ξ + ε,

where ξ ∼ Exponential(1) independent of ε, and
ε ∼ N(0, 1). All other setups were the same as be-
fore. The simulation results in Tables 3 and 4 are reported
in the same manner as those in Tables 1 and 2 but with
γ = 0.5. It can be seen from the tables that the performance
of the proposed method in the skewed and heteroscedastic
error cases is robust and as satisfactory as that in the nor-
mal error case. That is, the proposed estimators have small
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Table 4. Simulation results with skewed or heteroscedastic errors when γ is known

β1 = 0.5 β2 = 1.0
Error c% Bias SD SE CP Bias SD SE CP
Skewed 0 0.0013 0.2654 0.2758 0.952 0.0034 0.1555 0.1636 0.955

20 0.0017 0.1886 0.1957 0.953 0.0095 0.2914 0.3030 0.956
40 -0.0133 0.2977 0.3092 0.952 0.0372 0.1962 0.2174 0.968

Heteroscedastic 0 0.0002 0.3047 0.3186 0.954 0.0021 0.1060 0.1098 0.954
20 0.0002 0.3508 0.3560 0.938 0.0009 0.1835 0.1992 0.950
40 -0.0133 0.2978 0.3092 0.952 0.0372 0.1962 0.2174 0.968

Note: c% stands for the censoring rate.

Table 5. Comparison results with normal error and unconditionally independent censoring when γ is unknown

β1 = 0.5 β2 = 1.0 γ
c% Method Bias SD(SE) CP Bias SD(SE) CP Bias SD(SE) CP

γ = 0.0
0 Our 0.0030 0.1480(0.1492) 0.946 0.0124 0.2126(0.1867) 0.938 -0.0170 0.2642(0.2251) 0.952

YZL 0.0072 0.0857(0.0838) 0.932 0.0407 0.1739(0.1551) 0.936 0.0346 0.2339(0.1992) 0.942
20 Our 0.0023 0.1493(0.1549) 0.954 0.0103 0.2048(0.1862) 0.946 -0.0183 0.2530(0.2202) 0.952

YZL 0.0036 0.0894(0.0957) 0.964 0.0116 0.1687(0.1595) 0.958 0.0035 0.2109(0.1941) 0.970
40 Our 0.0203 0.1522(0.1647) 0.950 0.0367 0.2088(0.1894) 0.936 -0.0006 0.2454(0.2125) 0.946

YZL -0.0072 0.1005(0.1293v 0.968 0.0012 0.1570(0.1823) 0.979 0.0394 0.1841(0.1908) 0.968
γ = 0.5

0 Our 0.0048 0.1363(0.1368) 0.946 0.0136 0.1759(0.1538) 0.926 -0.0042 0.2577(0.2178) 0.932
YZL 0.0097 0.0814(0.0815) 0.940 0.0441 0.1481(0.1370) 0.942 0.0574 0.2259(0.2044) 0.940

20 Our 0.0059 0.1388(0.1466) 0.956 0.0116 0.1742(0.1557) 0.940 -0.0065 0.2511(0.2139) 0.938
YZL 0.0058 0.0883(0.0956) 0.960 0.0106 0.1452(0.1419) 0.953 0.0113 0.2012(0.1987) 0.986

40 Our -0.0017 0.1550(0.1613) 0.960 0.0152 0.1723(0.1622) 0.954 -0.0082 0.2360(0.2073) 0.944
YZL -0.0107 0.1062(0.1186) 0.962 -0.0147 0.1373(0.1568) 0.972 0.1989 0.2076(0.2074) 0.988

γ = 1.0
0 Our 0.0003 0.1478(0.1376) 0.948 -0.0009 0.1290(0.1313) 0.934 -0.0220 0.2478(0.2133) 0.950

YZL 0.0112 0.0792(0.0798) 0.928 0.0420 0.1360(0.1239) 0.932 0.0692 0.2327(0.2054) 0.930
20 Our 0.0005 0.1322(0.1410) 0.956 0.0003 0.1478(0.1376) 0.948 -0.0210 0.2378(0.2095) 0.948

YZL 0.0050 0.0869(0.0936) 0.956 0.0102 0.1319(0.1302) 0.962 0.0139 0.2090(0.2004) 0.958
40 Our -0.0007 0.1588(0.1576) 0.948 0.0172 0.1489(0.1440) 0.958 0.0035 0.2210(0.2052) 0.958

YZL -0.0050 0.1075(0.1157) 0.958 -0.0067 0.1308(0.1447) 0.967 -0.0052 0.1913(0.2027) 0.984

Note: c% stands for the censoring rate, and YZL stands for the method of Yin et al. (2008).

biases, reasonable variance estimates and the empirical
coverage probabilities. In addition, Table 4 indicates that
the conditional inference is more stable and accurate when
γ is assumed to be known.

