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Kernel smoothing and jackknife empirical
likelihood-based inferences for the generalized
Lorenz curve∗

Shan Luo and Gengsheng Qin
†

Lorenz curve is one of the most commonly used devices
for describing the inequality of income distributions. The
generalized Lorenz curve is the Lorenz curve scaled by the
mean of an income distribution and itself is an interest-
ing object of study. In this paper, we define a smoothed
estimator for the generalized Lorenz curve and propose a
smoothed jackknife empirical likelihood method to construct
confidence intervals for the generalized Lorenz curve. It is
shown that the Wilks’ theorem still holds for the smoothed
jackknife empirical likelihood. Extensive simulation studies
are conducted to compare the finite sample performances of
the proposed methods with other methods based on simple
random samples. Finally, the proposed methods are illus-
trated with a real example.

Keywords and phrases: Bootstrap, Confidence interval,
Empirical likelihood, Generalized Lorenz curve, Jackknife.

1. INTRODUCTION

The Lorenz curve was first introduced by Lorenz (1905)
for representing the inequality of a wealth distribution.
Shorrocks (1983) and Kakwani (1984) extended the Lorenz
curve to the generalized Lorenz curve (GLC) by taking into
account differences between wealth distributions. Shorrocks
(1983) also showed that one income distribution is preferable
to another under any increasing and Schur-concave social
welfare function if and only if the GLC of the first distribu-
tion lies above that of the second distribution. Because the
GLC has these flexible properties, the GLC is an interesting
object to study.

Consider an income variable X ∈ [0,∞) with cumulative
distribution function F (x). The generalized Lorenz ordinate
is defined as follows:

θ(t) =

∫ ξt

0

xdF (x), 0 ≤ t ≤ 1,(1)
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where ξt = F−1(t) is the t-th quantile of F (x). For a fixed
t ∈ [0, 1], the generalized Lorenz ordinate θ(t) is the average
wealth owned by the wealth-holders below the bottom t-th
percent. The height of the GLC is used to denote income
level, and the convexity of the GLC is used to denote the
extent of income inequality.

Previous studies have been conducted on the properties
of generalized Lorenz curves. Thistle (1989a) showed that
the income distribution function is uniquely determined by
its GLC. Later, Thistle (1989b) derived the duality between
the GLC and the distribution function, and showed that
the generalized Lorenz dominance is equivalent to a second-
order stochastic dominance. Kleiber and Kramer (2003) de-
composed the generalized Lorenz order into two compo-
nents: size and distribution. Xu (1997) proposed an asymp-
totic distribution-free test for the GLC. Beach and David-
son (1983) obtained the asymptotic normality of the empir-
ical estimator for the GLC. Zheng (2002) further extended
the asymptotic normality of the empirical estimator for the
GLC to non-simple random samples. Inferences can be made
based on these asymptotic normal distributions for the GLC.
However, normal approximation-based inferences may have
poor finite sample performances when income data is highly
right skewed. Motivated by their previous research, several
new non-parametric inferential methods will be developed
for the GLC in this paper.

Empirical likelihood (EL), introduced by Owen (1988,
1990), allows researchers to utilize likelihood methods with-
out assuming the data follows a specific parametric distri-
bution. As mentioned in Wood et al. (1996), under mild
conditions, the EL ratio statistic converges in distribution
to a chi-square distribution. EL has wide applications in
many fields. For example, without taking into account the
high skewness of the health care cost distribution, the esti-
mated mean cost can have a significant deviation from the
actual average cost. Zhou, Qin, Lin and Li (2006) developed
a new EL-based inference method in censored cost regres-
sion models and showed that the EL-based method outper-
forms the existing method. In medical diagnostics, Qin and
Zhou (2006) proposed an EL-based inference method for the
area under the ROC curve. Some recent developments of EL
include inferences for: regression models (Feng and Peng,
2012), time series models (Chan, Li and Peng, 2012), risk
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measures (Wei, Wen, and Zhu (2009), Wei and Zhu (2010),
Li, Gong and Peng (2011)), and survey data (Rao and Wu,
2010). EL-based methods have been shown to have diverse
advantages over other methods. We refer to Owen (2001) for
more details.

Most of the previous EL-based methods were success-
fully applied with linear constraints. But significant com-
putational burden arises with nonlinear functionals, due to
the presence of nonlinear constraints in the underlying op-
timization problem. In order to reduce the computational
burden, Jing, Yuan and Zhou (2009) proposed a jackknife
empirical likelihood (JEL) method with application to U-
statistics. The general idea of the JEL is to construct a jack-
knife pseudo-sample which is assumed to be asymptotically
independent. Then the standard EL method is implemented
to the jackknife pseudo-sample. Gong, Peng and Qi (2010)
proposed a smoothed JEL for the ROC curve, and observed
that the JEL method results in a shorter confidence interval
than the naive bootstrap method. JEL method has been ex-
tended to risk measures (Peng et al., 2012), and high dimen-
sional data (Wang, Peng and Qi, 2013). Recently, Yang, Qin
and Belinga-Hall (2012) developed a plug-in EL method for
the interval estimation of the GLC and concluded that the
EL-based method outperforms the normal approximation-
based methods. However, their EL ratio statistic follows a
scaled chi-square distribution, which requires estimation of
an unknown scale constant. To avoid estimating the un-
known scale constant, a smoothed JEL for the GLC is pro-
posed in this paper.

The remainder of this paper is organized as follows. In
Section 2, a smoothed estimator for the GLC is defined, and
its asymptotic normality is obtained. In Section 3, jackknife
pseudo-values for the GLC are defined, and properties of the
JEL are derived. In Section 4, confidence intervals based on
normal approximation theory are established, while multi-
ple bootstrap confidence intervals and a JEL-based confi-
dence interval are developed. In Section 5, extensive simu-
lation studies are conducted to evaluate the finite sample
performances of the proposed intervals, and a 2012 individ-
ual income data for full-time professors from the University
System of Georgia is used to illustrate an application of the
recommended intervals. The proof of the main theorems for
the GLC will be given in the Appendix.

2. THE SMOOTHED GENERALIZED
LORENZ CURVE

As mentioned in the previous section, Shorrocks (1983)
and Kakwani (1984) defined the generalized Lorenz curve

as θ(t) =
∫ ξt
0

xdF (x), 0 ≤ t ≤ 1. Let X1, X2, ..., Xn be a
simple random sample drawn from the population X with
c.d.f. F (x). For a fixed t ∈ (0, 1), the generalized Lorenz or-
dinate θ(t) satisfies E[XI(X ≤ ξt)]− θ(t) = 0. An empirical
estimate for θ(t) can be found from the following estimating

equation

1

n

n∑
i=1

XiI(Fn(Xi) ≤ t)− θ(t) = 0,

where Fn(x) =
1
n

∑n
i=1 I(Xi ≤ x).

