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Detecting change point in linear regression using
jackknife empirical likelihood∗

Xinqi Wu, Sanguo Zhang, Qingzhao Zhang, and Shuangge Ma
†

Data generated in quite a few examples can be described
using a linear regression model with a change point. In this
paper for such a model, we develop a nonparametric method
based on the jackknife empirical likelihood (JEL) to detect
the change in regression coefficients. Under mild conditions,
we show that the null distribution of the JEL ratio test
statistic is asymptotically Gumbel. The test and the estima-
tor of change point are shown to be consistent under the al-
ternative hypothesis. Simulation suggests that the proposed
method is computationally much more affordable than the
alternative based on empirical likelihood. We also demon-
strate the proposed method using two real datasets.
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1. INTRODUCTION

Change-point problems are encountered in many disci-
plines such as economics, finance, medicine, geology and so
on. Statistically, a change point is a place or time point
such that the observations follow one distribution up to that
point and a different distribution afterwards. The change-
point problem is two-fold: the first is to decide if there is
any change which is often formulated as a hypothesis test-
ing problem, and the second is to locate the change point
which is often formulated as an estimation problem. With
parametric distributions, research on change point has been
summarized in [4, 6].

This study addresses the change point problem in lin-
ear regression. In this line of research, [8] used a union
and intersection approach to test changes. The researches
[2, 3] estimated multiple structural changes in a linear re-
gression model by least squares. [1] suggested to apply the
permutation and bootstrap methods in change-point anal-
ysis. Their idea was later pursued by others (for a sur-
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vey, see [9]). The consistency and limiting distribution of
the maximum likelihood estimators of the underlying pa-
rameters in a two-phase linear regression model were esti-
mated by [13]. Recently, [10] proposed a bootstrap method
for change point detection in linear regression under the se-
quential settings.

Different from most of the existing ones, this study adopts
the jackknife empirical likelihood (JEL) as the main tech-
nique. Although not having a long history, the empirical
likelihood (EL) technique has been shown to be very useful.
Briefly, [18] proposed the EL technique as an alternative to
the bootstrap for constructing confidence regions. The EL
technique is employed to the detection of change point in
the mean and in a linear model, respectively by [25] and
[24]. A new EL ratio statistic for change point detection
in segmented linear regression was developed by [14]. How-
ever, the methods based on the EL technique for change
point detection have computational limitations. Such meth-
ods proceed by the two-sample EL [11], which demands set-
ting up two probability vectors. The solution to the opti-
mization problem is the saddle point [19]. Optimizing the
EL can thus be difficult and time-consuming. To address
the computational problem, we apply the JEL [12], as op-
posed to EL, for change point detection in a linear regression
model. The key to our procedure is to turn the statistic of
interest into a one-sample statistic by using the jackknife
pseudo-values, which makes our procedure easier to imple-
ment. In addition to the computational advantage, the pro-
posed procedure also enjoys the much desired consistency
properties.

This study has two main contributions. The first is a
novel JEL-based method for change point detection in a
linear regression model. The proposed method has signif-
icant computational advantages over the EL-based meth-
ods. Second, there is no available theoretical tool ready to
analyze the proposed method. The establishment of con-
sistency properties is highly nontrivial with the test statis-
tic constructed based on dependent variables. The rest of
the article is organized as follows. Section 2 describes the
change point detection procedure based on JEL. Section 3
establishes the asymptotic distribution of the test statis-
tic under the null and consistency of test. Simulation and
data analyses are conducted in Section 4 to illustrate per-
formance of the proposed test. The article concludes with
discussions in Section 5. All proofs are given in the Ap-
pendix.
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2. DETECTION OF CHANGE POINT USING
JEL

2.1 Jackknife empirical likelihood method

For the integrity of this article, we first outline the JEL
approach as proposed by [12]. Let Z1, ..., Zn be independent
(but not necessarily identically distributed) random vari-
ables (r.v.’s). Let

Tn = T (Z1, · · · , Zn)

be a consistent estimator for a parameter of interest, denoted
by δ. Define the jackknife pseudo-values by

Vi = nTn − (n− 1)T
(−i)
n−1 ,

where T
(−i)
n−1 := T (Z1, · · · , Zi−1, Zi+1, · · · , Zn) is the statis-

tic T computed on the sample of n− 1 variables generated
from the original dataset by deleting the ith variable. The
pseudo-value Vi’s (1 ≤ i ≤ n) are asymptotically indepen-
dent under mild conditions. Therefore, we can apply [18]’s
empirical likelihood method to the jackknife pseudo-value
Vi’s and proceed as follows.

Let p = (p1, · · · , pn) with
∑n

i=1 pi = 1 and pi ≥ 0 for
1 ≤ i ≤ n. Then the JEL for δ, evaluated at δ0, is given by

L(δ0) = sup

{
n∏

i=1

pi :
n∑

i=1

pi = 1,
n∑

i=1

piVi = δ0

}
.

It is clear that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, attains its
maximum n−n at pi = n−1. So the JEL ratio at δ0 is defined
as

R(δ0) =
L(δ0)

n−n
= sup

{
n∏

i=1

npi :

n∑
i=1

pi = 1,

n∑
i=1

piVi = δ0

}
.

It is shown by [12] that the Wilks’ theorem holds for
−2 logR(δ0) under weak assumptions when Tn is a one- or
two-sample U -statistic.

