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Correction to the paper “Optimal False Discovery
Rate Control for Dependent Data”

JicHuN XIE, T. Tony CAI, AND HONGZHE Lr*

We have found a mistake in the proof Theorem 6 in our
published paper “Optimal False Discovery Rate Control for
Dependent Data” [4]. We apologize to the readers and thank
Professor Jens Ledet Jensen at Aarhus University for his
question which led to identification of this mistake. We pro-
vide here a corrected proof of Theorem 6 with further clar-
ifications of the assumptions.

In the GWAS setting that we consider the paper, X;’s are
often the Z-scores with Var(X;) = 1 for very large sample
sizes. We assume that o;; = 1. We define the true latent
parameter 6o ;: if 0p; = 0, X; ~ N(0,1); and if p; = 1,
X; ~ N(u;,1). Also, we denote the working latent parame-
ter as 6;, which is used to define the likelihood ratio f(X; |
6= 1)/ f(X, | 6; = 0) and f(X | 6; = 1)/ f(X | 6; =0).

Assumption (A) can be weakened as following:
Assumption (A’). The non-null proportion p satisfies
m~™ <p<1-—m~" for some constant 0 < 71 < 1.

Let the symbol “o” be the operator of Hadamard product.
Assumption (B) can be clarified as following:

Assumption (B’) The data x("™) = (z1,...,2,,) is an
observation of the random variable X(™) = (X1,..., X,,),
which follows a multivariate normal distribution given the
mean p("™) o (") — (1161, - ., i), i.e.

X0 | ™ 9m) o N(p™ o 9(m) 3™,

Here (™) is the covariance matrix with diagonal elements
equal to 1, and g = (1, ..., tm)T is a random vector, with
each u; independently following a distribution with CDF
G(p). Assume for some constant 75 > 71,

G{(2m2logm)/?} — G{—(2m5logm)~ 2} = 0.
It guarantees that

pr{|ui| > (272 logm)l/Q} =1, i=1,...,m.

Remark: Compared to the original Assumption (A), As-
sumption (A’) allows a larger range of p. The condition im-
posed on the CDF function G(x) in Assumption (B’) is very
weak. For example, consider the case where the non-null

proportion is small as p = m™™, for some 1/2 < 74 < 1

*Corresponding author.

(also known as the sparse case). By [2] and [1], if |u;| <
(271 logm)'/2, it is not possible to test a single signal with
diminishing type I and type II errors. Further, by [3], in or-
der to almost recover all the signals, 7 has to be no smaller
than 1 + (1 — 71)% Note that 1/2 < 7 < 1. Therefore,
Assumption (B’) imposes a weaker condition on the signal
strength than what is needed for signal recovery.

Assumption (C) can be weakened as follows:
Assumption (C’) The covariance matrix (™) is positive
definite.

Theorem 6. Under the assumptions (A’), (B’) and (C),
define Tor,; and Thc,; as in equation (6) and equation (12).
Then for all e > 0 and for alli =1,...,m,

lim pr(|Tva,i —Tor:| > €) = 0.
m—00

Proof of Theorem 6. We prove the results for ¢ = 1. Let
Xy = (Xa2,..., Xm)" be the subvector of the random vector
X without the first variable X;. Correspondingly, let 85 =
(O, ..., 0,)T and py = (pa, ..., pm)T. Define 26 = 75 —71 >
0. Then , — 71 —e =¢ > 0.

The proof has several steps.

1). We temporarily fix p and 65. WLOG, assume p; >
(2732 logm)*/? > 0.

1.1) We first consider the case that the true latent variable
09,1 = 0. We show that with probability greater than 1 —
O{(logm)~1/2},

(1)
(2)

f(Xl | 01 = ]-7#1) < m77‘2+€ : f(Xl ‘ 01 = 07/1‘1)7
f(X | 91 = 17927H) < m_T2+8 ' f(X | 91 = 07027H)'
Note that

f(Xy [0 =1,1)
F(X1]601=0,p1)

1 1
= exp {—§(X1 — )+ —X%}

2
Ly
=exp | m1 X1 — zp1 -

3) ;

We assume 6y 1 = 0, so X1 ~ N(0,1) and for sufficiently
large m

pr (X > (loglogm)'/?) = ®(—(loglogm)'/?)

_ #((loglogm)'/?)
(log log m)1/2
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(4) < (logm)~1/2, By (7) and (8),

Here ®(-) is the cdf of N(0,1) and ¢(+) is the corresponding (9) 0< Q19500 /0%

pdf. = (1111 — 1)/Q1 = Q11 — 1)/Qu1 < 1.
Note that pu; = (272logm)'/2. Then for all sufficiently (Enufhn =D/ = @ -1/
large m, with probability greater than 1 — (logm)~1/2, Also by (9), we have Q17 > 1, and

F( X101 =1,11)

< m-T2tE. (10)  pr(Zy < —(loglogm)'/? | 6, p)
f(X1 01 =0,pm)

< ®(—(loglogm)*/?) < (logm)~1/2.

Let © = X! be the precision matrix of X. Corresponding

to the partition X = (X1, Xs), we can write By (4) and (10), given 82 and p, with probability greater

than 1 — 2(logm)~1/2,

Y1 XY Q1 Qa2 f(X|6,=1,0
= = . — 4 s K
= (221 222) and €2 (921 922) fEX : 91 ~0 92 M; < exp{2(log IOgm)l/Q,ulQll - M%Q11/2}
where Y11 and 217 are scalars. <m Tt
Based on the model, given 8> and pu, . .
where the second inequality is due to 17 > 1 and pu; =
Xo ~ N(ty 0 02, os). (275 logm)'/2. This implies (2).