Therefore, the empirical estimator for the GLC θ(t) is

θ̂(t) =
1

n

n∑
i=1

XiI(Xi ≤ F−1
n (t)) =

1

n

n∑
i=1

XiI(t ≥ Fn(Xi)).

However, θ̂(t) is a non-smoothing estimator for θ(t). In many
applications, θ(t) is a smoothing function. To find a smooth-
ing estimator for θ(t), we use the kernel method. Kernel es-
timation has found wide usage in broad fields. Falk (1983,
1985) concluded that, for a distribution function F (x), or its
quantile function F−1(x), their corresponding kernel-based
estimators asymptotically dominate their empirical estima-
tors. Lloyd and Yong (1999) proved that the kernel esti-
mator for the ROC curve performs better than the empiri-
cal estimator by having a smaller mean-square error, espe-
cially when sample size increases. In this paper, we propose
a smoothed version of the empirical estimator for the GLC.

Define the kernel function as K(x) =
∫ x

−∞ ω(y)dy, where
ω(·) is a probability density function. The kernel estimator
for θ(t) is defined as follows:

(2) T̂n(t) =
1

n

n∑
i=1

XiK

(
t− Fn(Xi)

h

)
,

where h is a bandwidth to be selected.

Theorem 2.1. Assume ω(·) is a probability density function
with bounded support and its first derivative exists on its
supporting set. If h = h(n) → 0,

√
nh2 → ∞ as n → ∞,

then
√
n{T̂n(t)− θ(t)} d−→ N(0, σ2(t)),

where σ2(t) = ξ2t t(1− t) +
∫ ξt
0

x2dF (x)− θ2(t).

In order to apply Theorem 2.1 in practice, the band-
width h needs to be selected subtly. In this study, a 2-
fold cross-validation method with equal sample split is
used. The bandwidth h is chosen to be cn−1/4(log logn)3/5

where c is a constant, based on our simulation experiences.
Clearly, the constant c will control the choice of band-
width h. Here and thereafter, we denote T̂n,c(t) = T̂n(t)
with h = cn−1/4(log logn)3/5. At a given t, the constant
c is chosen by minimizing the Mean Squared Error (MSE):

MSE(c) = E[T̂n,c(t)− θ(t)]
2
. To estimateMSE(c), we ran-

domly split the original sample into a training sample and

a validation sample. A kernel estimate T̂
(1)
n,c (t) for θ(t) is

obtained based on the training sample, and an empirical es-
timate θ̂(2)(t) for θ(t) is obtained based on the validation
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sample. By repeating this random split L times (based on
our simulation study, L ≥ 30 is the recommended number
of random splits), we obtain a set of kernel estimates and

empirical estimates {(T̂ (1,l)
n,c (t), θ̂(2,l)(t)) : l = 1, · · · , L} for

the generalized Lorenz ordinate, and the following cross-
validation estimate of the MSE:

CVc =
1

L

L∑
l=1

[T̂ (1,l)
n,c (t)− θ̂(2,l)(t)]2.

Then, c is chosen as the constant that minimizes CVc.
Alternatively, if we focus on the overall performance of

the smoothed estimator across all t, we can use a similar
cross-validation procedure for selecting c by minimizing the
Average Mean Squared Error (AMSE):

AMSE(c) = E

⎧⎨
⎩ 1

J

J∑
j=1

[T̂n,c(tj)− θ(tj)]
2

⎫⎬
⎭ , j = 1, 2, ..., J,

where tj is in a fine grid of (0,1), and J is the number of
grid points.

And the cross-validation estimate of the AMSE is

ACVc =
1

L

1

J

L∑
l=1

J∑
j=1

[T̂ (1,l)
n,c (tj)− θ̂(2,l)(tj)]

2.

Similarly, c is chosen as the constant that minimizes ACVc.

3. THE SMOOTHED JACKKNIFE
EMPIRICAL LIKELIHOOD FOR THE GLC

Using the smoothed estimator for the GLC in the previ-
ous section, we can define a smoothed jackknife empirical
likelihood for the GLC. Based on T̂n(t), we define the jack-
knife pseudo-values as

(3) V̂i(t) = nT̂n(t)− (n− 1)T̂n−1,i(t),

where T̂n−1,i(t) = 1
(n−1)

∑
j �=i XjK(

t−Fn,i(Xj)
h ) is the

given statistics T̂n−1(t) computed on n − 1 obser-
vations X1, · · · , Xi−1, Xi+1, · · · , Xn, and Fn,i(t) =
1

n−1

∑
j �=i I(Xj ≤ t) is the empirical distribution function

based on the n− 1 observations.
Then, the jackknife empirical likelihood for θ = θ(t) can

be defined as follows:

(4) L(t, θ) = sup
p

{
n∏

i=1

pi :
n∑

i=1

piV̂i(t) = θ

}
,

where p = (p1, · · · , pn) is a probability vector.
By using the Lagrange multiplier method, we obtain the

maximization for (4) at

(5) pi =
1

n
{1 + λ[V̂i(t)− θ]}−1,

where λ = λ(t, θ) is the solution to

(6)
1

n

n∑
i=1

V̂i(t)− θ

1 + λ(V̂i(t)− θ)
= 0.

Therefore, the jackknife empirical likelihood ratio for θ
can be defined as

(7) Ln(θ) =

n∏
i=1

(npi) =

n∏
i=1

{1 + λ(V̂i(t)− θ)}−1,

which gives the log empirical likelihood ratio as

(8) ln(θ) = −2 logLn(θ) = 2

n∑
i=1

log{1 + λ(V̂i(t)− θ)}

Based on Tukey (1958), the pseudo-values V̂i(t), i =
1, · · · , n could be treated as though they were i.i.d,
and V̂i(t)’s have approximately the same variance as√
nT̂n(t). Therefore, the variance of

√
nT̂n(t), denoted as

var(
√
nT̂n(t)), can be estimated by the sample variance of

V̂1(t), · · · , V̂n(t). The jackknife variance estimator of T̂n(t)
is thus defined as follows:

υJACK(t) =
1

n(n− 1)

n∑
i=1

[V̂i(t)−
1

n

n∑
j=1

V̂j(t)]
2

=
n− 1

n

n∑
i=1

[T̂n−1,i(t)−
1

n

n∑
j=1

T̂n−1,j(t)]
2.

The following theorem shows that this jackknife variance
estimator is a consistent estimator for the asymptotic vari-
ance σ2(t).

Theorem 3.1. Under conditions of Theorem 2.1, as n →
∞, we have

(9) υJACK(t)
p−→ σ2(t),

where σ2(t) is defined in Theorem 2.1.

The Wilks theorem for ln(θ) is obtained in the following
theorem.