2.2 Change-point problem in the linear
regression model

Let y1, y2, · · · , yn be a sequence of independent r.v.’s in
R. Assume the following linear regression model which has
at most one change point at location k0, which is unknown,

yi =

{
x�
i β + ei, 1 ≤ i ≤ k0,

x�
i β

∗ + ei, k0 < i ≤ n.

where xi ∈ Rp, β and β∗ are unknown regression coefficients,
ei’s are independently identically distributed (i.i.d) random
variables with Eei = 0, Ee2i = σ2 > 0. The analysis goal
is to test the null hypothesis of no change in the regression

coefficients against the alternative hypothesis of change at
an unknown location. Let δ = β∗ − β, then we test:

H0 : δ = 0 ↔ H1 : δ �= 0.

The role the linear regression model with a change point
plays in the change point literature is similar to what the
simple linear regression plays in regression. It is the basis
of more complicated change-point regression problems. In
addition, multiple published studies, as referred to in this
paper, have shown that this model has important practical
applications. We also conjecture that the method developed
in this study for change-point linear regression and its the-
oretical tools can be extended to other more complicated
regression models.

2.3 Jackknife empirical log-likelihood ratio
test

When describing the proposed method, we focus on the
scenario with at most one change point. In data analysis
when multiple change points are suspected, we can apply
[23]’s binary segmentation method, which proceeds as fol-
lows. First, determine if there is at least one change point.
If there is none, then the null hypothesis is accepted. If one
change point is detected, then it naturally divides the origi-
nal sequence of random variables into two subsequences. For
each subsequence, apply the proposed method. This process
continues until no more change points can be found in any
of the subsequences.

Let τk = k/n,

y1,k = (y1, · · · , yk)�, x1,k = (x1, · · · , xk)
�,

y2,k = (yk+1, · · · , yn)�, x2,k = (xk+1, · · · , xn)
�.

Then the statistic

Tn,k = (x�
2,kx2,k)

−1x�
2,ky2,k − (x�

1,kx1,k)
−1x�

1,ky1,k

is a consistent estimator of the parameter δ under H0. The
corresponding jackknife pseudo-values are defined by

Vi,k = nTn,k − (n− 1)T
(−i)
n−1,k,

where T
(−i)
n−1,k is computed on the sample of n− 1 variables

generated from the original dataset by deleting the ith data
point. More specifically, for 1 ≤ i ≤ k

T
(−i)
n−1,k =

(
x�
2,kx2,k

)−1
x�
2,ky2,k

−
(
x�
1,kx1,k − xix

�
i

)−1(
x�
1,ky1,k − xiyi

)
,

and for k < i ≤ n,

T
(−i)
n−1,k =

(
x�
2,kx2,k − xix

�
i

)−1(
x�
2,ky2,k − xiyi

)
−
(
x�
1,kx1,k

)−1
x�
1,ky1,k.

114 X. Wu et al.



Let (p1, · · · , pn) be the probability vector with
∑n

i=1 pi =
1 and pi ≥ 0 for 1 ≤ i ≤ n. If the change occurs at k, the
jackknife empirical log-likelihood ratio (JELR) test statistic
is defined as

−2 log Λk = −2 sup

{
n∑

i=1

lognpi

∣∣∣∣∣
n∑

i=1

pi = 1,

n∑
i=1

piVi,k = 0

}
.

We reject H0 for a sufficiently large value of
max1<k<n{−2 log Λk}. The Lagrange multiplier method
leads to

pi =
1

n

1

1 + λ�Vi,k
.

After plugging pi’s back into −2 log Λk, and according to the
dual theory, the nonparametric JELR test statistic can be
rewritten as

−2 log Λk = 2 sup

{
n∑

i=1

log(1 + λ�Vi,k)

}
def
= 2 sup lE(λ).

Furthermore, let

Qn(λ) =
1

n

n∑
i=1

Vi,k

1 + λ�Vi,k
.

Then the optimal λ, denoted as λ̃, satisfies that Qn(λ̃) = 0.
Since k is unknown, it is natural to use the maximum JELR
statistic

Z∗
n = max

1<k<n
{−2 log Λk}.

We reject the null hypothesis with a significantly large value
of Z∗

n. Note that if k or n − k is too small, the estimator
of jackknife empirical log-likelihood λ̃ may not exist. That
is, our test may not be able to detect the change point if
it occurs close to either end. Therefore, we further propose
the trimmed likelihood ratio statistic as

Zn = max
k∈Θnk

{Zn,k},

where Θnk = {k : C1 ≤ k ≤ n−C2}. The maximum of Zn,k

is attained at k̂, and the corresponding estimator is τ̂k = k̂
n .

The number Ci (i = 1, 2) can be chosen relatively arbitrarily,
which was pointed by [22]. In our numerical study, we choose

Ci = 2[n
1
2 ] where [x] is the largest integer no larger than x.

3. STATISTICAL PROPERTIES

In this section, we outline the main results for the asymp-
totic distribution under the null and consistency properties
under the alternative. We first assume the following condi-
tion:

(C) For a fixed δ = β∗ − β �= 0, there exists a constant
c0 > 0 such that

c0 ≤ sup
λ

{
τ0E log[1 + λ�(δ − τ−1

0 A−1xe)]

+ (1− τ0)E log{1 + λ�[δ − (1− τ0)
−1A−1xe]}

}
< ∞,

where τk0 = k0/n → τ0 ∈ (0, 1) as n → ∞ and A = E(x1x
�
1 )

(for more details, see Appendix). This condition is mild and
similar to that in [17].

