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Regression analysis with nonignorably missing

covariates using surrogate data

FANG FANG*

The paper considers parameter estimation in regression
analysis with missing covariates when the missing data
mechanism is nonignorable and unspecified, which is quite
common in practice but has rarely been discussed in the
literature. Assuming that surrogate data for the missed co-
variates is available for all the subjects, we propose a novel
approach that constructs estimating equations based on the
conditional expectation of the outcome given the always ob-
served covariates and the surrogate data. Asymptotic prop-
erties and variance estimation of the parameter estimators
from the new approach are established. Some simulation re-
sults are presented to compare the finite sample performance
of various estimators. A real data set from the National
Health and Nutrition Examination Survey is analyzed to
illustrate the application of the method.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62J05; sec-
ondary 62G20.

KEYWORDS AND PHRASES: Imputation, Nonignorably miss-
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1. INTRODUCTION

Missing covariate data is quite common in many appli-
cation areas such as sample survey, medical studies and so-
cial sciences. Conventional statistical methods can not be
directly applied to the data with missing covariate values
since the observed data may not be representative of the
population and is likely to lead to inefficient or inconsis-
tent estimates. When the missing probability only depends
on the observed data, the missing data mechanism is called
ignorable or missing at random (MAR), which has been dis-
cussed in a rich literature (see, for example, Little, 1992;
Robins et al., 1994; Lipsitz et al., 1999; Little and Rubin,
2002; Ibrahim et al., 2005; Qin et al., 2009; Kim and Shao,
2013, among others). However, in many applications the
missing data mechanism is believed to be nonignorable, i.e.,
the missing probability depends on the unobserved data it-
self even after controlling for the observed data. For exam-
ple, in health sciences research, missing on self-reported so-
cially unacceptable behaviors such as alcohol consumption
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or drug use is often considered to be nonignorable (Rot-
nitzky and Robins, 1997). In labor force surveys, subjects
with very high or very low income usually are not willing to
report their true income. Parameter estimation with non-
ignorably missing covariate data is quite challenging since
the missing data mechanism involves unobserved data and is
hard to identify. Applying methods for MAR to nonignor-
ably missing data may result in serious estimation biases
and incorrect inference.

In this paper, we consider regression analysis when some
covariates are nonignorably missing. When the missing data
mechanism is assumed to have a parametric form, meth-
ods based on maximum likelihood estimation (Ibrahim et
al., 1999b, 2005; Stubbendick and Ibrahim, 2003, 2006),
fully Bayesian (Huang et al., 2005) or inverse probabil-
ity weighted estimating equations (Rotnitzky and Robins,
1997) have been developed. However, these methods are sen-
sitive to the parametric model assumptions on the miss-
ing data mechanism. Limited work has been done when
the missing covariate data mechanism is totally unspeci-
fied other than the nonignorable assumption. The pseudo
likelihood method in Tang et al. (2003) and Zhao and Shao
(2014) can be applied in generalized linear models with non-
ignorably missing covariate data. Unfortunately, as we show
in Section 2, for the problem we consider in this paper,
this method can not be used to estimate the regression pa-
rameters since the parameters are not identifiable from the
pseudo likelihood.

In many applications, surrogate data is available for the
covariates having missing values. For example, in the Na-
tional Health and Nutrition Examination Survey of the
Unites States, body fat percentage is measured by dual-
energy x-ray absorptiometry, which is accurate but expen-
sive and hence only available for part of the sampled sub-
jects. Body mass index is considered as a surrogate measure-
ment of body fat and is available for all the subjects. In the
UK Labor Force Survey, hourly payment is directly reported
by part of the sampled subjects, while approximated hourly
payment can be calculated indirectly from some other vari-
ables available for all the subjects.

When surrogate data is available, we propose a novel es-
timating equation approach with imputation to estimate re-
gression parameters without any parametric model assump-
tion on the missing data mechanism. The surrogate variables
are not of direct statistical interest and can not directly re-
place the missing covariates in the regression model. But
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they can be used to identify the conditional distribution of
the missing covariates given the observed covariates and the
surrogate variables, which is then used for imputation.

The rest of the paper is organized as follows. After intro-
ducing details for the model and assumption in Section 2,
we propose the new approach in Section 3. Some asymptotic
theorems are derived in Section 4. Simulation results and an
illustrative real data example are presented in Section 5 and
Section 6. Some concluding remarks are given in Section 7.
The proofs are sketched in the Appendix.

