Correction to the paper "Optimal False Discovery Rate Control for Dependent Data"

JICHUN XIE, T. TONY CAI, AND HONGZHE LI*

We have found a mistake in the proof Theorem 6 in our published paper "Optimal False Discovery Rate Control for Dependent Data" [4]. We apologize to the readers and thank Professor Jens Ledet Jensen at Aarhus University for his question which led to identification of this mistake. We provide here a corrected proof of Theorem 6 with further clarifications of the assumptions.

In the GWAS setting that we consider the paper, X_i 's are often the Z-scores with $\operatorname{Var}(X_i) = 1$ for very large sample sizes. We assume that $\sigma_{ii} = 1$. We define the true latent parameter $\theta_{0,i}$: if $\theta_{0,i} = 0$, $X_i \sim N(0,1)$; and if $\theta_{0,i} = 1$, $X_i \sim N(\mu_i, 1)$. Also, we denote the working latent parameter as θ_i , which is used to define the likelihood ratio $f(X_i \mid \theta_i = 1)/f(X_i \mid \theta_i = 0)$ and $f(\mathbf{X} \mid \theta_i = 1)/f(\mathbf{X} \mid \theta_i = 0)$.

Assumption (A) can be weakened as following:

Assumption (A'). The non-null proportion p satisfies $m^{-\tau_1} \leq p \leq 1 - m^{-\tau_1}$ for some constant $0 < \tau_1 < 1$.

Let the symbol "o" be the operator of Hadamard product. Assumption (B) can be clarified as following:

Assumption (B') The data $\mathbf{x}^{(m)} = (x_1, \ldots, x_m)$ is an observation of the random variable $\mathbf{X}^{(m)} = (X_1, \ldots, X_m)$, which follows a multivariate normal distribution given the mean $\boldsymbol{\mu}^{(m)} \circ \boldsymbol{\theta}^{(m)} = (\mu_1 \theta_1, \ldots, \mu_m \theta_m)$, *i.e.*

$$\mathbf{X}^{(m)} \mid \boldsymbol{\mu}^{(m)}, \boldsymbol{\theta}^{(m)} \sim N(\boldsymbol{\mu}^{(m)} \circ \boldsymbol{\theta}^{(m)}, \boldsymbol{\Sigma}^{(m)}).$$

Here $\Sigma^{(m)}$ is the covariance matrix with diagonal elements equal to 1, and $\boldsymbol{\mu} = (\mu_1, \dots, \mu_m)^{\mathrm{T}}$ is a random vector, with each μ_i independently following a distribution with CDF $G(\mu)$. Assume for some constant $\tau_2 > \tau_1$,

$$G\{(2\tau_2\log m)^{1/2}\} - G\{-(2\tau_2\log m)^{-1/2}\} = 0.$$

It guarantees that

$$\operatorname{pr}\{|\mu_i| \ge (2\tau_2 \log m)^{1/2}\} = 1, \quad i = 1, \dots, m.$$

Remark: Compared to the original Assumption (A), Assumption (A') allows a larger range of p. The condition imposed on the CDF function $G(\mu)$ in Assumption (B') is very weak. For example, consider the case where the non-null proportion is small as $p = m^{-\tau_1}$, for some $1/2 < \tau_1 < 1$

(also known as the sparse case). By [2] and [1], if $|\mu_i| < (2\tau_1 \log m)^{1/2}$, it is not possible to test a single signal with diminishing type I and type II errors. Further, by [3], in order to almost recover all the signals, τ_2 has to be no smaller than $1 + (1 - \tau_1)^2$. Note that $1/2 < \tau_1 < 1$. Therefore, Assumption (B') imposes a weaker condition on the signal strength than what is needed for signal recovery.

Assumption (C) can be weakened as follows:

Assumption (C') The covariance matrix $\boldsymbol{\Sigma}^{(m)}$ is positive definite.