Theorem 1. Suppose that for i = 1, · · · , n, (x�
i , ei)

�’s
are i.i.d, xi, ei are mutually independent with E‖xi‖4 <
∞, Ee4i < ∞, and E(xix

�
i ) is positive-definite. If the null

hypothesis H0 is true, then

P (A(log(u(n)))(Zn)
1
2 ≤ x+Dp(log(u(n)))) −→ exp(−e−x),

as n → ∞ for all x, where A(x) = (2 log x)
1
2 , Dp(x) =

2 log x+ p
2 log log x− log Γ(p2 ), u(n) =

n2+(2[n
1
2 ])2−2n[n

1
2 ]

(2[n
1
2 ])2

.

Theorem 1 shows that under the null hypothesis, the
asymptotic distribution of the JELR test statistic is the
Gumbel extreme value distribution. This result is similar
to that for the traditional union-intersection (UI) test (see
[6, 8]).

Theorem 2. Suppose that the conditions of Theorem 1 and
condition (C) hold. If H1 is true, then there exists a constant
c > 0 such that

P (Zn > cn) → 1.

That is, the JELR test is consistent.

Theorem 3. Suppose that the conditions of Theorem 1 and
condition (C) hold, H1 is true, and τk0 = k0

n → τ0 ∈ (0, 1)

as n → ∞. Consider τ̂k = k̂
n where k̂ is the estimator of the

change point location. We have τ̂k → τ0 in probability as n
→ ∞.

Theorem 2 and 3 establish that under the alternative hy-
pothesis, the JELR enjoys the test and estimation consis-
tency properties. The proofs are provided in Appendix.

4. NUMERICAL STUDY

4.1 Simulation

We conduct simulation to examine the finite-sample be-
haviors of the JELR test under different settings and com-
pare with the UI test and the empirical log-likelihood ratio
(ELR) test, which proceeds by the two-sample empirical log-
likelihood ratio [24].

Consider the following regression model

yi =

{
0.5xi1 − xi2 + ei, 1 ≤ i ≤ k0,

1.5xi1 − 0.5xi2 + ei, k0 + 1 ≤ i ≤ n.

The distributions of xi1 and xi2 are standard normal and
standard uniform respectively. Consider the following four
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Table 1. Simulation under different sample sizes and error distributions: pseudo coverage accuracy in each cell

Normal Exp χ2 t

n k0 UI ELR JELR UI ELR JELR UI ELR JELR UI ELR JELR

50 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
15 0.549 0.493 0.464 0.172 0.466 0.478 0.361 0.55 0.517 0.274 0.552 0.549
20 0.678 0.604 0.608 0.235 0.541 0.603 0.472 0.724 0.717 0.359 0.638 0.64
25 0.743 0.684 0.675 0.338 0.634 0.659 0.503 0.744 0.735 0.367 0.641 0.654

100 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
30 0.962 0.943 0.919 0.676 0.865 0.842 0.768 0.848 0.827 0.883 0.906 0.923
40 0.963 0.947 0.922 0.788 0.893 0.921 0.875 0.911 0.883 0.938 0.949 0.952
50 0.969 0.947 0.929 0.833 0.917 0.938 0.927 0.941 0.942 0.948 0.958 0.958

200 0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
60 0.991 0.991 0.994 0.981 0.97 0.972 0.992 0.981 0.979 0.992 0.989 0.987
80 0.998 0.996 0.996 0.989 0.983 0.985 0.998 0.992 0.991 0.997 0.995 0.995
100 0.999 0.999 0.999 0.99 0.988 0.988 0.999 0.999 0.999 0.998 0.998 0.997

Table 2. Simulation study under different sample sizes and error distributions: true coverage accuracy in each cell

Normal Exp χ2 t

n k0 UI ELR JELR UI ELR JELR UI ELR JELR UI ELR JELR

50 0 0.036 0.133 0.055 0.108 0.131 0.043 0.09 0.128 0.043 0.1 0.112 0.031
15 0.481 0.7 0.484 0.402 0.631 0.444 0.541 0.736 0.488 0.447 0.685 0.476
20 0.605 0.809 0.639 0.48 0.71 0.579 0.648 0.86 0.685 0.546 0.758 0.556
25 0.68 0.862 0.701 0.618 0.78 0.631 0.678 0.865 0.713 0.544 0.767 0.581

100 0 0.016 0.085 0.033 0.082 0.101 0.035 0.066 0.103 0.042 0.056 0.094 0.028
30 0.911 0.969 0.89 0.793 0.915 0.811 0.82 0.91 0.809 0.895 0.948 0.889
40 0.914 0.971 0.893 0.877 0.945 0.904 0.903 0.953 0.871 0.942 0.968 0.931
50 0.922 0.971 0.897 0.907 0.956 0.921 0.95 0.973 0.935 0.953 0.974 0.935

200 0 0.01 0.068 0.029 0.085 0.093 0.042 0.057 0.093 0.041 0.056 0.078 0.026
60 0.999 0.999 0.999 0.993 0.984 0.966 0.993 0.989 0.975 0.993 0.992 0.981
80 0.999 0.999 0.999 0.994 0.992 0.982 0.999 0.995 0.988 0.998 0.997 0.994
100 1 1 1 0.995 0.992 0.987 0.999 0.999 0.998 0.998 0.998 0.996

distributions for the random error: i) ei ∼ N(0, 1), ii) ei ∼
exp(1.0)−1.0; iii) ei ∼ 1

2
√
2
(χ2(4.0)−4.0); iv) ei ∼ 1√

2
t(4.0).