Theorem 3.2. Under the conditions of Theorem 2.1, as
n → ∞, we have

(10) ln(θ)
d−→ χ2(1).

4. CONFIDENCE INTERVALS FOR THE
GENERALIZED LORENZ CURVE

4.1 Normal approximation-based confidence
intervals

One of the most popular methods to construct a confi-
dence interval for an unknown parameter is normal approx-
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imation. To construct a normal approximation-based confi-
dence interval for the generalized Lorenz ordinate θ, we first
need to obtain an appropriate estimator for θ, and then de-
rive its asymptotic normal distribution.

Two estimators for θ are used to build confidence intervals
for θ in our study. First of all, the empirical estimate θ̂ = θ̂(t)

for θ is asymptotically normal with variances σ2
v , i.e.,

√
n(θ̂−

θ)
d−→ N(0, σ2

v), where σ2
v =

∫ ξt
0
(x− ξt)

2dF (x)− (θ− tξt)
2.

Therefore, a (1 − α) level normal approximation (NA1)-
based confidence interval for θ can be constructed as

(l1, u1) = (θ̂ −
z1−α

2
σ̂v√
n

, θ̂ +
z1−α

2
σ̂v√
n

),

where z1−α
2

is the (1 − α
2 ) − th quantile of the standard

normal distribution, and σ̂2
v =

∫ ξ̂t
0
(x− ξ̂t)

2dFn(x)−(θ̂−tξ̂t)
2

is a consistent estimate for σ2
v .

Based on Theorem 3.1, we have that υJACK(t)
p−→ σ2(t).

So the jackknife variance estimator υJACK(t) is a consistent
estimator for σ2(t). Thus, the second (1 − α) level normal
approximation (NA2)-based confidence interval for θ can be
constructed as

(l2, u2)

=

(
T̂n(t)−

z1−α
2

√
υJACK(t)
√
n

, T̂n(t) +
z1−α

2

√
υJACK(t)
√
n

)

4.2 Bootstrap-based confidence intervals

Normal approximation-based intervals may have poor
performance when the income data is skewed or has out-
liers. Bootstrap is a powerful non-parametric approach to
make statistical inferences when the asymptotic variance of
an estimator is unknown and in a complex form. In this sec-
tion, we apply bootstrap methods to construct confidence
intervals for the GLC.

By drawing bootstrap resample {X∗
1 , X

∗
2 , ..., X

∗
n} with re-

placement from the original sample {X1, X2, ..., Xn}, the

bootstrap version of the empirical estimator θ̂(t) for the gen-
eralized Lorenz ordinate can be defined as

θ̂∗(t) =
1

n

n∑
i=1

X∗
i I(X

∗
i ≤ ξ∗t ).

We repeat this bootstrap procedure for B (B ≥ 500 is rec-

ommended) times. Thus, B bootstrap copies of θ̂ are ob-

tained, denoted then as {θ̂∗b , b = 1, 2, ..., B}. Then, the boot-
strap sample variance of θ̂∗b ’s

V ∗
G =

1

B − 1

B∑
b=1

(θ̂∗b − θ̄∗)2,

where θ̄∗ = 1
B

∑B
b=1 θ̂

∗
b , is used to estimate the asymptotic

variance of θ̂.

Two bootstrap confidence intervals based on the empiri-
cal estimator for θ are constructed as follows:

1. BT1 interval:

(l3, u3) = (θ̂ − z1−α/2

√
V ∗
G, θ̂ + z1−α/2

√
V ∗
G).

2. BT2 interval:

(l4, u4) = (θ̄∗ − z1−α/2

√
V ∗
G, θ̄

∗ + z1−α/2

√
V ∗
G).

We can also apply the bootstrap bias correction and ac-
celeration (BCa1) method to construct a confidence interval
for θ, which does not need a variance estimate.

3. BCa1 interval:

(l5, u5) = (θ̂∗([Bβ1])
, θ̂∗([Bβ2])

).

where

β1 = Φ(b+
b+ zα/2

1− a(b+ zα/2)
), β2 = Φ(b+

b+ z1−α/2

1− a(b+ z1−α/2)
)

with correction constants a and b defined by

a =
1

6

n∑
i=1

ϕ3
i /(

n∑
i=1

ϕ2
i )

3
2 , b = Φ−1(

1

B

B∑
b=1

I(θ̂∗b ≤ θ̂)),

where ϕi = θ̂(.) − θ̂(−i), and θ̂(−i) is the θ̂ computed by

deleting the i-th observation in original data, and θ̂(.) =
1
n

∑n
i=1 θ̂(−i).

Similarly, confidence intervals for θ can also be built
based on the kernel estimator T̂n = T̂n(t). Let T̂ ∗(t) =
1
n

∑n
i=1 X

∗
i K(

t−Fn(X
∗
i )

h ) be the bootstrap version of T̂n, and

{T̂ ∗
b , b = 1, 2, ..., B} be B bootstrap copies of T̂n. The sample

variance of T̂ ∗
b ’s

V ∗
GT =

1

B − 1

B∑
b=1

(T̂ ∗
b − T̄ ∗)2,

where T̄ ∗ = 1
B

∑B
b=1 T̂

∗
b , can be used to estimate the asymp-

totic variance of T̂n.

Thus, three new bootstrap confidence intervals for θ are
constructed as follows:

4. BT3 interval:

(l6, u6) = (T̂n − z1−α/2

√
V ∗
GT , T̂n + z1−α/2

√
V ∗
GT ),

5. BT4 interval:

(l7, u7) = (T̄ ∗ − z1−α/2

√
V ∗
GT , T̄

∗ + z1−α/2

√
V ∗
GT ).

6. BCa2 interval:

(l8, u8) = (T̂ ∗
([Bβ1])

, T̂ ∗
([Bβ2])

).
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where

β1 = Φ(b+
b+ zα/2

1− a(b+ zα/2)
), β2 = Φ(b+

b+ z1−α/2

1− a(b+ z1−α/2)
)

with correction constants a and b defined by

a =
1

6

n∑
i=1

ϕ3
i /(

n∑
i=1

ϕ2
i )

3
2 , b = Φ−1(

1

B

B∑
b=1

I(T̂ ∗
b ≤ T̂n))

where ϕi = T̂(.) − T̂(−i), and T̂(−i) is the T̂n computed by

deleting the i-th observation in original data, and T̂(.) =
1
n

∑n
i=1 T̂(−i).

4.3 The smoothed JEL-based confidence
interval

The Smoothed Jackknife Empirical Likelihood (SJEL) for
the GLC θ is derived in Section 3. Based on Theorem 3.2,
the SJEL-based confidence interval for θ can be constructed
as follows:

(le, ue) = {θ : ln(θ) ≤ χ2
1,1−α}.

where χ2
1,1−α is the (1− α)-th quantile of χ2

1.