2. MODEL AND ASSUMPTION

Let Y denote a fully observed outcome variable and
the covariate vector X = (U’,Z’)’, where ¢ denotes the
transpose of a column vector ¢, U is a p-dimensional co-
variate vector with missing data and Z is a g-dimensional
fully observed covariate vector. Our main interest is to esti-
mate the regression parameter 8 = (S, 3., 3.)" defined by
E(Y|X) = p(B.+B,U+p.Z), where u(-) is a known mono-
tone and continuously differentiable link function. When
there is no missing data, S can be estimated by solving

(1) %2ﬁm&zﬁﬂ%—M&+%w+@ZU:Q

i=1

where {Y;,U;, Z;,i =1,--- ,n} are independent and identi-
cally distributed realization from (Y, U, Z) and D(U;, Z;, §)
is a user-specified function with dimension p + ¢ + 1. For
example, in a generalized linear model, D(U;, Z;,8) =
{ou(B: + B,Us + B.2:) )08}/ Var (Yi|Ui, Z;).

When there is missing data in covariate U, we denote R
as the response indicator of U, i.e., R = 1 if U is fully ob-
served and R = 0 otherwise. We assume that, other than
the outcome and the covariates, a p-dimensional surrogate
vector S of U is available for all the subjects. The observed
data are {R;,Y;, R;U;, Z;, S;,i = 1,--- ,n}. Let [] or [|-] be
a generic notation for unconditional or conditional proba-
bility density function. We assume

(2)

i.e.,, Y and S are conditionally independent given (U, Z). The
conditional independence assumption is commonly made
when U is a gold standard for some characteristics of the
subject and S is a surrogate variable measured with error
(Reilly and Pepe, 1995; Bashir and Duffy, 1997; Horton and
Laird, 2001). Similarly, we assume

3)

i.e., R and S are conditionally independent given (Y, U, Z).
Under the assumptions (2) and (3), we have

[Y|U7 Z, S] = [Y|U7 Z]a

[R|Y7 U7 Za S] = [R|Y7 Ua Z]7

(4) [S|V,U,Z,R=1]=[S|Y,U, Z]
_ Y,z S)[U1Z, S1(Z]S8][S]

JYIU, Z,$][U|Z, ][ Z]s][s]ds
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U2, 51[2]S115]
J1U1Z, ](Z]s][slds

This actually is the key idea of the pseudo likelihood method
in Zhao and Shao (2014). However, [Y'|U, Z] is not identifi-
able from the pseudo likelihood since (4) does not involve in
Y. So we can not directly use the pseudo likelihood method
to estimate the regression parameter 3.

Further we assume that [U|Z,S] has a parametric form
p(U|Z, S, o) with an unknown parameter vector «. The con-
ditional distribution [Z]S] could have either a parametric
form p(Z|S,~) with an unknown parameter vector 7 or a
nonparametric form p(Z|5).

3. THE PROPOSED METHOD

Since U has some missing values and the nonignor-
able missing mechanism is difficult to handle, our proposed
method focuses the fully observed data (Y, Z,S) and con-
siders the conditional expectation of Y given (Z,S). Based
on the fact that

E(Y|2,5) = E[E(Y|U, Z,5)|Z,5]
= Eu(B.+BU +B.2)12,5],

we can get a consistent estimator of 3 by solving the follow-
ing estimating equation

9(5,8) = - w(5,0)
i=1

% iD(U;mP, Zi ) {Yi "} =0,

where & is a consistent estimator of « that will be given
later, function D(-) is defined in (1), and for ¢ = 1,--- ,n,
U™ = EB(UilZ;, S;,6) and ™ = E(u(Be + B.U; +
BLZ:)|Z;, S;, &) are imputed values of U; and p; = p(B. +
B.U; + B.Z;), respectively. When p(-) is a nonlinear func-
tion, u; " usually does not have an explicit form. In prac-
tice, pzmp can be replaced by its Monte Carlo approxima-
tion L 7 u(Be + BLUL + BLZ:), where {UL1=1,--- L}
is a random sample generated from p(U;|Z;, S;,&). Similar
techniques have been widely used in the Monte Carlo EM
algorithms (for example, Wei and Tanner, 1990; Ibrahim et
al., 1999a; Lipsitz et al., 1999).

Now we consider how to obtain a consistent estimator of
a. Based on (4), we can try to estimate « using the pseudo
likelihood method. First we need to check whether « is iden-
tifiable from (4) or not. By the discussions in Zhao and Shao
(2014), a necessary and almost sufficient condition for the
identifiability of « is that p(U|Z, S, «) should depend on S.
Since S is a surrogate of U, this condition is almost always
satisfied. So in what follows we assume that « is identifiable
from (4).