Theorem 6. Under the assumptions (A'), (B') and (C'), define $T_{OR,i}$ and $T_{MG,i}$ as in equation (6) and equation (12). Then for all $\epsilon > 0$ and for all $i = 1, \ldots, m$,

$$\lim_{m \to \infty} \operatorname{pr}\left(|T_{MG,i} - T_{OR,i}| > \epsilon \right) = 0$$

Proof of Theorem 6. We prove the results for i = 1. Let $\mathbf{X}_2 = (X_2, \ldots, X_m)^{\mathrm{T}}$ be the subvector of the random vector \mathbf{X} without the first variable X_1 . Correspondingly, let $\boldsymbol{\theta}_2 = (\theta_2, \ldots, \theta_m)^{\mathrm{T}}$ and $\boldsymbol{\mu}_2 = (\mu_2, \ldots, \mu_m)^{\mathrm{T}}$. Define $2\varepsilon = \tau_2 - \tau_1 > 0$. Then $\tau_2 - \tau_1 - \varepsilon = \varepsilon > 0$.

The proof has several steps.

1). We temporarily fix $\boldsymbol{\mu}$ and $\boldsymbol{\theta}_2$. WLOG, assume $\mu_1 \geq (2\tau_2 \log m)^{1/2} > 0$.

1.1) We first consider the case that the true latent variable $\theta_{0,1} = 0$. We show that with probability greater than $1 - O\{(\log m)^{-1/2}\},$

(1)
$$f(X_1 \mid \theta_1 = 1, \mu_1) < m^{-\tau_2 + \varepsilon} \cdot f(X_1 \mid \theta_1 = 0, \mu_1),$$

(2) $f(\mathbf{X} \mid \theta_1 = 1, \theta_2, \mu) < m^{-\tau_2 + \varepsilon} \cdot f(\mathbf{X} \mid \theta_1 = 0, \theta_2, \mu).$

Note that

$$\frac{f(X_1 \mid \theta_1 = 1, \mu_1)}{f(X_1 \mid \theta_1 = 0, \mu_1)} = \exp\left\{-\frac{1}{2}(X_1 - \mu_1)^2 + \frac{1}{2}X_1^2\right\}$$
(3)
$$= \exp\left(\mu_1 X_1 - \frac{1}{2}\mu_1^2\right).$$

We assume $\theta_{0,1} = 0$, so $X_1 \sim N(0,1)$ and for sufficiently large m

$$pr(X_1 > (\log \log m)^{1/2}) = \Phi(-(\log \log m)^{1/2})$$
$$\leq \frac{\varphi((\log \log m)^{1/2})}{(\log \log m)^{1/2}}$$

^{*}Corresponding author.

(4)
$$< (\log m)^{-1/2}.$$

Here $\Phi(\cdot)$ is the cdf of N(0,1) and $\varphi(\cdot)$ is the corresponding (9) pdf.

Note that $\mu_1 = (2\tau_2 \log m)^{1/2}$. Then for all sufficiently large m, with probability greater than $1 - (\log m)^{-1/2}$,

$$\frac{f(X_1 \mid \theta_1 = 1, \mu_1)}{f(X_1 \mid \theta_1 = 0, \mu_1)} < m^{-\tau_2 + \varepsilon}.$$

Let $\Omega = \Sigma^{-1}$ be the precision matrix of **X**. Corresponding to the partition $\mathbf{X} = (X_1, \mathbf{X}_2)$, we can write

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$
 and $\Omega = \begin{pmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{pmatrix}$.

where Σ_{11} and Ω_{11} are scalars.

Based on the model, given θ_2 and μ ,

$$\mathbf{X}_2 \sim N(\boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2, \boldsymbol{\Sigma}_{22}).$$

Conditioning on θ_2 and μ , we have

$$\frac{f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu})}{f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu})} = \exp\left\{-\frac{1}{2}(X_1 - \mu_1)^2 \Omega_{11} + (X_1 - \mu_1) \boldsymbol{\Omega}_{12}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2) - \frac{1}{2}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2)^{\mathrm{T}} \boldsymbol{\Omega}_{22}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2)\right\}$$
(5)

$$+\frac{1}{2}X_1^2\Omega_{11} - X_1\Omega_{12}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2) \\ +\frac{1}{2}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2)^{\mathrm{T}}\Omega_{22}(\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2) \bigg\}$$