5. SIMULATION STUDIES AND A REAL
EXAMPLE

5.1 Simulation studies

5.1.1 Point estimator evaluation

We first conduct simulation studies to compare finite
sample performances of the empirical estimator θ̂(t) and
the kernel estimator T̂n(t) for θ in terms of Mean Square
Error (MSE) and bias when t ranges from 0.2 to 0.8. The
Quartic/Triweight kernel density function ω(y) = 35

32 (1 −
y2)2I(|y| ≤ 1) is selected for the kernel estimator of the
GLC, and the bandwidth cn−1/4(log logn)3/5 is chosen via
the proposed cross-validation method, where c is valued dif-
ferently based on different t. For each setting, 1,000 ran-
dom samples are generated from the Weibull distribution
with shape parameter = 1 and scale parameter = 2, and the
sample sizes are chosen to be 100, 200, and 500 respectively.

Table 1 presents the comparison results, where Biasθ̂
represents the bias of the empirical estimator θ̂(t), and
BiasT̂n(t)

represents the bias of the kernel estimator T̂n(t).
From Table 1, we observe that the MSE of the smoothed
estimator is less than that of the empirical estimator, and
the bias of the smoothed estimator is smaller than that of
the empirical estimator in most cases. Based on this table,
we found the kernel estimator T̂n(t) has better MSE perfor-

mance than the empirical estimator θ̂(t).

Table 1. Bias and MSE of the empirical estimator and the
kernel estimator for GLCs with F = Weibull distribution

Sample Size t Biasθ̂ BiasT̂n(t) MSEθ̂ MSET̂n(t)

100 0.2 0.002136 0.000119 0.000134 0.000119
0.3 0.003137 0.000168 0.000470 0.000437
0.4 0.004103 0.000701 0.001180 0.001117
0.5 0.005396 0.001185 0.002447 0.002340
0.6 0.006597 0.002087 0.004525 0.004358
0.7 0.008415 0.003024 0.007714 0.007459
0.8 0.009610 0.005467 0.012748 0.012377

200 0.2 0.000719 0.000212 0.000065 0.000062
0.3 0.000843 0.000725 0.000228 0.000222
0.4 0.001254 0.001060 0.000573 0.000561
0.5 0.001489 0.001677 0.001199 0.001180
0.6 0.001690 0.002520 0.002224 0.002196
0.7 0.002011 0.003505 0.003876 0.003833
0.8 0.002629 0.004683 0.006522 0.006456

500 0.2 0.000378 0.000058 0.000023 0.000023
0.3 0.000633 0.000065 0.000085 0.000084
0.4 0.000972 0.000120 0.000213 0.000211
0.5 0.001289 0.000106 0.000443 0.000438
0.6 0.001583 0.000005 0.000831 0.000824
0.7 0.001675 0.000387 0.001455 0.001445
0.8 0.001983 0.000724 0.002486 0.002470

5.1.2 Interval estimation evaluation

After the evaluation of point estimators, we will evaluate
the coverage probabilities and interval lengths of the normal
approximation-based confidence intervals, the bootstrap-
based confidence intervals and the SJEL-based confidence
interval by simulation studies.

We again generate 1,000 random samples from the
Weibull distribution with shape parameter = 1 and scale
parameter = 2. The sample sizes are chosen to be 100, 200,
and 500, respectively. We calculate various confidence inter-
vals at 95% confidence level with t = 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9. For the bootstrap variance estimates, 500
bootstrap re-samples are drawn from the original sample
generated from the Weibull distribution.

The coverage probabilities and average lengths of the 95%
confidence intervals for generalized Lorenz ordinates are pre-
sented in Tables 2–3. Based on these tables, we observe that
the normal approximation-based NA1 and NA2 intervals
have severe under-coverage problems when t = 10%, 20%
(located in the low tail region of the GLC, which are of
more interest in practice). By contrast, the proposed SJEL
intervals and BT1, BT2, BCa1 intervals perform much bet-
ter than the other intervals. When t ≥ 30%, the proposed
SJEL intervals, the normal approximation-based NA1 and
NA2 intervals, and the bootstrap-based BT1, BT2, BT3,
BT4 and BCa1 intervals have similar coverage probabili-
ties although SJEL intervals perform slightly better than
other intervals in most cases considered here. Overall, we
recommend the SJEL-based interval for the GLC, particu-
larly when t falls in the low tail region of the curve.
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Table 2. F = Weibull distribution: Coverage probabilities and interval lengths of 95% level NA1, NA2, BT1, BT2, BT3, BT4,
BCa1, BCa2 and SJEL intervals for generalized Lorenz ordinates when t ranges from 0.1 to 0.4

t = 10% t = 20% t = 30% t = 40%

n Method Coverage Length Coverage Length Coverage Length Coverage Length

100 NA1 0.824 0.0158 0.935 0.0435 0.942 0.0821 0.955 0.1301
NA2 0.867 0.0171 0.938 0.0442 0.951 0.0820 0.951 0.1293
BT1 0.972 0.0186 0.964 0.0488 0.957 0.0888 0.960 0.1397
BT2 0.957 0.0186 0.963 0.0488 0.964 0.0888 0.955 0.1397
BT3 0.851 0.0164 0.938 0.0423 0.938 0.0793 0.945 0.1262
BT4 0.871 0.0164 0.945 0.0423 0.944 0.0793 0.95 0.1262
BCa1 0.939 0.0144 0.955 0.0434 0.955 0.0821 0.957 0.1317
BCa2 0.861 0.0157 0.903 0.0383 0.919 0.0766 0.928 0.1247
SJEL 0.937 0.0170 0.959 0.0414 0.950 0.0818 0.951 0.1256

200 NA1 0.876 0.0108 0.934 0.0306 0.946 0.0575 0.953 0.0911
NA2 0.885 0.0116 0.925 0.0308 0.947 0.0575 0.947 0.0912
BT1 0.919 0.0118 0.944 0.0322 0.952 0.0599 0.954 0.0947
BT2 0.918 0.0118 0.939 0.0322 0.946 0.0599 0.946 0.0947
BT3 0.862 0.0114 0.931 0.0301 0.949 0.0565 0.949 0.0898
BT4 0.851 0.0114 0.94 0.0301 0.951 0.0565 0.954 0.0898
BCa1 0.947 0.0104 0.937 0.0304 0.944 0.0577 0.947 0.0919
BCa2 0.863 0.0093 0.905 0.0272 0.934 0.0544 0.937 0.0881
SJEL 0.939 0.0115 0.946 0.0300 0.950 0.0572 0.952 0.0895