When [Z|S] has a parametric form p(Z|S,~), v can be
estimated by an estimator 4 based on the fully observed
(Z,S) data. If we replace [Z]S] in (4) by p(Z|S,¥) and re-
place [S] by the empirical distribution of S-data, we can get
the pseudo likelihood of « as

HR

When [Z]S] has a nonparametric form p(Z|S), it can be
estimated using the standard nonparametric product kernel
estimator (Li and Racine, 2007)

U|ZUS17a) (Z |SU;Y)

6 —.
(©) S POi1Z:. 5, )p(Zi15;,3)

szl — v i Ty K (552 TG, K (Si55)
# Zz:l szl K (%)
where Z = (Zy,--+ ,Z,)', S = (S1,---,Sp), K(-) is a one-

dimensional kernel function, and h is a bandwidth. The
pseudo likelihood of « in this case is given by

HR

Then & is obtained by maximizing the pseudo likelihood
(6) or (7). Our proposed estimator 3 is the solution to the
estimating equation in (5).

The proposed method needs to specify a parametric
model for [U|Z, S]. When U has nonignorably missing data,
this is not trivial in general. However, when S is a surro-
gate for U, we may have some background information for a
rough relationship between S and U, which makes the para-
metric modeling on [U|Z, S| much easier. For example, in
some cases, S is just a measurement of U with a completely
random error, we may just assume that [U|Z, S] ~ N (S, a?).
Note that even in this simple situation, the method that im-
putes the missing U by S followed by a regular estimation
procedure may have serious bias.

When [Z|S] has a parametric form, we also need to spec-
ify a parametric model for [Z]S]. There are several strate-
gies to do this. For example, Lipsitz and Ibrahim (1996) and
Ibrahim et al. (1999b) write p(Z|S,v) as

U |ZZ, SZ, Oé) (Zl|SZ)

7 - )
™ j 1p(UZ|Z“S],a)p(Zi|Sj)

(8) p(Z1,~-~ anl‘S)’Y)
= p(ZtIth"' 7Zq71757’)’1)
xp(ZQ*1|Zl,"' an72vs772) p(Zl|Svﬁyq)a

where «y; is a vector of parameters for the jth conditional

distribution, the 7;’s are distinct, and v = (v1,---,7,)"
Sometimes it may be easier to model [S|Z], then we
can write p(Z|S,y) = p(S|Z,7)p(Z,v)/p(S,7), where

p(S|Z,~) can be modeled in a similar way to (8). When
we choose appropriate p(S|Z,v) and p(Z,7v), p(S,v) =
J p(S|z,7)p(z,7v)dz could have an explicit form. For exam-
ple, the real data analysis in Section 6 just uses this modeling
strategy.

4. ASYMPTOTIC THEORY

In this section, we establish some asymptotic properties
of the proposed estimator 8 as n — oo. The asymptotic
properties of ( is related to the asymptotic properties of &,
which has been studied in Zhao and Shao (2014). When &
is obtained by maximizing (6), denote

Hi(o, 7, F) = Ri{logp(Ui|Zi, Si, )
~ 1og [ (U 26 S, 0)pl(Zi1S,7)dF ()}

and H(a,v,F) as H;(«, v, F) with (R;,U;, Z;, S;) replaced
by (R,U, Z,S). Then maximizing (6) is the same as maxi-
mizing

o) a4, F) = 3" Hilo, 3, F),

where 4 is an estimator of the nuisance parameter v and F is
the empirical distribution of S-data. The following theorem
shows the consistency and asymptotic normality of S under
some regularity conditions.

Theorem 4.1. Assume that « is identifiable from (4) and

(i) 4 is consistent and

(10) \/>(7 '70 \/— ZT Zu Sza’YO) + OP( )

where vy is the true value of v, 0,(1) denotes a quan-
tity converging to 0 in probability as n — oo, and
T(Z,S,70) is the influence function.

As n — oo, E{H(a,%, F) — H(a,70, Fo)} — 0, where
Ey is the true distribution of S, and there exist €1 > 0
and €5 > 0 such that

ZH

(i)

sup — E{H(a,7,F)}| — 0.

v = voll < e1
IF = Foll < ez

(iii) H(o, v, F) is continuously twice differentiable with re-
spect to a, E[V2, H(ag,v0,Fo)] is positive definite,
where ayg is the true value of a, and ||V2, H (v, v, Fo)||
and ||VZ, H(a,~0, Fo)| are bounded by integrable func-
tions in a neighborhood of ay.

The estimating equation (3, a) in (5) is continuously
differentiable with respect to 0 = (8, o), E[V gy (5o, ao)]
is positive definite, and ||Vo(8,a)|| is bounded by an
integrable function in a neighborhood of 6y = (Bo, o),
where By is the true value of B.