An additional simulation study was conducted for com-
parison with the method of Yin et al. (2008) (denoted by
YZL). Note that the YZL’s method needs the censoring time
C to be independent of T and Z. Thus, we considered model
(6) with the same setup as Table 1, except that two situa-
tions for the censoring time C were investigated: (I) the un-
conditionally independent censoring with C generated from
a uniform distribution U(0.5, V ); (II) the conditionally in-
dependent censoring with C assumed to follow a uniform
distribution U(0, 3Z1V ), where V was selected to give a cen-
soring rate of 0%, 20% or 40%. As in Yin et al. (2008), un-
der each configuration, we generated 500 simulated data sets
of sample size n = 300. To obtain the estimated standard

error, we used the bootstrap method and the resampling
method with 400 resampled data sets for the YZL’s method
and the proposed method, respectively. Tables 5 and 6 sum-
marize the estimation results under situations (I) and (II),
respectively. It can be seen from Table 5 that, under the un-
conditionally independent censoring, both methods provide
reasonable and comparable estimates, and the YZL estima-
tor seems a little more efficient than our proposed estimator.
This is because the former utilizes the unconditionally inde-
pendent censoring assumption in estimation. However, when
such unconditionally independent assumption is violated, it
can be seen from Table 6 that the YZL’s method may lead
to biases, especially when the censoring rate is high (say
40%). Our proposed estimators are essentially unbiased in
all settings. Thus, the proposed method is more flexible and
robust than the YZL’s method. We also considered other
setups and the results were similar to those given above.
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Table 6. Comparison results with normal error and conditionally independent censoring when γ is unknown

Our YZL
β1 = 0.5 β2 = 1.0 γ β1 = 0.5 β2 = 1.0 γ

γ c% Bias SD Bias SD Bias SD Bias SD Bias SD Bias SD

0 0.0062 0.1316 0.0216 0.2356 -0.0124 0.3001 -0.0004 0.0637 0.0143 0.1652 -0.0026 0.2316
0.0 20 -0.0031 0.1252 0.0075 0.2280 -0.0285 0.2806 0.0275 0.0475 -0.2346 0.0872 -0.3018 0.1350

40 0.0016 0.1246 0.0325 0.2343 -0.0002 0.2727 0.1199 0.0652 -0.2811 0.1096 -0.2653 0.1697

0 0.0010 0.1071 0.0122 0.1805 -0.0067 0.2797 0.0069 0.0574 0.0368 0.1534 0.0399 0.2484
0.5 20 -0.0038 0.1084 0.0137 0.1785 -0.0003 0.2691 0.0541 0.0496 -0.1631 0.1020 -0.2099 0.1729

40 -0.0070 0.1140 0.0175 0.1837 -0.0070 0.2672 0.1516 0.0663 -0.1974 0.1123 -0.1496 0.1826

0 0.0013 0.0958 0.0035 0.1580 -0.0181 0.2736 0.0034 0.0558 0.0194 0.1352 0.0187 0.2594
1.0 20 0.0060 0.1067 0.0205 0.1534 0.0109 0.2651 0.0029 0.1626 0.0195 0.2103 -0.1846 0.1804

40 -0.0052 0.1154 0.0022 0.1469 -0.0202 0.2497 0.1632 0.0662 -0.1779 0.1123 -0.1252 0.2108

Note: c% stands for the censoring rate, and YZL stands for the method of Yin et al. (2008).

Figure 1. The scatter plot of the survival times against Age.

5. AN APPLICATION

For illustration purposes, we applied the proposed meth-
ods to the HMO data from Hosmer and Lemeshow (1999). In
this data set, there were 100 HIV positive subjects who were
followed until death due to AIDS or AIDS-related complica-
tions, until the end of the study, or until the subject was lost
to follow-up. The outcome variable was survival time after a
confirmed diagnosis of HIV, and 20% of subjects were cen-
sored. Two covariates of interest were Age (denoted by Z1):
the age of the subject at entry (in years), and Drug (denoted
by Z2): history of prior IV drug use (0 = No, 1 = Yes). As
discussed in Hosmer and Lemeshow (1999), the censoring
time C was assumed to be independent of the survival time
T conditional on Z = (Z1, Z2)

T . Here we are focus on the
covariate effects on the quantiles of the survival time.

Figure 1 shows the scatter plot of the survival times
against Age. It suggests that some transformations might
be needed to achieve linearity. We applied model (1) to the

data, where Hγ(t) was taken to be the Box–Cox transfor-
mation:

Hγ(t) =

{
(tγ − 1)/γ if γ �= 0,
ln(t) if γ = 0.