500 NA1 0.850 0.0067 0.922 0.0192 0.940 0.0361 0.947 0.0575
NA2 0.880 0.0071 0.912 0.0194 0.942 0.0364 0.943 0.0577
BT1 0.945 0.0069 0.943 0.0196 0.933 0.0367 0.936 0.0587
BT2 0.940 0.0069 0.936 0.0196 0.939 0.0367 0.933 0.0587
BT3 0.883 0.0070 0.920 0.0191 0.939 0.0359 0.953 0.0571
BT4 0.888 0.0070 0.922 0.0191 0.939 0.0359 0.957 0.0571
BCa1 0.937 0.0066 0.930 0.0192 0.929 0.0362 0.933 0.0581
BCa2 0.839 0.0057 0.909 0.0172 0.926 0.0347 0.929 0.0560
SJEL 0.925 0.0070 0.937 0.0203 0.946 0.0362 0.950 0.0564

5.2 Georgia public university employee
income data example

Georgia Department of Audits and Accounts provides an
open resource for annually-updated salary information of
Georgia public institute employees. It includes individual
demographic information such as name, title, salary and
travel reimbursement for each employee in public sectors.
This public resource is aimed at strengthening the trans-
parency of the Georgia government. Our study will focus on
the income distribution of professors in Georgia public col-
leges and universities. We only retain annual income data
for those who work with a full-time schedule, since a part-
time employee and temporary employee’s salary information
does not satisfy our annual salary definition.

To create a relatively homogeneous income group, we
limit our analysis to the income of full-time assistant pro-
fessors, associate professors, and full professors from Units
of University System and Georgia Military College in the
2012 fiscal year. We initially observed that a few individuals
have abnormally low wages, which may be due to the follow-
ing reasons: some of the 2012 newly-hired professors did not
have working records for the whole 2012 fiscal year; part-
time professors possibly either took leave or transferred to

another organization during the 2012 fiscal year. To filter out
these subjects, we first excluded professors who didn’t have
salary record in the 2011 fiscal year. Then we dropped out
those with 2012 fiscal year income significantly lower than
2011 fiscal year income. Individuals with salaries less than
$20,000 were also removed. Finally, there remained 5,921
observations in the analysis. Table 4 displays various 95%
level confidence intervals for generalized Lorenz ordinates.
Based on our simulation studies, we would use SJEL inter-
vals for generalized Lorenz ordinates. From Table 4, we can
see that the least wealthy 80% professors have an average
annual salary from $60,973.24 to $62,282.91.

6. DISCUSSION

In this paper, a kernel smoothing estimator has been pro-
posed for the generalized Lorenz curve. The new estimator
has better finite sample performance than the traditional
empirical estimator in terms of mean squared error. Mean-
while, a SJEL method has been developed for inferences
on the generalized Lorenz curve. The proposed SJEL-based
method has the property that the Wilks theorem still holds
for the proposed jackknife empirical likelihood ratio statis-
tic. In practice, the tail regions of the generalized Lorenz
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Table 3. F = Weibull distribution: Coverage probabilities and interval lengths of 95% level NA1, NA2, BT1, BT2, BT3, BT4,
BCa1, BCa2 and SJEL intervals for generalized Lorenz ordinates when t ranges t from 0.5 to 0.9

t = 50% t = 60% t = 70% t = 80% t = 90%

n Method Coverage Length Coverage Length Coverage Length Coverage Length Coverage Length

100 NA1 0.953 0.1881 0.939 0.2577 0.947 0.3400 0.948 0.4419 0.951 0.5696
NA2 0.944 0.1864 0.943 0.2542 0.950 0.3352 0.950 0.4349 0.952 0.5619
BT1 0.962 0.1995 0.963 0.2724 0.960 0.3604 0.961 0.4720 0.965 0.6215
BT2 0.961 0.1995 0.962 0.2724 0.959 0.3604 0.965 0.4720 0.967 0.6215
BT3 0.944 0.1832 0.939 0.2509 0.942 0.3313 0.946 0.4298 0.945 0.5492
BT4 0.949 0.1832 0.944 0.2509 0.940 0.3313 0.947 0.4298 0.942 0.5492
BCa1 0.956 0.1897 0.956 0.2617 0.957 0.3490 0.952 0.4571 0.962 0.6020
BCa2 0.934 0.1824 0.928 0.2507 0.929 0.3271 0.929 0.4268 0.933 0.5300
SJEL 0.953 0.1849 0.955 0.2510 0.950 0.3305 0.953 0.4275 0.951 0.5698

200 NA1 0.953 0.1320 0.945 0.1810 0.949 0.2390 0.946 0.3103 0.946 0.4019
NA2 0.939 0.1320 0.938 0.1816 0.941 0.2410 0.940 0.3125 0.936 0.4034
BT1 0.951 0.1361 0.957 0.1865 0.956 0.2462 0.953 0.3203 0.960 0.4188
BT2 0.949 0.1361 0.955 0.1865 0.952 0.2462 0.954 0.3203 0.959 0.4188
BT3 0.947 0.1302 0.951 0.1785 0.947 0.2364 0.941 0.3058 0.940 0.3951
BT4 0.950 0.1302 0.950 0.1785 0.947 0.2364 0.938 0.3058 0.944 0.3951
BCa1 0.946 0.1329 0.951 0.1828 0.958 0.2420 0.946 0.3158 0.955 0.4124
BCa2 0.940 0.1288 0.937 0.1769 0.938 0.2353 0.938 0.3035 0.926 0.3885
SJEL 0.946 0.1318 0.950 0.1802 0.946 0.2360 0.949 0.3044 0.946 0.4005

500 NA1 0.942 0.0834 0.936 0.1146 0.936 0.1520 0.939 0.1972 0.933 0.2551
NA2 0.945 0.0836 0.948 0.1147 0.946 0.1518 0.953 0.1970 0.945 0.2555
BT1 0.932 0.0847 0.938 0.1161 0.938 0.1541 0.942 0.1996 0.941 0.2595
BT2 0.942 0.0847 0.945 0.1161 0.943 0.1541 0.941 0.1996 0.943 0.2595
BT3 0.939 0.0830 0.935 0.1139 0.935 0.1511 0.934 0.1962 0.927 0.2536
BT4 0.940 0.0830 0.935 0.1139 0.935 0.1511 0.936 0.1962 0.931 0.2536
BCa1 0.930 0.0839 0.930 0.1152 0.938 0.1531 0.937 0.1985 0.937 0.2579
BCa2 0.930 0.0818 0.925 0.1125 0.929 0.1497 0.933 0.1940 0.916 0.2478
SJEL 0.939 0.0845 0.942 0.1155 0.942 0.1508 0.945 0.1958 0.948 0.2559

curve are of great interest in the study of income distri-
bution. Our simulation studies also indicate that the pro-
posed SJEL-based interval performs better than other in-
tervals in most cases considered in this paper, particularly
when t falls in the low tail region of the curve. While the
bootstrap-based BT1, BT2, BT3, BT4 and BCa1 intervals
could have good coverage probabilities, they are computa-
tionally expensive, particularly when sample sizes get larger.
The proposed SJEL-based method combines the power of
both jackknife and empirical likelihood methods. It can be
directly calculated by implementing the algorithm for com-
puting the standard empirical likelihood interval (Hall and
La Scala, 1990). Another interesting research topic is the
overall properties of the smoothing estimator T̂n(t) and the
SJEL method, we will study them elsewhere.