All error distributions have mean zero and variance one.
Consider sample size n = 50, 100 and 200. Set α = 0.05.
Multiple change point locations are considered (Table 1).
Under each setting, we simulate 5,000 replicates and com-
pute summary statistics.

In the first set of analysis, we choose the 95% percentile
values of the test statistics with k0 = 0 from the 5,000 sim-
ulated replicates as the critical values. That is, with k0 = 0,
the pseudo coverage accuracy is exactly 0.05. This approach
can ensure more precise false probabilities. For the other
three k0 values, the pseudo coverage accuracy is computed
based on the calculated critical values. Table 1 shows that
when the sample size is not large (n = 50, 100), under the
normal random error distribution, the JELR and ELR meth-
ods have a slight disadvantage compared to UI. However,
under the other three error distributions with n = 50, 100,
both perform more efficiently and more powerfully than UI
in detecting the existence of change point. Although JELR
and ELR have similar performance, JELR is computation-
ally more efficient. Specifically, in our simulation, the com-

puter time of ELR is about 2 times more than that of JELR.
When the sample size is large (n = 200), all three methods
have satisfactory performance.

In the second set of analysis, we use the theoretical criti-
cal value obtained based on Theorem 1 to calculate the true
coverage accuracy. The results are shown in Table 2. We
observe that the JEL method is able to control the type
I error while the UI and EL methods fail, although these
two methods mostly have higher power. We also examine
the estimate τ̂k. The results on bias and standard deviation
are shown in Table 3. All three methods have reasonable
performance. Under all simulation scenarios, the proposed
method does not show any systematic bias.

4.2 Analysis of the NASA dataset

The first dataset is from a NASA calibration application
and has been analyzed in [15]. The dataset is available from
the authors. Consider the linear regression model:

yi = β0 + β1xi + ei,

where yi and xi are the force balance and axial force compo-
nent respectively, and ei is normally distributed. We apply
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Table 3. Simulation study: bias (standard deviation) of τ̂k under the alternative hypothesis

Normal Exp χ2 t

n τk0 UI ELR JELR UI ELR JELR UI ELR JELR UI ELR JELR

50 0.3 0.03 0.069 0.078 0.048 0.079 0.078 0.017 0.061 0.059 0.085 0.088 0.116
(0.17) (0.117) (0.133) (0.203) (0.13) (0.118) (0.192) (0.128) (0.127) (0.205) (0.129) (0.13)

0.4 0.013 0.026 0.04 0.034 0.051 0.033 0.031 0.046 0.053 0.043 0.048 0.065
(0.136) (0.099) (0.114) (0.185) (0.107) (0.091) (0.16) (0.121) (0.127) (0.178) (0.118) (0.114)

0.5 -0.014 -0.008 -0.013 0.015 0.024 0.004 -0.001 0.011 -0.002 -0.028 -0.03 -0.02
(0.118) (0.095) (0.111) (0.169) (0.104) (0.097) (0.156) (0.116) (0.125) (0.178) (0.118) (0.115)

100 0.3 0.05 0.051 0.087 0.015 0.002 0.027 0.018 0.032 0.032 0.018 0.041 0.037
(0.088) (0.103) (0.124) (0.135) (0.093) (0.094) (0.108) (0.1) (0.099) (0.088) (0.112) (0.105)

0.4 0.004 0.001 0.029 0.007 -0.002 0.005 0.01 0.012 -0.012 0.017 0.031 0.01
(0.088) (0.107) (0.128) (0.093) (0.101) (0.09) (0.09) (0.099) (0.096) (0.079) (0.11) (0.107)

0.5 -0.001 -0.004 0.001 0.001 -0.005 -0.005 0.001 0.004 0.004 0.009 0.025 0.001
(0.092) (0.109) (0.125) (0.087) (0.103) (0.092) (0.076) (0.099) (0.105) (0.085) (0.111) (0.113)

200 0.3 0.001 -0.008 0.021 -0.005 -0.003 0.008 -0.002 -0.001 0.009 -0.006 -0.01 -0.005
(0.028) (0.049) (0.067) (0.054) (0.091) (0.093) (0.046) (0.075) (0.071) (0.042) (0.074) (0.073)

0.4 -0.009 -0.014 0.021 0.009 0.003 0.014 -0.022 -0.022 -0.016 0.007 -0.003 0.003
(0.027) (0.049) (0.059) (0.052) (0.1) (0.1) (0.038) (0.077) (0.075) (0.034) (0.072) (0.065)

0.5 0.009 0.008 0.004 -0.003 -0.014 -0.013 0.009 0.022 0.013 -0.007 0.001 -0.002
(0.026) (0.043) (0.056) (0.051) (0.111) (0.099) (0.03) (0.076) (0.068) (0.036) (0.076) (0.072)

Figure 1. JELR values of the NASA example. The dashed line
corresponds to the estimated location of the maximum JELR

at k̂ = 516.

the JELR procedure along with the binary segmentation
method to this dataset. One change point with estimated
location k̂ = 516 is identified. The test statistic Zn = 23.76
has p-value 0.006 based on Theorem 1. The estimated loca-
tion is also in accordance with the traditional UI method.
With our method, the JELR values are plotted in Figure 1.