1. ii) We now turn to the case where the true latent vari-
able 61 = 1. We show that with probability greater than
F(X |01 =102 p) 1 —2{(logm)~"/?},
f(X 01:()’027,1') To—
| 1 (11)  f(X1 |61 =1,p1) > cam™ = f(X1 ] 01 =0, 1),
= &xXp {_§(X1 - MI)QQH + (Xl - Ul)QlQ(Xz —H20 02) (12) f(X | 0 = 1,92,/.1) > com™F - f(X | 0, = 0,92,”).

Conditioning on 6 and p, we have

_ %(X2 — 1y 002)T295(Xs — 1y 0 65) Since now 6p1 =1, X7 ~ N(u1,1),
) X (13) pr(Xa —pm < —(loglogm)"/2)
+ §X12911 — Xlﬂlg(Xg — My O 92) — @(—(lOgIOg m)l/?) < (log m)fl/Q'
—|—1(X2 — Py 0 02) T Qoy (X — py 0 02)} By (3) and (13), with probability greater than 1 —
2 (logm)~'/2,

(6)
1
= €Xp {Xl,ulﬂu - 5#%911 - MlQu

g

= exp{p1(z1 — 1) + pi/2} > m™ "

ng(Xg — Mo 002) f(Xl | 0 = 17,“1)
Qll f(Xl |91:07/1*1)

Let Zs = Q12(Xs — 1y 0 05)/Q11. Then In addition, given 0 and p.,

14 r (Zy > (loglogm)*/? | 4, = (logm)~ /2.
ZQ|(92,H2)NN<O’912222921/Q§1)' ( ) p ( 2 ( g 10g ) | 2 /’1’2) ( g )

By (6), (13) and (14) and Assumption (C’), we can follow

We now show that the variance of Z is upper bounded by 1.} proof of Step (1.i) and show that with probability greater
)

By the equality than 1 — 2(logm)~1/2,
T
v o (Zu T2 (o Q) (10 ’ [(X |0, =1,0,,p) S e
o1 o) \Q21 Qo 0 I f(X |6, =0,05,p) '
we have 2) Now consider 5 and p as random vectors.
When 6y, = 0, for each given 85 and p,
(7) Y1201 =1 — X1

f(X 601 =1,05,p) <m™ 7. f(X [0, = 0,05, )
By another equality 23 = Q with the same partition,
we have holds with probability greater than 1 —2(log m)_l/ 2 There-
fore, with probability greater than 1—2(logm) /2, we have
(8) Q1 Z11 + 2011 21201 + Q12800001 = Q1.
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Y F(X [0 =1,05,p)pr(0:)

02

<m~ e Zf(X | 61 =0,02, ) pr(62).
0>

We conclude that

f(X|01 = ]-7/'1’) _ Zezf(x ‘ 91 = 1,02,/1:)}31‘(02)
fX 0 =0,p) >, f[(X[01=0,602,p)pr(62)

(15) <m~TtE
holds with probability greater than 1 — 2(logm)~1/2.
By (1), (15) and the following equality
fXilo=1) J (X116 =1,u)dG(p)
fXi[00=0) [f(X1]6=0,p)dG(p)’
fX10=1)  [fX|01=1,p)dG(p)
fXN00=0) [f(X]0=0pn)dG(p)’

we have when 6y ; = 0, with probability greater than 1 —
2(logm)~ /2,

(16)
f(Xl | b = 1) mT2Te d f(X | b = ]') —To+e€
f(X1]6,=0) f(X]61=0)

Similarly, when 6y ; = 1, we can show that with proba-

bility greater than 1 — 2(logm)~1/2,
(17)
f(X1]6:=1) - fX [0 =1) _
>m™" ¢ and ——F———= T2e
f(X1|61=0) f(X[61=0)
3) We are now ready to prove Theorem 6.
It is easy to show
Trca = 1=p
METT (A= p) +pf(Xy [01 = 0)/F(X1 [ 61 = 0)
Tor1 = 1P
(1=p) +pf(X |0 =0)/f(X [0 =0)

By Assumption (A’), em™™ < p/(1 —p) < cm™.
When 6y, = 0, with probability greater than 1 —
O((logm)~*/%),

(1-p)
—-p+ pm—7’2+s
1 1
> > ,
T 14+pm Tt /(1—p) ~ 1+ cmn—T2te

Tyvga > 1

which yields

—(7'2—7'1—5)
cm

_ <
1-=Tyga < T c——

Similarly, it can be shown that this result holds for
Tor.1- By Assumption (A’), with probability greater than

1 - O((logm)~'/?),

[Tor1 — Tumea| <|1—Toral+ 11 —Tmcl
2em~(r2=T1—¢€)

1 + cm—(r2—T1—¢)

= O(mf(‘rz*n*s)) — 0.

When 9071 =
O((logm)~1/%),

1, with probability greater than 1 —

(1-p)
D+ pcam™ ¢
1 1
< < .
“14+pmm™=—¢/(1—p) ~ l4+cmmm1—e

Tvaa < T

Same result holds for Tog,1. By Assumption (A’), with prob-
ability greater than 1 — O((logm)~/2),

2
|TOR,1 - TMG,1| < m

=0(m =) 0. O
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