We considered the value of τ from 0.2 to 0.5 in steps of 0.01,
and used 300 resampled data sets for variance estimation.
This quantile region is of interest since lower quantiles of
the survival time have an immediate concern to HIV sub-
jects, and have significant biomedical implications in the
short term. The search range of the optimal γ was taken in
the interval [−2, 2]. The application of the proposed method
gave the estimate of the Box–Cox transformation parame-
ter as γ̂ = 1.5435 with estimated standard error of 0.7977
(p-value = 0.0529), which implies that the transformation
parameter is marginally significantly different from zero, and
the Box–Cox transformation seems reasonable to analyze
this data. Figure 2 displays the estimated quantile regression
coefficients β̂(τ) with the pointwise 95% confidence band.
This means that both Drug and Age are significant across
the quantiles. Such varying effects would not have been iden-
tified by the original Cox model or classic linear regression
model. In addition, both Drug and Age have negative asso-
ciations with the survival time. In particular, older subjects
are more likely to die than younger subjects, and those with
a prior history of IV drug use tend to die sooner than those
who do not have a history of IV drug use. These results
are consistent with those obtained by the Cox model (Hos-
mer and Lemeshow, 1999, p. 105). However, the quantile
regression models provide substantially more information,
and thus presents a global view of the relationship between
the survival time and the covariates.

To examine the effects of the covariates in the original
scale of the outcome, we may evaluate their marginal effects.
Following Mu and He (2007) and Yin et al. (2008), if the
jth covariate of Z̃ is continuous, then its marginal effect is
defined as
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Figure 2. Estimates of quantile regression coefficients with
the pointwise 95% confidence band. The solid lines are the
estimates, and the dashed lines are their pointwise 95%

confidence bands.

∂H−1
γ {ZTβ(τ)}

∂Zj

∣∣∣∣
Z̃

=

{
βj(τ)(γZ̃

Tβ(τ) + 1)1/γ−1, γ �= 0;

βj(τ) exp{Z̃Tβ(τ)}, γ = 0,

where βj(τ) is the jth component of β(τ). If the jth covari-
ate is discrete taking values 0 and 1, then its marginal effect
is given by

H−1
γ {Z̃Tβ(τ)}|Zj=1 −H−1

γ {Z̃Tβ(τ)}|Zj=0.

Figure 3 presents the estimated marginal effects of Drug
(=1) and Age (=35) with the pointwise 95% confidence band
based the proposed method and the YZL’s method, respec-
tively. It can be seen that the marginal effects of Drug and
Age are quite different between the two methods. Our pro-
posed method provides tighter confidence intervals than the
YZL’s method, and thus is more efficient than the YZL’s
method. In addition, the YZL’s method would overestimate
the marginal effects.

6. DISCUSSION

In this article, we proposed an estimation procedure for a
class of power-transformed linear quantile regression models
with censored survival data. The implementation of the pro-
posed method involves only minimizing two convex objective
functions that guarantee a unique solution. The asymptotic
properties of the proposed estimators were derived, and the
resampling approach was used to estimate the asymptotic
covariance. The simulation results showed that the proposed
estimation approach performs well. An application to the
HMO data was provided to illustrate our method. When the
dimensionality of the covariates is high, and some transfor-
mations for the response variable might be needed to achieve
linearity, the proposed method should be used in practice.

Figure 3. The estimated marginal effects given Drug (=1)
and Age (=35). The solid lines are the estimates, and the
dashed lines are their pointwise 95% confidence bands. Our
method: the proposed method; YZL’s method: the method of

Yin et al. (2008).

Note that the proposed estimation procedure may not
always ensure the monotonicity of ZT β̂(τ). However, a sim-
ple modification of the quantile prediction can be made by
supu≤τ H

−1
γ̂ {ZT β̂(u)}, which is a nondecreasing function of

τ , and is asymptotically equivalent to H−1
γ̂ {ZT β̂(τ)} (e.g.,

Peng and Huang, 2008).
In practice, the choice of an appropriate power trans-

formation Hγ(·) may be based on prior data or the desir-
ing interpretation of the regression coefficients. For a given
power transformation, following Lin et al. (1993), we can
use a residual-based procedure for checking the adequacy
of the model. Of course, it would be desirable to develop
some data-driven methods for the model checking. This is a
challenging problem and requires further research efforts.

ACKNOWLEDGEMENTS

The authors would like to thank the Editor, Professor
Heping Zhang, an Associate Editor and three referees for
their constructive and insightful comments and suggestions
that greatly improved the article. The second author’s re-
search was partly supported by the National Natural Science
Foundation of China (Grant Nos. 11231010 and 11171330),
Key Laboratory of RCSDS, CAS (No. 2008DP173182) and
BCMIIS.

Received 12 June 2014

138 R. Miao, L. Sun, and G.-L. Tian



REFERENCES

Amemiya, T. (1985). Advanced Econometrics. Harvard University
Press, Cambridge, MA.

Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1998).
Statistical Models Based on Counting Processes, 2nd ed. Springer,
New York. MR1198884
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