(i)

Then as n — o0,

V(B = Bo) —a N(0,%)

for a covariance matrix ¥ and —4 denotes convergence in
distribution.
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For the variance estimation of B, we derive (in the Ap-
pendix) that

(11) V(B = Bo) = ZE +op(1

where E; = f(W;, Bo, 0,7, Fo, A1, A2, By, B2), W; =
(R;, Y3, Ui, Z;, S;), f is defined in (15) in the Appendix, Ay =
E[viaH(O‘O"VOvFO)]’ Ay = E[vin(O‘Ov'VO»FO)]v B, =

E[Vg(Bo, ap)| and By = E[V a9 (Bo, a0)]. So £ = Var(E;)
can be estimated by 3, which is the sample covariance
matrix based on E; = f( W;, B, 4,4, F, Al,AQ,Bl,Bg) i =
1,--+,n, where

. 1 n o )
A = E ZViaHi(Oz,fy,F)7A2 _ -
1 — . A
B12E21Vﬂ¢i(ﬁ’a)’ and BQ:_

When & is obtained by maximizing (7), the regularity
conditions for the consistency and asymptotic normality of &
are quite complicated and hence are omitted here. One may
refer to Theorem 2 and Theorem 3 of Zhao and Shao (2014)
for the details. Once & is y/n-consistent, the consistency and
asymptotic normality of B can be shown exactly the same as
in Theorem 4.1. For the variance estimation, a similar result
in (11) is hard to derive, so we suggest using the bootstrap
in this case.

5. SIMULATION STUDIES

We performed some simulation studies to examine the
finite sample behaviors of the proposed estimator and com-
pare the performance of several methods. The simulation
was carried out with 1,000 replications and sample size
n = 500. The surrogate variable S and covariates (U, Z)
were generated with S ~ N(0,1), Z|S ~ N(1 + 25,1),
and U|Z,S ~ N(1 — Z + 35,1). Note that in this setting
U|S ~ N(S,2). For the outcome Y and the response indi-
cator R, we considered the following six cases.

(A1) Y|U,Z ~ N(14+U+Z,1), P(R =1|Y,U, Z)
Y2 +2U +|Y|2).

The same as (Al) except that P(R = 1|Y,U,Z) =
P(—1+Y2+05U +|Y|Z).

Y is binary with P(Y = 1|U, Z) = expit(1 + U + Z),
P(R=1Y,U,Z) = ®(-2+Y + |U| + Z).

The same as (Bl) except that P(R = 1|Y,U,Z) =
o(-1+ U+ 2).

Y is Poisson with E(Y|U, Z) = exp(—1+0.5U —0.52),
P(R=1Y,U,Z) = ®(-2+Y + |U| + ).

The same as (C1) except that P(R = 1|Y,U,Z) =
O(-1+ U+ 2).

Note that the association between R and U in case (A2)
was weaker than case (A1). The missing mechanism in cases

=®(—1+
(A2)
(B1)
(B2)
(C1)

(C2)
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(B2) and (C2) did not depend on Y and hence the complete
case analysis was valid in these two cases. In the six cases,
the response rates P(R = 1) were about 69%, 74%, 65%,
69%, 62%, and 69%, respectively.

For all the cases, we compared the following 6 meth-
ods: full data analysis assuming no missing data (FULL),
complete case analysis (CC), surrogate method (SURRO)
that simply imputes the missed U by S, simple imputa-
tion method (SIMP) that simply imputes the missed U by
E(U|Z,S, &), and the proposed method with a paramet-
ric [Z|S] and a correctly specified [U|Z,S] model (PRO)
or a misspecified [U|Z,S] model as [U|Z,S] ~ N(oq +
agsin(Z/4)+as3S, as) (PRO-MU). In addition, we compared
several other methods in the following cases.

1. In cases (Al) and (A2), we also considered the max-
imum likelihood methods with full parametric model.
First, we assume all the parametric models including
the response model [R|Y,U, Z] are correctly specified
(MLE). Second, we assume the [U|Z, S] model is mis-
specified (MLE_MU) as in PRO_MU. Third, we as-
sume the response model is misspecified (MLE_MR)
as P(R = 1|Y,U,Z) = ®(m + n2Y + n3U + n42).
Fourth, we assume the [U|Z,S] model and the re-
sponse model both are misspecified (MLE_M). Fifth,
we assume the missing data mechanism is considered
to be missing at random (MAR). The observed likeli-
hood involves an integral and generally is not easy to
handle. But in cases (Al) and (A2), the integral has
an explicit form and hence the maximization is not
difficult.

2. In cases (B1) and (B2), we considered the proposed
method assuming [Z]S] has a nonparametric form
(PRO.N). We used the Epanechnikov kernel function
of order 4: K(t) = 45( — 2t?)(1 — t*)I{|t| < 1} and
the bandwidth A o n~5. The kernel function and the
bandwidth were selected to satisfy the regularity con-
dition (H) in Theorem 2 of Zhao and Shao (2014). In
our notation, the condition is that h — 0, nh?*? — oo,
n2 hP*t+2d /log(n) — oo and nh®™ — 0, as n — oo,
where m is the order of the kernel function K () which
has bounded derivatives of order d.