4.3 Analysis of the discount rate dataset

This dataset has been analyzed in [7], where the sam-
ple period goes from 1973 to 1989, and there are a total of
56 observations. [2] adopted the following linear regression
model to describe the relationship between the change in
the discount rate for the ith observation (ΔDRi) and the
change in the market interest rate (ΔTBi)

Table 4. Analysis of the discount rate data: test statistics and
break points

Sample Data nobs JELR p-value k̂

[1, 56] 1/15/73−2/24/89 56 11.284 0.059 27
[1, 27] 1/15/73−9/19/79 27 5.908 0.120 −
[28, 56] 10/9/79−2/24/89 29 14.343 0.050 38

ΔTBi = α+ βΔDRi + ei.

He applied the sup-Wald type test and detected breaks at
positions 28, 38 and 42 at the 10% nominal size. Here we
apply the JELR procedure along with the binary segmenta-
tion method and present the results in Table 4, where the
p-values are calculated based on Theorem 1.

We also detect a break at position 27, which has test
statistic Zn = 11.284 with p-value 0.059. Using the binary
segmentation method, we continue and detect another break
at position 3, which has test statistic Zn = 14.343 with p-
value 0.050. As the remaining sample sizes of subsequences
are small, we stop the process.

5. DISCUSSION

In this article, we have developed a new method for de-
tecting change point(s) in linear regression. The first major
contribution is the adoption of the jackknife empirical like-
lihood technique, which differs from many of the existing
studies. The second contribution is the rigorous establish-
ment of statistical properties, especially including the Gum-
bel extreme value distribution under the null and the test
and estimation consistency under the alternative. Simula-
tion shows reasonable performance of the proposed method.
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Compared with the direct competitor, the EL method, the
JEL method has lower computational cost and can better
control type I error. Following strategies in the literature, we
have chosen to first study the linear regression model. This
study may serve as the basis for further methodological de-
velopment for the generalized linear models and Cox survival
model. However, the theoretical development is expected to
be highly nontrivial and postponed to future studies.

APPENDIX

In the following, the convergence of random variables in-
volved is the convergence in probability, and the conver-
gence of distribution involved is the convergence in distri-
bution. For simplicity of notation, we use “→” for both
types of convergence and denote “

a.s.−→” as the almost sure
convergence of a sequence of random variables. ‖ · ‖ de-
notes the Frobenius norm of a matrix. λmax(·) denotes the
largest eigenvalue of a matrix. For symmetric matrices M1

and M2, if M1 − M2 is (semi-)positive definite matrix, we
denote (M1 ≥ M2)M1 > M2. Define τk = k/n and let
εk = min{τk, 1−τk}, m = nεk. By the law of large number,
1
kx

�
1,kx1,k → A, 1

n−kx
�
2,kx2,k → A as k → ∞ and n−k → ∞,

where A = E(x1x
�
1 ) is positive definite.

Lemma 1. Define Sk = 1
n

∑n
i=1 Vi,kV

�
i,k. Under the condi-

tions of Theorem 1 and null hypothesis, we have

1) max
1≤i≤n

‖Vi,k‖ = op(

√
n

εk
);

2) V̄k
def
=

1

n

n∑
i=1

Vi,k = Op(m
− 1

2 );

3) Sk =
1

τk(1− τk)
(σ2A−1 +Op(m

− 1
2 )) = Op(ε

−1
k );

4)
1

n

n∑
i=1

||Vi,k||3 = Op(ε
−2
k ).

Proof. For a fixed k, we first define some notations. Let

Δi =

{
x�
i (x

�
1,kx1,k)

−1xi, 1 ≤ i ≤ k,

x�
i (x

�
2,kx2,k)

−1xi, k < i ≤ n.

When 1 ≤ i ≤ k, we denote ei = yi − x�
i β, ui = x�

i (β̂k −
β), ri = yi−x�

i β̂k = ei−ui and ξi = (x�
1,kx1,k)

− 1
2xiri, where

β̂k = (x�
1,kx1,k)

−1x�
1,ky1,k is the least square estimate of β.

Similarly, when k+1 ≤ j ≤ n, we also can defined ej , u
∗
j , r

∗
j

and ξ∗j , where β̂∗
k = (x�

2,kx2,k)
−1x�

2,ky2,k is the least square

estimate of β∗. Let σ2 = Ee2i = Ee∗2i . We introduce the
following results which were established by [16].

1. max
1≤i≤k

x�
i (x

�
1,kx1,k)

−1xi
a.s.−→ 0 as k → ∞,

max
k+1≤i≤n

x�
i (x

�
2,kx2,k)

−1xi
a.s.−→ 0 as n− k → ∞.

(See Lemma 2.3 in [16].)

2. Tn,k−T−i
n−1,k =

⎧⎪⎨
⎪⎩
− (x�

1,kx1,k)
−1xi(yi−x�

i β̂k)

1−x�
i (x�

1,kx1,k)−1xi
, 1 ≤ i ≤ k,

(x�
2,kx2,k)

−1xi(yi−x�
i β̂∗

k)

1−x�
i (x�

2,kx2,k)−1xi
, k < i ≤ n.

(See Lemma 3.2 in [16].)

3. 1
k

∑k
i=1 r

2
i xix

�
i → σ2A as k → ∞,

1
n−k

∑n
i=k+1 r

∗2
i xix

�
i → σ2A as n− k → ∞.

