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Correction to the paper “Optimal False Discovery
Rate Control for Dependent Data”

Jichun Xie, T. Tony Cai, and Hongzhe Li
∗

We have found a mistake in the proof Theorem 6 in our
published paper “Optimal False Discovery Rate Control for
Dependent Data” [4]. We apologize to the readers and thank
Professor Jens Ledet Jensen at Aarhus University for his
question which led to identification of this mistake. We pro-
vide here a corrected proof of Theorem 6 with further clar-
ifications of the assumptions.

In the GWAS setting that we consider the paper, Xi’s are
often the Z-scores with Var(Xi) = 1 for very large sample
sizes. We assume that σii = 1. We define the true latent
parameter θ0,i: if θ0,i = 0, Xi ∼ N(0, 1); and if θ0,i = 1,
Xi ∼ N(μi, 1). Also, we denote the working latent parame-
ter as θi, which is used to define the likelihood ratio f(Xi |
θi = 1)/f(Xi | θi = 0) and f(X | θi = 1)/f(X | θi = 0).

Assumption (A) can be weakened as following:
Assumption (A’). The non-null proportion p satisfies

m−τ1 ≤ p ≤ 1−m−τ1 for some constant 0 < τ1 < 1.

Let the symbol “◦” be the operator of Hadamard product.
Assumption (B) can be clarified as following:

Assumption (B’) The data x(m) = (x1, . . . , xm) is an
observation of the random variable X(m) = (X1, . . . , Xm),
which follows a multivariate normal distribution given the
mean μ(m) ◦ θ(m) = (μ1θ1, . . . , μmθm), i.e.

X(m) | μ(m),θ(m) ∼ N(μ(m) ◦ θ(m),Σ(m)).

Here Σ(m) is the covariance matrix with diagonal elements
equal to 1, and μ = (μ1, . . . , μm)T is a random vector, with
each μi independently following a distribution with CDF
G(μ). Assume for some constant τ2 > τ1,

G{(2τ2 logm)1/2} −G{−(2τ2 logm)−1/2} = 0.

It guarantees that

pr {|μi| ≥ (2τ2 logm)1/2} = 1, i = 1, . . . ,m.

Remark: Compared to the original Assumption (A), As-
sumption (A’) allows a larger range of p. The condition im-
posed on the CDF function G(μ) in Assumption (B’) is very
weak. For example, consider the case where the non-null
proportion is small as p = m−τ1 , for some 1/2 < τ1 < 1
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(also known as the sparse case). By [2] and [1], if |μi| <
(2τ1 logm)1/2, it is not possible to test a single signal with
diminishing type I and type II errors. Further, by [3], in or-
der to almost recover all the signals, τ2 has to be no smaller
than 1 + (1 − τ1)

2. Note that 1/2 < τ1 < 1. Therefore,
Assumption (B’) imposes a weaker condition on the signal
strength than what is needed for signal recovery.

Assumption (C) can be weakened as follows:

Assumption (C’) The covariance matrix Σ(m) is positive
definite.

Theorem 6. Under the assumptions (A’), (B’) and (C’),
define TOR,i and TMG,i as in equation (6) and equation (12).
Then for all ε > 0 and for all i = 1, . . . ,m,

lim
m→∞

pr (|TMG,i − TOR,i| > ε) = 0.

Proof of Theorem 6. We prove the results for i = 1. Let
X2 = (X2, . . . , Xm)T be the subvector of the random vector
X without the first variable X1. Correspondingly, let θ2 =
(θ2, . . . , θm)T and μ2 = (μ2, . . . , μm)T. Define 2ε = τ2−τ1 >
0. Then τ2 − τ1 − ε = ε > 0.

The proof has several steps.
1). We temporarily fix μ and θ2. WLOG, assume μ1 ≥

(2τ2 logm)1/2 > 0.
1.1) We first consider the case that the true latent variable

θ0,1 = 0. We show that with probability greater than 1 −
O{(logm)−1/2},

f(X1 | θ1 = 1, μ1) < m−τ2+ε · f(X1 | θ1 = 0, μ1),(1)

f(X | θ1 = 1,θ2,μ) < m−τ2+ε · f(X | θ1 = 0,θ2,μ).(2)

Note that

f(X1 | θ1 = 1, μ1)

f(X1 | θ1 = 0, μ1)
= exp

{
−1

2
(X1 − μ1)

2 +
1

2
X2

1

}

= exp

(
μ1X1 −

1

2
μ2
1

)
.(3)

We assume θ0,1 = 0, so X1 ∼ N(0, 1) and for sufficiently
large m

pr (X1 > (log logm)1/2) = Φ(−(log logm)1/2)

≤ ϕ((log logm)1/2)

(log logm)1/2
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< (logm)−1/2.(4)

Here Φ(·) is the cdf of N(0, 1) and ϕ(·) is the corresponding
pdf.