In the methods of PRO, PRO_MU and PRO_N, the Monte
Carlo sample size L = 10,000.

Tables 1-3 report the relative bias, standard deviation,
standard error, which is the estimate of standard deviation,
and the coverage probability of approximate 95% confidence
interval for 8 based on normal approximation. The standard
error based on PRO was obtained by ¥ defined in Section 4.
The standard error based on PRO_N was obtained by boot-
strapping with bootstrap round 200. The simulation results
can be summarized as follows.

1. The proposed methods (PRO and PRO_N) produce
nearly unbiased estimators for the regression param-
eters. The proposed variance estimators also perform
well and so is the coverage probability of approximate



Table 1. The Simulation Results when Y is Normal Table 2. The Simulation Results when Y is Binary
Case (Al) Case (A2) Case (B1) Case (B2)
Method ﬂc Bu ﬂz /Bc ﬂu /BZ Method /Bc ﬂu /Bz /Bc Bu /Bz
Relative Bias in % Relative Bias in %
FULL 0.0 0.1 0.0 -0.3 0.0 0.1 FULL 2.1 1.8 1.9 1.2 1.4 1.4
CC -9.7 2.8 4.5 -6.7 2.7 32 ccC 94.2 177 -21.1 0.6 2.7 3.7
SURRO -7.6 4.1 -6.4 10.8 2.7 -9.5 SURRO 25.9 -1.8 0 -224 33.0 1.4 -22.8
SIMP -9.9 0.2 0.1 -2.5 -0.4 -1.1  sIMP -36  -11.8 -5.4 -0.6 -9.9 -5.7
PRO 0.2 -0.1 -0.1 -0.4 -0.1 0.1 PRO 3.8 4.1 3.1 2.3 2.7 2.3
PRO-MU -0.3 6.7 -1.8 -1.7 5.6 -1.4 PRO.MU 5.4 27.0 26.8 -0.7 25.4 23.4
MLE 0.1 0.1 -0.1 -0.3 0.0 0.1 PRON 3.1 3.5 4.3 2.2 1.6 4.1
MLE_MU -1.1 0.3 0.5 -2.5 -0.1 1.0 Standard Deviation
MLE_MR -2.6 -1.1 1.2 -0.9 -0.3 0.3 FULL 0.178 0.122 0.116 | 0.160 0.123 0.115
MLEM -6.2 -0.7 2.4 -5.6 -0.1 L8 ¢c 0.446  0.209 0.199 | 0.301 0.161  0.193
MAR -13.9 1.4 3.3 -4.8 0.2 1.2 SURRO 0.193  0.127 0.096 | 0.197 0.138  0.097
Standard Deviation SIMP 0.180 0.112 0.109 | 0.167 0.110 0.107
FULL 0.051 0.026 0.021 0.051 0.026 0.021 PpPRO 0.231 0.204 0.140 0.202 0.188 0.133
CC 0.073  0.032 0.026 | 0.069 0.029 0.027 PROMU | 0.278 0.316 0215 | 0.241 0.304  0.199
SURRO 0.064 0.032 0.027 0.062 0.030 0.029 PRO.N 0.235 0.210 0.144 0.204 0.226 0.147
SIMP 0.070 0.033 0.025 0.066 0.030 0.026 Standard Error
PRO 0.076  0.049  0.028 | 0.073  0.044  0.028 FyULL 0.166  0.124 0.111 | 0.165 0.123  0.110
PRO_MU 0.080 0.063 0.032 0.079 0.058 0.033 (cC 0.430 0.195 0.201 0.299 0.154 0.183
MLE 0.059  0.029  0.022 | 0.059 0.028 0.024 SURRO 0.188  0.137 0.093 | 0.194 0.137  0.094
MLE_-MU 0.059 0.029 0.023 0.060 0.027 0.024 SIMP 0.159 0.115 0.102 0.161 0.115 0.102
MLE_MR 0.082 0.034 0.026 0.069 0.028 0.025 pRro 0.221 0.202 0.136 0.209 0.197 0.134
MLE_-M 0.084  0.034  0.025 | 0.072 0.028  0.026 prOMU | 0.263 0.314 0.209 | 0.252 0.309  0.203
MAR 0.061  0.030  0.023 | 0.059 0.028 0.024 prO.N 0.231 0224 0.141 | 0.198 0235  0.146
Standard Error Coverage Probability in %
FULL 0.049 0.027 0.021 | 0.049 0.027 0.021 FULL 94.5 95.4 94.9 95.3 95.0 93.9
CC 0.070  0.034 0.026 | 0.067 0.031 0.026 (CC 38.1 91.3 75.7 95.8 94.9 94.6
SURRO 0.061 0.038 0.027 0.059 0.035 0.026 QURRO 76.2 95.3 32.4 62.6 95.9 33.1
SIMP 0.055 0.032 0.023 | 0.054 0.030  0.023 gMPp 90.7 80.6 ]8.7 93.9 83.3 88.1
PRO 0.075  0.047 0.028 | 0.072 0.044 0.029 pRro 95.8 97.9 96.4 95.7 96.3 95.4
PRO_MU 0.081 0.061 0.032 0.078 0.056 0.033 PRO_MU 91.9 99.4 90.4 94.6 99.8 94.9
MLE 0.058  0.030  0.023 | 0.058 0.029 0.023 pRrON 95.5 97.3 95.9 95.5 96.4 94.9
MLE_MU 0.058 0.029 0.023 0.058 0.028 0.023
MLE_MR 0.079 0.034 0.026 0.069 0.029 0.025
MLE_M 0.090 0.035 0.028 0.072 0.029 0.026
MAR 0.060 0.030 0023 | 0.057 0029 0.023 2. When both of the [U|Z,S] model and the response
Coverage Probability in % model are correctly specified, full parametric likeli-
FULL 03.8 94.4 94.7 95.3 95.1 038 hood method MLE works well and the estimators
CC 71.3 88.1 59.2 81.0 87.9 74.1 have smaller standard deviations than PRO. When
SURRO 74.7 85.1 32.2 52.3 91.3 5.6 either parametric model is misspecified (MLE_MU,
SIMP 53.0 93.4 93.4 86.5 94.8 89.5 MLE_MR), although generally the maximum likeli-
PRO 94.1 93.4 95.6 95.8 94.9 96.0 hood estimators are biased, they just have some mi-
PRO_MU 94.2 83.0 92.3 95.4 86.0 93.4 nor biases in the specific cases (Al) and (A2). How-
MLE 94.7 95.3 95.3 93.6 95.0 93.3 e
MLE.MU 93.8 048 94.6 911 94.9 90.4 ever, the cov.erage probabilities I.nay not w01'rk as well
MLE.MR 93.6 93.8 92.9 95.4 04.8 93.5 as MLE which could lead to inaccurate inference.
MLE.M 90.2 05.7 86.2 ]7.8 04.5 88.6 When both models are misspecified, MLE_M works
MAR 36.1 91.8 70.8 84.8 95.3 89.1 even worse especially for the coverage probabilities.