APPENDIX: PROOFS

Proof of Theorem 2.1. We have the following decomposi-
tion

√
n[T̂n(t)− θ(t)]

(11)

=
√
n

[
1

n

n∑
i=1

XiK(
t− Fn(Xi)

h
)−

∫ ξt

0

xdF (x)

]

=
√
n

[
1

n

n∑
i=1

XiK(
t− Fn(Xi)

h
)− 1

n

n∑
i=1

XiK(
t− F (Xi)

h
)

]

+
√
n

[
1

n

n∑
i=1

XiK(
t− F (Xi)

h
)−

∫ ξt

0

xdF (x)

]

≡ I1 + I2.

Term I1 of (11) can be written as

I1 =

√
n

n

n∑
i=1

Xi

[
K(

t− Fn(Xi)

h
)−K(

t− F (Xi)

h
)

](12)

=

∫ ∞

−∞
x

[
K(

t− Fn(x)

h
)

−K(
t− F (x)

h
)

]
d[
√
n(Fn(x)−F (x))]

+
√
n

∫ ∞

−∞
x

[
K(

t− Fn(x)

h
)−K(

t− F (x)

h
)

]
dF (x)

≡ I11 + I12.
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Table 4. Georgia professor’s real income data example: 95%
NA1, NA2, BT1, BT2, BT3, BT4, BCa1, BCa2, SJEL

intervals for GLC when t = 0.5, 0.6, 0.7, 0.8

t Method Confidence Interval Length

0.5 NA1 (31698.77, 32310.15) 611.38
NA2 (31684.31, 32299.43) 615.12
BT1 (31694.22, 32314.70) 620.48
BT2 (31695.82, 32316.30) 620.48
BT3 (31696.16, 32287.59) 591.43
BT4 (31690.49, 32281.93) 591.43
BCa1 (31664.83, 32306.79) 641.96
BCa2 (31686.21, 32306.68) 641.96
SJEL (31717.33, 32332.47) 615.14

0.6 NA1 (40268.37, 41044.96) 776.59
NA2 (40249.51, 41045.61) 796.10
BT1 (40274.97, 41038.37) 763.40
BT2 (40281.74, 41045.14) 763.40
BT3 (40244.99, 41050.12) 805.13
BT4 (40230.78, 41035.92) 805.13
BCa1 (40271.12, 41030.95) 759.83
BCa2 (40272.49, 41105.52) 759.83
SJEL (40257.26, 41023.32) 766.06

0.7 NA1 (49906.65, 50875.11) 968.46
NA2 (49878.86, 50886.52) 1007.6
BT1 (49913.24, 50868.52) 955.28
BT2 (49904.21, 50859.49) 955.28
BT3 (49899.60, 50865.78) 966.18
BT4 (49883.95, 50850.13) 966.18
BCa1 (49956.38, 50911.49) 955.11
BCa2 (49955.02, 51020.14) 1065.1
SJEL (49989.57, 50924.68) 935.11

0.8 NA1 (60921.64, 62284.70) 1363.06
NA2 (60941.11, 62250.93) 1309.82
BT1 (60936.02, 62270.33) 1334.31
BT2 (60969.15, 62303.46) 1334.31
BT3 (60961.48, 62230.56) 1269.08
BT4 (60932.65, 62201.74) 1269.08
BCa1 (60857.96, 62272.20) 1414.24
BCa2 (60979.48, 62249.00) 1269.52
SJEL (60973.24, 62282.91) 1309.67

By Taylor expansion, under conditions in Theorem 2.1, I12
of (12) can be written as

I12 =
√
n

∫ ∞
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Let y = F (x), Yi = F (Xi) and Un(y) =√
n[ 1n

∑n
i=1 I(Yi ≤ y) − y]. Then, Yi’s follow uniform[0,1]

distribution. Since h → 0, the support of ω(·) is bounded,
(13) will be equal to
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Since
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d−→ B(x), which is Gaussian
process, and

√
nh2 → ∞, so I11 = op(1). Therefore, I1 =

ξtUn(t) + op(1). Next, let’s consider I2 of (11). Notice that
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Let W = XK( t−F (X)
h ) and Wi = XiK( t−F (Xi)

h ). Then,
I2 of (11) can be rewritten as
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n
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h
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=
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Let {U1, U2, · · · , Un} be an i.i.d. sample from U(0, 1)
(uniform distribution on [0,1]) and independent of

{X1, X2, · · · , Xn}. Since Yi = F (Xi)
i.i.d.∼ U(0, 1) for any
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continuous distribution function F , then
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Theorem 2.1 is complete.

We need Lemma 1 and Lemma 2 to prove Theorem 3.1.

Lemma 1. Under the conditions in Theorem 2.1, we have
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Using Taylor expansion, H1 of (24) can be written as
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where ξn,k,i is a random variable between Fn(Xi) and
Fn,k(Xi).
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n∑
j=1

[XjK(
t− Fn,k(Xj)

h
)

−XjK(
t− Fn(Xj)

h
)]

+
−1

n(n− 1)

n∑
k=1

n∑
j=1

XjK(
t− Fn(Xj)

h
)

+
1

n− 1

n∑
k=1

[XkK(
t− Fn,k(Xk)

h
)

−XkK(
t− Fn(Xk)

h
)] +

1

n− 1

n∑
k=1

XkK(
t− Fn(Xk)

h
)

=
1

n− 1
Op(

1

nh2
)− 1

n(n− 1)

n∑
k=1

n∑
j=1

XjK(
t− Fn(Xj)

h
)

+Op(
1

n
) +

1

n− 1

n∑
k=1

XkK(
t− Fn(Xk)

h
)

= − 1

n− 1

n∑
j=1

XjK(
t− Fn(Xj)

h
)

+
1

n− 1

n∑
k=1

XkK(
t− Fn(Xk)

h
) +Op(

1

n
) +Op(

1

n2h2
)

= Op(
1

n
).

From (22)–(28), it follows that

1

n

n∑
k=1

V̂k(t) =
n− 1

n

n∑
k=1

(T̂n(t)− T̂n−1,k(t)) + T̂n(t)

= T̂n(t) +Op(
1

nh2
).