(See Lemma 3.4 in [16].)

It is not hard to deduce that, under the null hypothesis
(δ = 0),

Tn,k = (x�
2,kx2,k)

−1x�
2,ky2,k − (x�

1,kx1,k)
−1x�

1,ky1,k

= (x�
2,kx2,k)

−1x�
2,ke2,k − (x�

1,kx1,k)
−1x�

1,ke1,k,

where e1,k = (e1, · · · , ek)� and e2,k = (ek+1, · · · , en)�. For
any given x1,k and x2,k, we can derive that

√
m(σ2A−1)−

1
2Tn,k → N(0, Ip).

1). Obviously,√
εk
n
Vi,k =

√
εk
n
Tn,k +

√
εk
n
(n− 1)(Tn,k − T−i

n−1,k).

The order of the first part is op(1). For the second part,

‖√nεk(Tn,k − T−i
n−1,k)‖ = Op(‖

√
nεk(x

�
1,kx1,k)

− 1
2 ξi‖) =

Op(‖ξi‖). It is sufficient to prove that max
1≤i≤k

||ξi|| = op(1).

Since ‖ξi‖ = Δ
1
2
i |ri| ≤ |ei|Δ

1
2
i + |ui|Δ

1
2
i and E(x1x

�
1 ) < ∞,

we have

max
1≤i≤k

|ei|Δ
1
2
i ≤

√
λmax{(

x�
1,kx1,k

k
)−1} max

1≤i≤k

‖xi‖|ei|√
k

= op(1),

and

max
1≤i≤k

|ui|Δ
1
2
i ≤ max

1≤i≤k
‖xi‖Δ

1
2
i ‖β̂k − β‖

≤

√
λmax((

x�
1,kx1,k

k
)−1)‖

√
k(β̂k − β)‖ max

1≤i≤k

‖xi‖2
k

= Op(1) max
1≤i≤k

‖xi‖2
k

= op(1).

Similarly, max
k+1≤i≤n

||ξ∗i || = op(1). Thus, the first conclusion

of Lemma 1 is derived.
2). Since

1

n

n∑
i=1

Vi,k = Tn,k +
n− 1

n

k∑
i=1

(Tn,k − T−i
n−1,k)

+
n− 1

n

n∑
i=k+1

(Tn,k − T−i
n−1,k),

it is sufficient to prove that the orders of the last two terms
are Op(k

− 1
2 ) and Op((n− k)−

1
2 ), respectively. In fact,
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√
k

k∑
i=1

(Tn,k − T−i
n−1,k)

= −(
x�
1,kx1,k

k
)−

1
2

k∑
i=1

(x�
1,kx1,k)

− 1
2xiri

1−Δi
= Op(‖

k∑
i=1

ξi‖).

Since Ex1x
�
1 < ∞,

∑k
i=1 xiei/

√
k = Op(1) and

√
k(β̂k −

β) = Op(1), we have

k∑
i=1

ξi =

k∑
i=1

(x�
1,kx1,k)

− 1
2xiei

−
k∑

i=1

(x�
1,kx1,k)

− 1
2 xix

�
i (β̂k − β) = Op(1).

Similarly, we can show that
√
n− k

∑n
i=k+1(Tn,k −

T−i
n−1,k) = Op(1). Therefore,

1
n

∑n
i=1 Vi,k = Op(m

− 1
2 ).

3). Since 1
n

∑n
i=1 Vi,kV

�
i,k = 1

n

∑k
i=1 Vi,kV

�
i,k +

1
n

∑n
i=k+1 Vi,kV

�
i,k, we will prove that 1

n

∑k
i=1 Vi,kV

�
i,k =

Op(
n
k ) and

1
n

∑n
i=k+1 Vi,kV

�
i,k = Op(

n
n−k ). In fact,

1

n

k∑
i=1

Vi,kV
�
i,k

=
k

n
Tn,kT

�
n,k +

(n− 1)2

n

k∑
i=1

(Tn,k − T−i
n,k)(Tn,k − T−i

n,k)
�

+
n− 1

n

k∑
i=1

Tn,k(Tn,k − T−i
n,k)

�

+
n− 1

n

k∑
i=1

(Tn,k − T−i
n,k)T

�
n,k.

It is not hard to derive that the order of the first term is
n−1kTn,kT

�
n,k = n−1kOp(m

−1), and the order of the last

two terms is Op(m
− 1

2 )Op(k
− 1

2 ). Then we plug Tn,k−T−i
n,k =

− (x�
1,kx1,k)

−1xiri
1−Δi

= Op(‖(x�
1,kx1,k)

−1xiri‖) into the second
term when 1 ≤ i ≤ k and obtain that

k∑
i=1

(Tn,k − T−i
n,k)(Tn,k − T−i

n,k)
�(1)

=
k∑

i=1

(x�
1,kx1,k)

−1r2i xix
�
i (x

�
1,kx1,k)

−1

=
1

k
(A−1 +Op(k

− 1
2 ))(

1

k

k∑
i=1

r2i xix
�
i )(A

−1 +Op(k
− 1

2 )).

Since ei, xi are independent and E||x||4 < ∞, we have√
k(β̂k − β) = Op(1),

1

k

k∑
i=1

‖eixix
�
i ‖2 = Op(1), max

1≤i≤k

‖xi‖2√
k

= Op(1).