95% confidence interval. When the model [U]Z, S] is
misspecified, the proposed method (PROMU) will
have bias just like most other parametric model based
methods, although the biases are not quite serious (less
than 10%) in cases (A1), (A2) and (C2).

. When we apply the methods based on missing at ran-

dom to the case of nonignorable missingness, the esti-
mators could have large biases and the coverage prob-
abilities perform poorly. When the missing mechanism
is close to missing at random in case (A2), the esti-
mation bias of MAR method reduces but the biases in
the coverage probabilities are still nonnegligible.

Regression analysis with nonignorably missing covariates 127



Table 3. The Simulation Results when Y is Poisson
Case (C1) Case (C2)
Method Be Bu B Be Bu B
Relative Bias in %
FULL -0.9 0.5 0.1 -0.7 -0.1 0.0
CcC 42.3 -21.8 -7.1 -1.6 0.3 -0.2
SURRO 13.1 -2.8 -10.4 20.8 -6.0 -23.2
SIMP 0.8 -2.7 0.7 4.7 -5.6 -2.2
PRO -1.2 0.4 0.1 -1.0 -0.3 0.3
PRO_MU -9.1 11.2 2.2 -8.6 7.4 2.7
Standard Deviation
FULL 0.084 0.040 0.032 0.085 0.040 0.032
CcC 0.108 0.048 0.040 | 0.147 0.056  0.065
SURRO 0.076  0.038  0.035 | 0.081 0.045  0.054
SIMP 0.090 0.043 0.035 0.092 0.046 0.044
PRO 0.101 0.062  0.044 | 0.104 0.061  0.045
PRO_MU 0.115 0.083 0.049 | 0.118 0.078 0.051
Standard Error
FULL 0.086  0.040 0.031 0.086  0.040 0.031
CcC 0.115 0.048 0.037 | 0.147 0.056 0.064
SURRO 0.079  0.036  0.033 | 0.077 0.041 0.039
SIMP 0.085 0.040 0.031 0.084 0.042 0.032
PRO 0.102 0.059 0.040 | 0.104 0.058 0.041
PRO_MU 0.116  0.075 0.045 | 0.116 0.072  0.046
Coverage Probability in %
FULL 96.1 95.8 95.5 95.8 95.1 95.0
CcC 6.0 37.5 85.7 95.6 95.1 94.8
SURRO 61.4 91.9 64.1 25.6 85.0 22.7
SIMP 93.4 92.5 92.2 87.2 86.7 84.5
PRO 95.0 93.3 94.1 95.4 93.9 94.4
PRO_MU 91.5 88.7 91.2 91.7 92.0 90.4

4. When the missing mechanism depends on Y in cases
(A1), (A2), (B1) and (C1), CC method is biased as ex-
pected. When the missing mechanism does not depend
on Y in cases (B2) and (C2), CC method is nearly un-
biased. The standard deviations of 3, and /3, for PRO
are smaller than CC, while the standard deviation of
Bu for PRO is larger than CC. This is also expected
since our proposed method discards the observed U in
the estimating equation (5).