Note that μ1 = (2τ2 logm)1/2. Then for all sufficiently
large m, with probability greater than 1− (logm)−1/2,

f(X1 | θ1 = 1, μ1)

f(X1 | θ1 = 0, μ1)
< m−τ2+ε.

Let Ω = Σ−1 be the precision matrix of X. Corresponding
to the partition X = (X1,X2), we can write

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and Ω =

(
Ω11 Ω12

Ω21 Ω22

)
.

where Σ11 and Ω11 are scalars.
Based on the model, given θ2 and μ,

X2 ∼ N(μ2 ◦ θ2,Σ22).

Conditioning on θ2 and μ, we have

f(X | θ1 = 1,θ2,μ)

f(X | θ1 = 0,θ2,μ)

= exp

{
−1

2
(X1 − μ1)

2Ω11 + (X1 − μ1)Ω12(X2 − μ2 ◦ θ2)

− 1

2
(X2 − μ2 ◦ θ2)

TΩ22(X2 − μ2 ◦ θ2)

+
1

2
X2

1Ω11 −X1Ω12(X2 − μ2 ◦ θ2)

(5)

+
1

2
(X2 − μ2 ◦ θ2)

TΩ22(X2 − μ2 ◦ θ2)

}

= exp

{
X1μ1Ω11 −

1

2
μ2
1Ω11 − μ1Ω11

Ω12(X2 − μ2 ◦ θ2)

Ω11

}(6)

Let Z2 = Ω12(X2 − μ2 ◦ θ2)/Ω11. Then

Z2|(θ2,μ2) ∼ N(0,Ω12Σ22Ω21/Ω
2
11).

We now show that the variance of Z2 is upper bounded by 1.
By the equality

ΣΩ =

(
Σ11 Σ12

Σ21 Σ22

)(
Ω11 Ω12

Ω21 Ω22

)
=

(
1 0T

0 I

)
,

we have

(7) Σ12Ω21 = 1− Σ11Ω11.

By another equality ΩΣΩ = Ω with the same partition,
we have

(8) Ω2
11Σ11 + 2Ω11Σ12Ω21 +Ω12Σ22Ω21 = Ω11.

By (7) and (8),

(9) 0 ≤ Ω12Σ22Ω21/Ω
2
11

= (Σ11Ω11 − 1)/Ω11 = (Ω11 − 1)/Ω11 < 1.

Also by (9), we have Ω11 ≥ 1, and

(10) pr (Z2 < −(log logm)1/2 | θ2,μ)

< Φ(−(log logm)1/2) < (logm)−1/2.

By (4) and (10), given θ2 and μ, with probability greater
than 1− 2(logm)−1/2,

f(X | θ1 =1,θ2,μ)

f(X | θ1 =0,θ2,μ)
< exp{2(log logm)1/2μ1Ω11 − μ2

1Ω11/2}

< m−τ2+ε,

where the second inequality is due to Ω11 ≥ 1 and μ1 =
(2τ2 logm)1/2. This implies (2).

1. ii) We now turn to the case where the true latent vari-
able θ0,1 = 1. We show that with probability greater than
1− 2{(logm)−1/2},

f(X1 | θ1 = 1, μ1) > c2m
τ2−ε · f(X1 | θ1 = 0, μ1),(11)

f(X | θ1 = 1,θ2,μ) > c2m
τ2−ε · f(X | θ1 = 0,θ2,μ).(12)

Since now θ0,1 = 1, X1 ∼ N(μ1, 1),

(13) pr (X1 − μ1 < −(log logm)1/2)

= Φ(−(log logm)1/2) < (logm)−1/2.