Therefore,

√
n{ 1

n

n∑
k=1

V̂k(t)− θ(t)}

=
√
n[T̂n(t)− θ(t)] +Op(

1√
nh2

)
d−→ N(0, σ2(t)).

Thus, Lemma 1 holds.

Lemma 2. Under the conditions in Theorem 2.1, we have

1

n

n∑
k=1

{V̂k(t)− θ(t)}2 p−→ σ2(t).
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Proof. We have the following decompositions:

1

n

n∑
k=1

{V̂k(t)− θ(t)}2(29)

=
1

n

n∑
k=1

V̂ 2
k (t)− 2θ(t)

1

n

n∑
k=1

V̂k(t) +
1

n

n∑
k=1

θ2(t),

where

V̂k(t) = nT̂n(t)− (n− 1)T̂n−1,k(t)

(30)

=

n∑
i=1

XiK(
t− Fn(Xi)

h
)−

n∑
j �=k

XjK(
t− Fn,k(Xj)

h
)

=

n∑
i=1

Xi[K(
t− Fn(Xi)

h
)−K(

t− Fn,k(Xi)

h
)]

+XkK(
t− Fn,k(Xk)

h
)

and

1

n

n∑
k=1

V̂ 2
k (t)(31)

=
1

n

n∑
k=1

{
n∑

i=1

Xi[K(
t− Fn(Xi)

h
)−K(

t− Fn,k(Xi)

h
)]}2

+
1

n

n∑
k=1

X2
kK

2(
t− Fn,k(Xk)

h
)

+
2

n

n∑
k=1

XkK(
t− Fn,k(Xk)

h
)

n∑
i=1

Xi[K(
t− Fn(Xi)

h
)

−K(
t− Fn,k(Xi)

h
)]

≡ J1 + J2 + J3.

Note that
√
n(Fn(x)−F (x))

d−→ B(x), which is a Gaus-
sian process. Also, by Lemma 1, Fn,k(x) − Fn(x) = Op(

1
n ).

Therefore, based on Taylor series, J1 of (31) can be written
as:

J1 =
1

n

n∑
k=1

{
n∑

i=1

Xi[K(
t− Fn(Xi)

h
)−K(

t− Fn,k(Xi)

h
)]}2

(32)

=
1

n

n∑
k=1

{
n∑

i=1

Xiω(
t− Fn(Xi)

h
)
Fn,k(Xi)− Fn(Xi)

h

− 1

2

n∑
i=1

Xiω
′
(
t− ξn,k,i

h
)(
Fn,k(Xi)− Fn(Xi)

h
)2}2

=
1

n

n∑
k=1

{
n∑

i=1

Xiω(
t− Fn(Xi)

h
)
Fn,k(Xi)− Fn(Xi)

h
}2

− 1

n

n∑
k=1

n∑
i=1

Xiω(
t− Fn(Xi)

h
)
Fn,k(Xi)− Fn(Xi)

h

×
n∑

i=1

Xiω
′
(
t− ξn,k,i

h
)(
Fn,k(Xi)− Fn(Xi)

h
)2

+
1

4n

n∑
k=1

{
n∑

i=1

Xiω
′
(
t− ξn,k,i

h
)(
Fn,k(Xi)− Fn(Xi)

h
)2}2

=
1

n

n∑
k=1

{
n∑

i=1

Xiω(
t− Fn(Xi)

h
)
Fn,k(Xi)− Fn(Xi)

h
}2

+Op(
1

nh
) +Op(

1

(nh)2
)

=
1

n

n∑
k=1

{n
∫ ∞

−∞
xω(

t− Fn(x)

h
)
Fn,k(x)− Fn(x)

h

dFn(x)}2 + op(1)

=
1

n

n∑
k=1

{ n√
n

∫ ∞

−∞
xω(

t− Fn(x)

h
)
Fn,k(x)− Fn(x)

h

d[
√
n(Fn(x)− F (x))] +

∫ ∞

−∞
nxω(

t− Fn(x)

h
)

Fn,k(x)− Fn(x)

h
dF (x)}2 + op(1)

=
1

n

n∑
k=1

{
∫ ∞

−∞
nxω(

t− Fn(x)

h
)
Fn,k(x)− Fn(x)

h
dF (x)}2

+ op(1),

where ξn,k,i is a random variable between Fn,k(Xi) and
Fn(Xi).

Let y1 = Fn(x1), Fn,k(x1) = 1
n−1

∑n
i �=k I(Xi ≤ x1).

Exactly similar to Gong et al. (2010), J1 can be written as

(33)

J1 =
n2

n

n∑
k=1

{
∫ ∞

−∞

∫ ∞

−∞
x1x2

(
Fn,k(x1)− Fn(x1)

h
)(
Fn,k(x2)− Fn(x2)

h
)

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)}

+ op(1)

=
n

h2

n∑
k=1

{
∫ ∞

−∞

∫ ∞

−∞
x1x2

[
1

n− 1

n∑
i �=k

I(Xi ≤ x1)−
1

n

n∑
i=1

I(Xi ≤ x1)]

[
1

n− 1

n∑
i �=k

I(Xi ≤ x2)−
1

n

n∑
i=1

I(Xi ≤ x2)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)}

+ op(1)
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=
n

h2

n∑
k=1

{
∫ ∞

−∞

∫ ∞

−∞
x1x2 [

1

n− 1

n∑
i=1

I(Xi ≤ x1)

− 1

n

n∑
i=1

I(Xi ≤ x1)−
1

n− 1
I(Xk ≤ x1)]

[
1

n− 1

n∑
i=1

I(Xi ≤ x2)−
1

n

n∑
i=1

I(Xi ≤ x2)

− 1

n− 1
I(Xk ≤ x2)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)}

+ op(1)

=
n

h2

n∑
k=1

{
∫ ∞

−∞

∫ ∞

−∞
x1x2 [

1

n(n− 1)

n∑
i=1

I(Xi ≤ x1)

− 1

n− 1
I(Xk ≤ x1)]

[
1

n(n− 1)

n∑
i=1

I(Xi ≤ x2)

− 1

n− 1
I(Xk ≤ x2)]ω(

t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)

dFn(x1)dFn(x2)}+ op(1)

=
n

h2

n∑
k=1

{
∫ ∞

−∞

∫ ∞

−∞
x1x2

1

n− 1
[
1

n

n∑
i=1

I(Xi ≤ x1)

− I(Xk ≤ x1)]

1

n− 1
[
1

n

n∑
i=1

I(Xi ≤ x2)− I(Xk ≤ x2)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)}

+ op(1)

=
n

(n− 1)2h2

n∑
k=1

∫ ∞

−∞

∫ ∞

−∞
x1x2[Fn(x1)