5. The estimators from the trivial methods of SURRO
and SIMP have large biases and the coverage proba-
bilities usually are much less than 95%.

6. A REAL DATA ANALYSIS

To illustrate the application of our proposed method,
we analyze a data set from the National Health and Nu-
trition Examination Survey (NHANES 2005, the United
States Centers for Disease Control and Prevention). The
data is available at http://www.cdc.gov/nchs/nhanes.htm.
NHANES is a program of studies designed to assess the
health and nutritional status of adults and children in the
United States. In our analysis, we investigate how adults’
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hypertension is related to age, gender and body fat. Dual-
energy x-ray absorptiometry (DXA) has been accepted as
the gold standard direct measurement of body fat. However,
some of the DXA data are missing and the missing pattern
seems to be systematic and non-random. Use of only the
measured variables could lead to biased results. Fortunately,
body mass index (BMI) is available for almost all the sub-
jects and can be considered as a surrogate variable of DXA
although it is less accurate than DXA.

In our analysis, the binary outcome Y = 1 if the sub-
ject has hypertension, i.e., the systolic blood pressure (av-
erage of BPXSY1, BPXSY2, BPXSY3, and BPXSY4) is
greater than 140 or the diastolic blood pressure (average
of BPXDI1, BPXDI2, BPXDI3, and BPXDI4) is greater
than 90, and Y = 0 otherwise. The covariate U is the body
fat percentage measured by DXA (variable name DXD-
TOPF), which has a surrogate variable S (BMI, defined
as log(BMXBMT)). The other two covariates contained
in the regression model are Z; (gender, 1 for male and 0
for female, variable name RIAGENDR) and Z; (age, de-
fined as log(RIDAGEY R)). Logarithmic transformations
are made to BMXBMI and RIDAGEYR to adjust the skew-
ness. There are n = 3,707 subjects and 1,111 (29.9%)
of them have missing U. We assume that P(Y = 1) =
expit(B. + BuU + B21Z1 + B.2Z2) and the main interest is to
estimate the regression parameter 8 = (8., By, 81, B22) -

To apply the proposed method, we need to specify
a parametric model on [U|Zy,Z,S5]. We assume that
U|Z1,Z5,5 ~ N(a1 + a2S,a3). We also need to specify
a parametric model on [Z7, Z3|S]. Since it is much reason-
able to model on [S|Z7, Z5] in this example, we consider the
following parametric modeling methods. We assume that
Zy ~ Bin(1,p), Zy ~ N(u,0?) and the marginal distribu-
tions of Z; and Z, are independent. The conditional distri-
bution of S given (7, Zs) is assumed as S|Z; = 1,75 ~
N(y1 + v2Z2,73) and S|Z1 = 0,25 ~ N(va4 + v5Z2,76)-
The parameter v = (p, i1, 0%,71,72,73, 745755 76) - Under
these assumptions, the marginal distribution of S is a mixed
normal and the joint distribution of [Z, Z5, 5] is also easy
to calculate. Thus the conditional distribution [Z1, Z5|S] =
[Z1, Z2, S]/[S] is easy to obtain.

Other than the proposed method, we also consider the
other two methods: the complete case analysis (CC) and the
maximum likelihood method assuming missing at random
(MAR” [R = 1‘}/? U7 Zla Z27 S] = [R‘K Zl; 227 S])

The analysis results of the three methods are reported in
Table 4. All the three methods agree that intercept, gender
and age have significant effects on hypertension. The com-
plete case analysis fails in detecting the significant effect of
body fat (p-value is 0.0766) while the proposed method and
MAR method both suggest that body fat has a significantly
positive effect on hypertension. The proposed method and
MAR method have similar results in the intercept, body fat
and age. But the proposed method suggests smaller gen-
der effect (estimated gender coefficient is 0.394) than the



Table 4. The analysis results for NHANES data

Estimate Standard Error Z-Value P-Value
Complete Case Analysis

Be -14.499 0.9582 -15.131  0.0000

Bu 0.019 0.0108 1.771  0.0766

B 0.492 0.1793 2742 0.0061

Bo 3.080 0.2400 12.834  0.0000
The Proposed Method

Be -14.657 0.7795 -18.803  0.0000

Bu 0.037 0.0062 5.900  0.0000

B 0.394 0.1061 3.715  0.0002

B.o 2.959 0.1904 15.540  0.0000

Maximum Likelihood Estimation Assuming MAR

Be -14.271 0.6698 -21.307  0.0000
Bu 0.038 0.0081 4.673  0.0000
B 0.705 0.1196 5.897  0.0000
B.o 2.836 0.1694 16.745  0.0000

MAR method (estimated gender coefficient is 0.705) al-
though both of them are significant.