(6)

$$= \exp\left\{X_{1}\mu_{1}\Omega_{11} - \frac{1}{2}\mu_{1}^{2}\Omega_{11} - \mu_{1}\Omega_{11}\frac{\Omega_{12}(\mathbf{X}_{2} - \boldsymbol{\mu}_{2} \circ \boldsymbol{\theta}_{2})}{\Omega_{11}}\right\}$$

Let $Z_2 = \mathbf{\Omega}_{12} (\mathbf{X}_2 - \boldsymbol{\mu}_2 \circ \boldsymbol{\theta}_2) / \Omega_{11}$. Then

$$Z_2|(\boldsymbol{ heta}_2, \boldsymbol{\mu}_2) \sim N(0, \boldsymbol{\Omega}_{12}\boldsymbol{\Sigma}_{22}\boldsymbol{\Omega}_{21}/\Omega_{11}^2).$$

We now show that the variance of Z_2 is upper bounded by 1. By the equality

$$\mathbf{\Sigma}\mathbf{\Omega} = egin{pmatrix} \Sigma_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix} egin{pmatrix} \Omega_{11} & \mathbf{\Omega}_{12} \ \mathbf{\Omega}_{21} & \mathbf{\Omega}_{22} \end{pmatrix} = egin{pmatrix} 1 & \mathbf{0}^{\mathrm{T}} \ \mathbf{0} & \mathbf{I} \end{pmatrix},$$

we have

(7)
$$\boldsymbol{\Sigma}_{12}\boldsymbol{\Omega}_{21} = 1 - \boldsymbol{\Sigma}_{11}\boldsymbol{\Omega}_{11}.$$

By another equality $\Omega \Sigma \Omega = \Omega$ with the same partition, we have

(8)
$$\Omega_{11}^2 \Sigma_{11} + 2\Omega_{11} \boldsymbol{\Sigma}_{12} \boldsymbol{\Omega}_{21} + \boldsymbol{\Omega}_{12} \boldsymbol{\Sigma}_{22} \boldsymbol{\Omega}_{21} = \Omega_{11}.$$

34 J. Xie, T. T. Cai, and H. Li

By (7) and (8),

$$\begin{aligned} 0) \quad 0 \leq \mathbf{\Omega}_{12} \mathbf{\Sigma}_{22} \mathbf{\Omega}_{21} / \Omega_{11}^2 \\ &= (\Sigma_{11} \Omega_{11} - 1) / \Omega_{11} = (\Omega_{11} - 1) / \Omega_{11} < 1. \end{aligned}$$

Also by (9), we have $\Omega_{11} \ge 1$, and

(10) pr
$$(Z_2 < -(\log \log m)^{1/2} | \boldsymbol{\theta}_2, \boldsymbol{\mu})$$

 $< \Phi(-(\log \log m)^{1/2}) < (\log m)^{-1/2}.$

By (4) and (10), given θ_2 and μ , with probability greater than $1 - 2(\log m)^{-1/2}$,

$$\frac{f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu})}{f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu})} < \exp\{2(\log \log m)^{1/2} \mu_1 \Omega_{11} - \mu_1^2 \Omega_{11}/2\} < m^{-\tau_2 + \varepsilon},$$

where the second inequality is due to $\Omega_{11} \ge 1$ and $\mu_1 =$ $(2\tau_2 \log m)^{1/2}$. This implies (2).

1. ii) We now turn to the case where the true latent variable $\theta_{0,1} = 1$. We show that with probability greater than $1 - 2\{(\log m)^{-1/2}\},\$

(11)
$$f(X_1 \mid \theta_1 = 1, \mu_1) > c_2 m^{\tau_2 - \varepsilon} \cdot f(X_1 \mid \theta_1 = 0, \mu_1),$$

(12) $f(\mathbf{X} \mid \theta_1 = 1, \theta_2, \mu) > c_2 m^{\tau_2 - \varepsilon} \cdot f(\mathbf{X} \mid \theta_1 = 0, \theta_2, \mu).$