− I(Xk ≤ x1)][Fn(x2)− I(Xk ≤ x2)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(xx)

h
)dFn(x1)dFn(x2)

+ op(1)

=
n

(n− 1)2h2

∫ ∞

−∞

∫ ∞

−∞
x1x2

n∑
k=1

[Fn(x1)Fn(x2) + I(Xk ≤ x1)I(Xk ≤ x2)

− I(Xk ≤ x1)Fn(x2)− I(Xk ≤ x2)Fn(x1)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)

+ op(1)

=
1

h2

∫ ∞

−∞

∫ ∞

−∞
x1x2[Fn(x1 ∧ x2)− Fn(x1)Fn(x2)]

ω(
t− Fn(x1)

h
)ω(

t− Fn(x2)

h
)dFn(x1)dFn(x2)

+ op(1)

=
1

h2

∫ 1

−1

∫ 1

−1

F−1
n (y1)F

−1
n (y2){Fn[F

−1
n (y1) ∧ F−1

n (y2)]

− y1y2}ω(
t− y1
h

)ω(
t− y2
h

)dy1dy2 + op(1)

=

∫ ∞

−∞

∫ ∞

−∞
F−1(t)F−1(t){t ∧ t− t2}

ω(u1)ω(u2)du1du2 + op(1)

= ξ2t t(1− t) + op(1).

Based on (16), E[X2K2( t−F (X)
h )] =

∫ ξt
0

x2dF (x) + o(1).
Therefore,

J2 =
1

n

n∑
k=1

X2
kK

2(
t− Fn,k(Xk)

h
)(34)

=
1

n

n∑
k=1

X2
kK

2(
t− Fn,k(Xk)

h
)

− 1

n

n∑
k=1

X2
kK

2(
t− F (Xk)

h
)

+
1

n

n∑
k=1

X2
kK

2(
t− F (Xk)

h
)

=
1

n

n∑
k=1

X2
k [K

2(
t− Fn,k(Xk)

h
)−K2(

t− F (Xk)

h
)]

+
1

n

n∑
k=1

X2
kK

2(
t− F (Xk)

h
) =

1

n

n∑
k=1

X2
k

{2K(
t− F (Xk)

h
)ω(

t− F (Xk)

h
)
Fn,k(Xk)− F (Xk)

h

+
1

2
[2ω2(

t− F (Xk)

h
)(
Fn,k(Xk)− F (Xk)

h
)2

+2K(
t− F (Xk)

h
)ω

′
(
t− ξn,k,i)

h
)

(
Fn,k(Xk)− F (Xk)

h
)2]}

+
1

n

n∑
k=1

X2
kK

2(
t− F (Xk)

h
)

=
1

n

n∑
k=1

X2
kK

2(
t− F (Xk)

h
) + op(1)

= E

[
X2K2(

t− F (X)

h
)

]
+ op(1)

=

∫ ξt

0

x2dF (x) + op(1).

By Chebyshev’s Inequality, we have that
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P (|XkK(
t− F (Xk)

h
)| ≥ M)

≤ 1

M2
E[X2K2(

t− F (X)

h
)]

= O(
1

M2
) → 0, as M → ∞.

So, XkK(
t−Fn,k(Xk)

h ) = Op(1) uniformly for k = 1, 2, ..., n.
Using (27), (31) and the similar proof to (27), we can get
that

J3 =
2

n

n∑
k=1

XkK(
t− Fn,k(Xk)

h
)

n∑
i=1

Xi[K(
t− Fn(Xi)

h
)

(35)

−K(
t− Fn,k(Xi)

h
)]

≤ 2

n

n∑
k=1

XkK(
t− Fn,k(Xk)

h
)

n∑
i=1

|Xi[K(
t− Fn(Xi)

h
)

−K(
t− Fn,k(Xi)

h
)]|

= Op(
1

n
)

n∑
k=1

n∑
i=1

|Xi[K(
t− Fn(Xi)

h
)

−K(
t− Fn,k(Xi)

h
)]| = Op(

1

nh2
).

From (33), (34) and (35), it follows that

1

n

n∑
k=1

V̂ 2
k (t)

p−→ ξ2t t(1− t) +

∫ ξt

0

x2dF (x).

Hence,

1

n

n∑
k=1

{V̂k(t)− θ(t)}2

p−→ ξ2t t(1− t) +

∫ ξt

0

x2dF (x)− θ2(t) = σ2(t),

and Lemma 2 is proved.

Proof of Theorem 3.1. It follows immediately from
Lemma 1 and Lemma 2.

Proof of Theorem 3.2. Define g(λ) = 1
n

∑n
i=1

V̂i(t)−θ

1+λ(V̂i(t)−θ)
.

It is easy to check that

0 = |g(λ)| = 1

n
|

n∑
i=1

(V̂i(t)− θ)− λ

n∑
i=1

(V̂i(t)− θ)2

1 + λ(V̂i(t)− θ)
|

(36)

≥ |λ
n

n∑
i=1

(V̂i(t)− θ)2

1 + λ(V̂i(t)− θ)
| − | 1

n

n∑
i=1

(V̂i(t)− θ)|

≥ |λ|Sn

1 + |λ|Zn
− | 1

n

n∑
i=1

(V̂i(t)− θ)|,

where Sn = 1
n

∑n
i=1(V̂i(t) − θ)2 and Zn =

max1≤i≤n|V̂i(t)− θ|.
From Lemma 1 and Lemma 2, we have |λ| = Op{n− 1

2 }.
Put γi = λ(V̂i(t) − θ), then we have max1≤i≤n|γi| = op(1),
and

0 = g(λ) =
1

n

n∑
i=1

(V̂i(t)− θ)(1− γi +
γ2
i

1 + γi
)(37)

=
1

n

n∑
i=1

(V̂i(t)− θ)− Snλ+
λ2

n

n∑
i=1

(V̂i(t)− θ)3

1 + γi

=
1

n

n∑
i=1

(V̂i(t)− θ)− Snλ+ op(n
−1/2)

which implies that λ = S−1
n

1
n

∑n
i=1(V̂i(t) − θ) + βn, where

βn = op(n
−1/2). So,

ln(θ(t)) = −2 log Ln(θ(t))(38)

= 2

n∑
i=1

log {1 + λ(V̂i(t)− θ)}

= 2

n∑
i=1

γi −
n∑

i=1

γ2
i + op(1)

= 2nλ
1

n

n∑
i=1

(V̂i(t)− θ)− nSnλ
2 + op(1)

=
n{ 1

n

∑n
i=1(V̂i(t)− θ)}2

Sn
− nSnβ

2
n + op(1)

=
n{ 1

n

∑n
i=1(V̂i(t)− θ)}2

Sn
+ op(1)

d−→ χ2(1).

The proof of Theorem 3.2 is completed.

Received 8 October 2014
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