By (3) and (13), with probability greater than 1 −
(logm)−1/2,

f(X1 | θ1 = 1, μ1)

f(X1 | θ1 = 0, μ1)
= exp{μ1(x1 − μ1) + μ2

1/2} > mτ2−ε.

In addition, given θ2 and μ2,

(14) pr (Z2 > (log logm)1/2 | θ2,μ2) = (logm)−1/2.

By (6), (13) and (14) and Assumption (C’), we can follow
the proof of Step (1.i) and show that with probability greater
than 1− 2(logm)−1/2,

f(X | θ1 = 1,θ2,μ)

f(X | θ1 = 0,θ2,μ)
> mτ2−ε.

2) Now consider θ2 and μ as random vectors.
When θ0,1 = 0, for each given θ2 and μ,

f(X | θ1 = 1,θ2,μ) < m−τ2+ε · f(X | θ1 = 0,θ2,μ)

holds with probability greater than 1−2(logm)−1/2. There-
fore, with probability greater than 1−2(logm)−1/2, we have
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∑
θ2

f(X | θ1 = 1,θ2,μ) pr (θ2)

< m−τ2+ε ·
∑
θ2

f(X | θ1 = 0,θ2,μ) pr (θ2).

We conclude that

f(X | θ1 = 1,μ)

f(X | θ1 = 0,μ)
=

∑
θ2

f(X | θ1 = 1,θ2,μ) pr (θ2)∑
θ2

f(X | θ1 = 0,θ2,μ) pr (θ2)

< m−τ2+ε(15)

holds with probability greater than 1− 2(logm)−1/2.
By (1), (15) and the following equality

f(X1 | θ1 = 1)

f(X1 | θ1 = 0)
=

∫
f(X1 | θ1 = 1,μ) dG(μ)∫
f(X1 | θ1 = 0,μ) dG(μ)

,

f(X | θ1 = 1)

f(X | θ1 = 0)
=

∫
f(X | θ1 = 1,μ) dG(μ)∫
f(X | θ1 = 0,μ) dG(μ)

,

we have when θ0,1 = 0, with probability greater than 1 −
2(logm)−1/2,
(16)
f(X1 | θ1 = 1)

f(X1 | θ1 = 0)
< m−τ2+ε and

f(X | θ1 = 1)

f(X | θ1 = 0)
< m−τ2+ε

Similarly, when θ0,i = 1, we can show that with proba-
bility greater than 1− 2(logm)−1/2,
(17)

f(X1 | θ1 = 1)

f(X1 | θ1 = 0)
> mτ2−ε and

f(X | θ1 = 1)

f(X | θ1 = 0)
> mτ2−ε

3) We are now ready to prove Theorem 6.
It is easy to show

TMG,1 =
1− p

(1− p) + pf(X1 | θ1 = 0)/f(X1 | θ1 = 0)

TOR,1 =
1− p

(1− p) + pf(X | θ1 = 0)/f(X | θ1 = 0)

By Assumption (A’), cm−τ1 ≤ p/(1− p) ≤ cmτ1 .
When θ0,1 = 0, with probability greater than 1 −

O((logm)−1/2),

TMG,1 ≥ (1− p)

1− p+ pm−τ2+ε

≥ 1

1 + pm−τ2+ε/(1− p)
≥ 1

1 + cmτ1−τ2+ε
,

which yields

1− TMG,1 ≤ cm−(τ2−τ1−ε)

1 + cm−(τ2−τ1−ε)
.

Similarly, it can be shown that this result holds for
TOR,1. By Assumption (A’), with probability greater than

1−O((logm)−1/2),

|TOR,1 − TMG,1| ≤ |1− TOR,1|+ |1− TMG,1|

=
2cm−(τ2−τ1−ε)

1 + cm−(τ2−τ1−ε)
= O(m−(τ2−τ1−ε)) → 0.

When θ0,1 = 1, with probability greater than 1 −
O((logm)−1/2),

TMG,1 ≤ (1− p)

1− p+ pc2mτ2−ε

≤ 1

1 + pmτ2−ε/(1− p)
≤ 1

1 + cmτ2−τ1−ε
.

Same result holds for TOR,1. By Assumption (A’), with prob-
ability greater than 1−O((logm)−1/2),

|TOR,1 − TMG,1| ≤
2

1 + cmτ2−τ1−ε

= O(m−(τ2−τ1−ε)) → 0.
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