Noticing that 1
k

∑k
i=1 e

2
ixix

�
i = σ2A+Op(k

− 1
2 ),

‖ 1√
k

k∑
i=1

eiuixix
�
i ‖2 ≤ 1

k

k∑
i=1

‖eixix
�
i ‖2

k∑
i=1

u2
i = Op(1),

and

‖ 1√
k

k∑
i=1

u2
ixix

�
i ‖ ≤ 1

k
‖

k∑
i=1

xix
�
i ‖ max

1≤i≤k

√
ku2

i

≤ 1

k
‖

k∑
i=1

xix
�
i ‖

√
k max
1≤i≤k

‖xi‖2‖β̂k − β‖2 = op(1).

In addition,

1

k

k∑
i=1

r2i xix
�
i =

1

k

k∑
i=1

e2ixix
�
i − 2

k

k∑
i=1

eiuixix
�
i

+
1

k

k∑
i=1

u2
ixix

�
i ,

we have 1
k

∑k
i=1 r

2
i xix

�
i = σ2A+Op(k

− 1
2 ), which, combined

with (1), implies

(n− 1)2

n

k∑
i=1

(Tn,k − T−i
n,k)(Tn,k − T−i

n,k)
�

=
n

k
[σ2A−1 +Op(k

− 1
2 )].

Similarly, it can be shown

(n− 1)2

n

n∑
i=k+1

(Tn,k − T−i
n,k)(Tn,k − T−i

n,k)
�

=
n

n− k
[σ2A−1 +Op((n− k)−

1
2 )].

Thus, we can reach the conclusion that

1

n

n∑
i=1

Vi,kV
�
i,k =

1

τk(1− τk)
[σ2A−1 +Op(m

− 1
2 )] = Op(ε

−1
k ).

4). The proof is similar to that above.

Lemma 2. Under the conditions of Theorem 1,

λ̃ = εkOp(m
− 1

2 ) and λ̃ = S−1
k V̄k + εkOp(m

−1).

Proof. The proof is similar to that of Theorem 3.2 of [19].

Lemma 3. Under the conditions of Theorem 1 and null
hypothesis, we have

−2 log Λk = nV̄ �
k S−1

k V̄k +Op(‖
λ̃

εk
‖).

Proof. For convenience, we write λ̃ = S−1
k V̄k + β. Accord-

ing to Lemma 2, β = εkOp(m
−1). Let γi = λ̃�Vi,k, then
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max
1≤i≤n

|γi| = op(1) follows from Lemma 1 and Lemma 2. We

may expand log(1 + γi) = γi − 1
2γ

2
i + ηi, where we have

P (|ηi| ≤ B|γi|3), 1 ≤ i ≤ n) → 1 as n → ∞, for some finite
B > 0. Therefore,

−2 log Λk = 2

n∑
i=1

log(1 + λ̃�Vi,k)

= nV̄ �
k S−1

k V̄k − nβ�Skβ + 2

n∑
i=1

ηi.

For the last two terms, nβ�Skβ = Op(m
−1) and

∑n
i=1 ηi =

Op(‖ λ̃
εk
‖) follow from Lemma 1 and Lemma 2. Lemma 3 can

be concluded by combining these results.

Lemma 4. Assume the conditions of Theorem 1 and null
hypothesis. Denote Unk = { k

n : T
n ≤ k

n ≤ (1 − T
n )}. For all

η > 0, we can find finite C = C(η), T0 = T0(η), N = N(η),
such that when T > T0, n > N ,

P ( max
k
n∈Unk

(
m

log logm
)

1
2 ‖ λ̃

εk
‖> C) ≤ η

and

P (n− 1
2 max

k
n∈Unk

m ‖ λ̃

εk
‖> C) ≤ η.

Proof. The proof is similar to that of Lemma 1.2.2 of [6].

Lemma 5. Under the conditions of Theorem 1 and null
hypothesis, for all 0 ≤ α < 1

2 ,

nα max
k∈Θnk

[τk(1− τk)]
α| − 2 log Λk −Rk| = Op(1),

max
k∈Θnk

[τk(1− τk)]
α| − 2 log Λk −Rk| = Op(n

− 1
2 (log logn)

3
2 ),

where Θnk = {k : C1 ≤ k ≤ n − C2}, Rk =
nV̄ �

k Cov(
√
nV̄k)

−1V̄k.

Proof. With Lemma 1, we can prove that Cov(
√
nV̄k)

−1Sk−
Ip = Op(m

− 1
2 ). Using Lemma 3, we can derive that

−2 log Λk = Rk +Op(||
λ̃

εk
||).

Then applying Lemma 4 and following Lemma 1.1.1 of [6]
finish the proof.

Lemma 6. Let k0 be the true position of the change point.
Under the conditions of Theorem 1 and alternative hypoth-
esis, if k ≤ k0, then we have

1. β̂k
a.s.−→ β and β̂∗

k
a.s.−→ β + ρkδ, which imply that Tn,k

a.s.−→
ρkδ, where ρk = n−k0

n−k ;

2. τkVi,k
a.s.−→ τkρkδ −A−1xiei for i ≤ k, (1− τk)Vi,k

a.s.−→{
(1− τk)ρkδ +A−1xi(ei − x�

i δρk), k < i ≤ k0,

(1− τk)ρkδ +A−1xi[ei + x�
i δ(1− ρk)], k0 < i ≤ n.

Proof. By the law of large numbers, we can easily prove the
lemma.