Since now $\theta_{0,1} = 1, X_1 \sim N(\mu_1, 1),$

(13)
$$\operatorname{pr} (X_1 - \mu_1 < -(\log \log m)^{1/2})$$

= $\Phi(-(\log \log m)^{1/2}) < (\log m)^{-1/2}.$

By (3) and (13), with probability greater than 1 - $(\log m)^{-1/2},$

$$\frac{f(X_1 \mid \theta_1 = 1, \mu_1)}{f(X_1 \mid \theta_1 = 0, \mu_1)} = \exp\{\mu_1(x_1 - \mu_1) + \mu_1^2/2\} > m^{\tau_2 - \varepsilon}.$$

In addition, given θ_2 and μ_2 ,

(14)
$$\operatorname{pr}(Z_2 > (\log \log m)^{1/2} \mid \boldsymbol{\theta}_2, \boldsymbol{\mu}_2) = (\log m)^{-1/2}.$$

By (6), (13) and (14) and Assumption (C'), we can follow the proof of Step (1.i) and show that with probability greater than $1 - 2(\log m)^{-1/2}$,

$$\frac{f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu})}{f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu})} > m^{\tau_2 - \varepsilon}.$$

2) Now consider θ_2 and μ as random vectors. When $\theta_{0,1} = 0$, for each given θ_2 and μ ,

$$f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu}) < m^{-\tau_2 + \varepsilon} \cdot f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu})$$

holds with probability greater than $1-2(\log m)^{-1/2}$. Therefore, with probability greater than $1-2(\log m)^{-1/2}$, we have

$$\sum_{\boldsymbol{\theta}_2} f(\mathbf{X} \mid \boldsymbol{\theta}_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu}) \operatorname{pr}(\boldsymbol{\theta}_2)$$

$$< m^{-\tau_2 + \varepsilon} \cdot \sum_{\boldsymbol{\theta}_2} f(\mathbf{X} \mid \boldsymbol{\theta}_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu}) \operatorname{pr}(\boldsymbol{\theta}_2).$$

We conclude that

$$\frac{f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\mu})}{f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\mu})} = \frac{\sum_{\boldsymbol{\theta}_2} f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\theta}_2, \boldsymbol{\mu}) \operatorname{pr}(\boldsymbol{\theta}_2)}{\sum_{\boldsymbol{\theta}_2} f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\theta}_2, \boldsymbol{\mu}) \operatorname{pr}(\boldsymbol{\theta}_2)}$$
(15) $< m^{-\tau_2 + \varepsilon}$

holds with probability greater than $1 - 2(\log m)^{-1/2}$. By (1), (15) and the following equality

$$\frac{f(X_1 \mid \theta_1 = 1)}{f(X_1 \mid \theta_1 = 0)} = \frac{\int f(X_1 \mid \theta_1 = 1, \boldsymbol{\mu}) \,\mathrm{d}G(\boldsymbol{\mu})}{\int f(X_1 \mid \theta_1 = 0, \boldsymbol{\mu}) \,\mathrm{d}G(\boldsymbol{\mu})},$$
$$\frac{f(\mathbf{X} \mid \theta_1 = 1)}{f(\mathbf{X} \mid \theta_1 = 0)} = \frac{\int f(\mathbf{X} \mid \theta_1 = 1, \boldsymbol{\mu}) \,\mathrm{d}G(\boldsymbol{\mu})}{\int f(\mathbf{X} \mid \theta_1 = 0, \boldsymbol{\mu}) \,\mathrm{d}G(\boldsymbol{\mu})},$$

we have when $\theta_{0,1} = 0$, with probability greater than $1 - 2(\log m)^{-1/2}$,

$$\frac{f(X_1 \mid \theta_1 = 1)}{f(X_1 \mid \theta_1 = 0)} < m^{-\tau_2 + \epsilon} \quad \text{and} \quad \frac{f(\mathbf{X} \mid \theta_1 = 1)}{f(\mathbf{X} \mid \theta_1 = 0)} < m^{-\tau_2 + \epsilon}$$

Similarly, when $\theta_{0,i} = 1$, we can show that with probability greater than $1 - 2(\log m)^{-1/2}$, (17)

$$\frac{f(X_1 \mid \theta_1 = 1)}{f(X_1 \mid \theta_1 = 0)} > m^{\tau_2 - \epsilon} \quad \text{and} \quad \frac{f(\mathbf{X} \mid \theta_1 = 1)}{f(\mathbf{X} \mid \theta_1 = 0)} > m^{\tau_2 - \epsilon}$$