7. CONCLUDING REMARKS

Handling nonignorable missing covariates is a difficult
problem without a parametric model on the missing data
mechanism. When surrogate data is available, we propose
a novel approach that constructs unbiased estimating equa-
tions based on the conditional expectation of the outcome
given the always observed covariates and the surrogate data.
The proposed estimator works well both theoretically and
empirically. To gain the flexibility of not specifying any para-
metric model for the missing data process, we have to pay
some prices such as discarding the observed U in (5) and
extra parametric model assumptions on [U|Z, S] and [Z]S].
However, such prices are either worthy or not quite expen-
sive as one may think.

First, the fact that we have to discard the observed U in
(5) unravels one major difficulty in handling nonignorable
missing data, that is, the missing data process and the data
generating process usually are hard to be handled separately
in the estimation procedure unless we are willing to give up
some information (in our case, part of the observed covari-
ates). Meanwhile, it should be noted that, the information
carried in the observed U is actually retrieved partially when
we estimate a by maximizing (6) or (7).

Second, although the proposed method relies on a para-
metric assumption on the distribution of [U|Z,S] (just like
most other parametric model based methods) that may not
be testable in the presence of nonignorable missing data, it
is still useful, for example, in exploring data or in a sensi-
tivity analysis. Meanwhile, since S is a surrogate for U, the
parametric modeling for [U|Z, S] in our case is much easier
than usual as we have discussed in Section 3. On the other
hand, the parametric model [Z|S] is testable since Z and

S are fully observed. Moreover, [Z|S] can also be estimated
nonparametrically.
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APPENDIX A. PROOF OF THEOREM 4.1

Proof. Following Zhao and Shao (2014), under the regular-
ity conditions (i) and (ii), & is a consistent estimator of «y.
Then under the regularity condition (iii) and by Taylor’s
expansion, we have

(12) 0=V,l(a,4,F)
= Val(ao,70, ) + E[Va,H(ao, %0, Fo)](& — ao)
+ B[V, H (.70, Fo)l(§ = ) +0p(n %),
where [ is defined in (9). By the theory of V-statistics,
(13)

Val(ao,v0, F) = Val(ao, 70, Fo)
1 — .
+ E Z_; V(Si7 aOvVOaFO) + Op(n_§)7
where
V(S% 0, Y0, FO)
o E{Rfvap(U|Z= S,Oé())p(ZlS,’Yo)dFo(S)
- 2
[[p(U|Z,s,00)p(Z|5,70)dFo(s)]
xp(U|Z,S;, a0)p(Z]Si,v0)
si} |

_ RVap(U|Z, Si, ao)p(Z|Si; o)
fp(U|Z’ 5, Oéo)p(ZIS, ’YO)dFO(S)

By (12), (13) and (10), we have
V(& — ag)

1 n
- Z — ATV Vo Hi + Vi + AsTi) + 0,(1),
=1

(14)

where H; = H;(ao,v0,Fo), Vi = V(Si,a0,7%,Fo), Ti =
T(Z;, Si,0) defined in (10), Ay = E[V2,H(xo,70, Fo)],
and Ay = E[VZ, H(ao, 0, Fo)]. So @& is \/n-consistent and
Vn(& — ap) converges to N(0,Var(D;)) in distribution,
where D; = —A7Y [Vo H; + Vi + AST;).

Now we consider 3. Since E[¢(Bo, ap)] = 0, where 1 is
defined in (5), and & is /n-consistent, we can show that
there exists 3 such that P(4(3,&) = 0) — 1 and 3 is a con-
sistent estimator of £y using a standard asymptotic analysis
for estimating equations. Then under regularity condition
(iv) and by Taylor’s expansion, we have
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»(B, &)
= ¥(Bo,0) + Bi(B — Bo) + Ba(& — ap) + 0p(n~2),

E[Vcﬂ/)(ﬁm aO)]‘

(SIS

where By = E[Vy(8o,a0)] and By =
Then by (14) we have

V(B — o)

B _

= 5%2:—BfWMWmad+fﬁDﬂ+0AU-
i=1

If we denote

(15)  E; = f(Wi,PBo, 0,7, Fo, A1, Az, B1, By)

= _Bl_l[wi(ﬁ()aao) +BQD$]7
where W; = (R;,Y;,U;, Z;, S;), then

V(B — Bo) —a N(0,%) with ¥ = Var(E,). O
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