Proof of Theorem 1. Theorem 1 can be proved using
Lemma 5 and similar arguments as in the proof of Theorem
1.3.1 of [6]. One difference is that our theorem is obtained
from Theorem A.3.4 as opposed to Corollary A.3.1 of [6], as
we need to derive the null distribution of Zn not Z∗

n.

Proof of Theorem 2. Under the alternative hypothesis, by
Lemma 6 we have

sup
λ

1

n

n∑
i=1

log(1 + λ�Vi,k0)

a.s.−→ sup
λ

{
1

n

k0∑
i=1

log
[
1 + λ�(δ − τ−1

k0
A−1xiei)

]

+
1

n

n∑
i=k0+1

log
[
1 + λ�(δ + (1− τk0)

−1A−1xiei)
]}

a.s.−→ sup
λ

{
τ0E log

[
1 + λ�(δ − τ−1

0 A−1xe)
]

+ (1− τ0)E log
[
1 + λ�(δ + (1− τ0)

−1A−1xe)
]}

≥ c0,

where the last inequality is due to condition (C). Then the
conclusion is derived.

Proof of Theorem 3. We only need to prove that for arbi-
trary small η > 0 with

τk0

2 > η and |k0−k
n | ≥ η, −2 log Λk

can not arrive at its maximum with probability approaching

to 1. Thus, by the definition of k̂, we have |k0−k̂
n | ≤ η with

probability approaching to 1. Since η is arbitrary, Theorem
3 is proved.

Without loss of generality, suppose that k < k0, and
k0−k
n ≥ η. Applying Lemma 6, we have

−2 log Λk

2n
= sup

λ

1

n

n∑
i=1

log(1 + λ�Vi,k)

= sup
λ

{ 1

n

k∑
i=1

log(τk + λ�τkVi,k)

+
1

n

n∑
i=k+1

log
[
(1− τk) + λ�(1− τk)Vi,k

]
− τk log τk − (1− τk) log(1− τk)

}
a.s.−→ sup

λ

{
τkE log

[
1 + λ�(ρkδ − τ−1

k A−1xe)
]

+(τk0 − τk)E log
[
1 + λ�(ρkδ

+ (1− τk)
−1A−1x(e− x�δρk))

]
+(1− τk0)E log

[
1 + λ�(ρkδ

+ (1− τk)
−1A−1x(e+ x�δ(1− ρk))

] }
.
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Denote

H = τk log
[
1 + λ�(ρkδ − τ−1

k A−1xe)
]

(2)

+ (τk0 − τk) log
[
1 + λ�(ρkδ

+ (1− τk)
−1A−1x(e− x�δρk))

]
+ (1− τk0) log

[
1 + λ�(ρkδ

+ (1− τk)
−1A−1x(e+ x�δ(1− ρk)))

]
:= H1 +H2 +H3.

Then −2 log Λk

2n

a.s.−→ sup
λ
E(H). Since log(·) is a strictly con-

cave function, we have

H1 ≤ τk0 log[1 + λ�ρk(δ − τ−1
k0

A−1xe)](3)

− (τk0 − τk) log[1 + λ�(ρkδ + (1− τk)
−1A−1xe)]

and similarly,

H2 +H3(4)

≤ (1− τk) log{1 + λ�[ρkδ + (1− τk)
−1A−1xe]}.

Recall that ρk = (n − k0)/(n − k). Combining (2), (3), (4)
and the fact ρ−1

k (1− τk)
−1 = (1− τk0)

−1, we have

H ≤ τk0 log[1 + λ�ρk(δ − τk0A
−1xe)]

+ (1− τk0) log{1 + λ�ρk[δ + (1− τk0)
−1A−1xe].

Suppose that the expectation of the left-hand-side in the
above inequality attains its maximum at λ∗. If λ∗ = 0,

it’s obvious that
−2 log Λk0

2n > −2 log Λk

2n a.s. If λ∗ �= 0, since
λ∗τA−1xe is non-degenerate, we have

−2 log Λk

2n

< τk0E log[1 + λ∗τρk(δ − τk0A
−1xe)]

+ (1− τk0)E log{1 + λ∗τρk[δ + (1− τk0)
−1A−1xe]}

≤ sup
λ

{
τk0E log[1 + λ�ρk(δ − τk0A

−1xe)]

+ (1− τk0)E log{1 + λ�ρk[δ + (1− τk0)
−1A−1xe]}

}
= sup

λ

{
τk0E log[1 + λ�(δ − τk0A

−1xe)]

+ (1− τk0)E log{1 + λ�[δ + (1− τk0)
−1A−1xe]}

}
a.s.←− −2 log Λk0

2n
,

which implies that

−2 log Λk0

2n
>

−2 log Λk

2n
a.s.

Thus, in such a situation, −2 log Λk cannot arrive at its max-
imum with probability approaching to 1. Based on the above
discussions, we can conclude the result.
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[6] Csörgó, M. and Horváth, L. (1997). Limit Theorems in
Change-Point Analysis. New York: John Wiley & Sons.
MR2743035

[7] Dueker, M. J. (1992). The Response of Market Interest Rates
to Discount Rate Changes. Federal Reserve Bank of St. Louis
Review 74 78–91.

[8] Hawkins, D. L. (1989). A U-I approach to retrospective test-
ing for shifting parameters in a linear model. Commun. Statist.
Theor. Meth. 18 3117–3134. MR1033153
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