3) We are now ready to prove Theorem 6. It is easy to show

$$T_{MG,1} = \frac{1-p}{(1-p) + pf(X_1 \mid \theta_1 = 0)/f(X_1 \mid \theta_1 = 0)}$$
$$T_{OR,1} = \frac{1-p}{(1-p) + pf(\mathbf{X} \mid \theta_1 = 0)/f(\mathbf{X} \mid \theta_1 = 0)}$$

By Assumption (A'), $cm^{-\tau_1} \leq p/(1-p) \leq cm^{\tau_1}$. When $\theta_{0,1} = 0$, with probability greater than $1 - O((\log m)^{-1/2})$.

$$T_{MG,1} \ge \frac{(1-p)}{1-p+pm^{-\tau_2+\varepsilon}} \ge \frac{1}{1+pm^{-\tau_2+\varepsilon}/(1-p)} \ge \frac{1}{1+cm^{\tau_1-\tau_2+\varepsilon}},$$

which yields

$$1 - T_{MG,1} \le \frac{cm^{-(\tau_2 - \tau_1 - \varepsilon)}}{1 + cm^{-(\tau_2 - \tau_1 - \varepsilon)}}.$$

Similarly, it can be shown that this result holds for $T_{OR,1}$. By Assumption (A'), with probability greater than

 $1 - O((\log m)^{-1/2}),$

$$\begin{aligned} |T_{OR,1} - T_{MG,1}| &\leq |1 - T_{OR,1}| + |1 - T_{MG,1}| \\ &= \frac{2cm^{-(\tau_2 - \tau_1 - \varepsilon)}}{1 + cm^{-(\tau_2 - \tau_1 - \varepsilon)}} = O(m^{-(\tau_2 - \tau_1 - \varepsilon)}) \to 0. \end{aligned}$$

When $\theta_{0,1} = 1$, with probability greater than $1 - O((\log m)^{-1/2})$,

$$T_{MG,1} \le \frac{(1-p)}{1-p+pc_2m^{\tau_2-\varepsilon}} \le \frac{1}{1+pm^{\tau_2-\varepsilon}/(1-p)} \le \frac{1}{1+cm^{\tau_2-\tau_1-\varepsilon}}.$$

Same result holds for $T_{OR,1}$. By Assumption (A'), with probability greater than $1 - O((\log m)^{-1/2})$,

$$|T_{OR,1} - T_{MG,1}| \le \frac{2}{1 + cm^{\tau_2 - \tau_1 - \varepsilon}}$$

= $O(m^{-(\tau_2 - \tau_1 - \varepsilon)}) \to 0.$

Received 21 August 2014

REFERENCES

- JI, P. and JIN, J. (2012). UPS delivers optimal phase diagram in high-dimensional variable selection. The Annals of Statistics 40-3 73-103. MR3013180
- [2] JIN, J. and DONOHO, D. (2004). Higher criticism for detecting sparse heterogeneous mixtures. *The Annals of Statistics* **32-3** 962– 994. MR2065195
- [3] XIE, J., CAI, T. and LI, H. (2011). Sample size and power analysis for sparse signal recovery in genome-wide association studies. *Biometrika* 98-2 273–290. MR2806428
- [4] XIE, J., CAI, T. T., MARIS, J. and LI, H. (2011). Optimal false discovery rate control for dependent data. *Statistics and Its Interface* 4 417–430. MR2868825

Jichun Xie

Department of Biostatistics and Bioinformatics School of Medicine Duke University USA E-mail address: jichun.xie@duke.edu

T. Tony Cai Department of Statistics The Wharton School University of Pennsylvania USA E-mail address: tcai@wharton.upenn.edu

Hongzhe Li Department of Biostatistics and Epidemiology School of Medicine University of Pennsylvania USA E-mail address: hongzhe@upenn.edu

Correction to the paper "Optimal False Discovery Rate Control for Dependent Data" 35