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Identification of significant B cell associations
with undetected observations using a Tobit
model∗
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†

To study the relationship of serum antibody neutraliza-
tion activity (determined by IC50) and the B cell immune
response, we face two challenges: (i) IC50 values can not
be observed when they are below the detected limitation,
and (ii) the number of factors is larger than the number of
observations. To address these two challenges, we propose
a Tobit model for the analysis of the study, and an adap-
tive LASSO penalized variable selection procedure to iden-
tify important factors. Furthermore, we suggest extended
Bayesian information criterion for selecting the tuning pa-
rameter. Our analysis indicates that three measured B cells,
specifically the frequency of CD19+CD20+, CD19-CD20+,
and IgD-B220-CD27- peripheral blood B cell subsets have
significant effects on IC50. We have also run simulation stud-
ies to evaluate the numerical performance of the proposed
method.

Keywords and phrases: Extended Bayesian information
criterion, LASSO, Penalized likelihood, High-dimensional
Tobit model.

1. INTRODUCTION

Due to the extensive mutation of HIV-1, a major objec-
tive for a preventative vaccine against HIV is the induction
of antibodies that are capable of recognizing diverse HIV
isolates. Approximately 20% of HIV infected patients de-
velop potent antibodies that are capable of neutralizing a
broad range of HIV isolates, yet due to the viruses’ rapid
mutation typically fail to recognize the individual’s con-
temporary isolate [1]. However, the presence of these HIV
broadly neutralizing antibodies demonstrates the potential
of the human immune response, and it is suggested that
by understanding their development in these HIV infected
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patients effective vaccination strategies can be developed.
To this end as antibodies develop from B cells, we con-
ducted a study that focused on defining characteristics of
the B cell compartment that are associated with the pres-
ence of serum antibodies that neutralize HIV infectivity, we
collected 42 observations from HIV-infected patients includ-
ing frequency of peripheral blood B cell subsets (51 covari-
ates) [2, 3], abundance of serum auto-reactive antibodies
(4 covariates) which we [4] and others [5] have previously
shown to be associated with the presence of HIV neutral-
izing antibodies, and clinical characteristics including age,
time since diagnosis, CD4 cell counts, and HIV viral load (4
covariates). Additionally, the HIV neutralizing activity of
their serum was determined by the half maximal inhibitory
concentration (IC50). We are interested in the relationship
between the IC50 and these covariates to identify significant
B cell characteristics. Because of the limitation of the tech-
nology, the exact IC50 values cannot be exactly observed
when the the values are below 20, instead; we only know
that such observations are less than 20, that is, such obser-
vations are left censored. In our dataset about 30% IC50
values are less than 20.

In the absence of undetected observations, linear regres-
sion models may be used to study the relationship between
the covariates and the response variable. To handle the cases
with undetected observations, we may simply (a) exclude
the observations with undetected values, or (b) dichotomize
the response variable (IC50 < 20 vs IC50 ≥ 20), or (c) re-
place the unobserved values with the threshold. Although
these options serve as a convenient way to analyze data
with undetected observations, all of them have serious limi-
tations. Option (a) will reduce the sample size (in our data
application, only 28 of the original 42 observations remain
after deleting 30% of them); option (b) will cause loss of
information as we equally treat the samples with large IC50
values and small values equally as long as they are larger
than the threshold; and option (c) may lead to biased esti-
mators of the parameters and is not justified theoretically.
To remedy these limitations, we use the Tobit model to in-
vestigate the relationship between response IC50 and the 59
covariates as this model incorporates the likelihood function
representing the censoring information.
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To identify significant B cell characteristics, which is es-
sentially a concern of variable selection, we propose a penal-
ization approach, which can gain variable selection to detect
significant B cells or other important covariates. Variable se-
lection for linear regression models by penalized estimates
has attracted a lot of attention in the past decades. A variety
of penalties have been proposed for such a purpose. Exam-
ples include the bridge penalty [6], the nonnegative garrote
penalty [7], the least absolute shrinkage and selection oper-
ator (LASSO) penalty [8, 9, 10], and the smoothly clipped
absolute deviation (SCAD) penalty [11]. These penalization-
based variable selection approaches can somewhat avoid
drawbacks such as heavy computational burden and insta-
bility [7, 11] occurred in the classical variable selection meth-
ods like best subset selection, stepwise selection and crite-
rion based methods (AIC and BIC) when the dimension
is high. Meanwhile, these penalization-based methods have
nice statistical properties under certain assumptions [11].

It is worth pointing out that the LASSO method [9] can
shrink some coefficients to 0, and thus gains the goal of vari-
able selection. However, LASSO still has its own limitations
like lack of the oracle property [11]. As a remedy, Zou [10]
proposed a variant, adaptive LASSO by using a weighted
L1 penalty that allows larger penalty for zero coefficients
and smaller penalty for the nonzero coefficients. Zou [10]
and and Huang, Ma and Zhang [12] further established the
oracle property of the adaptive LASSO under certain as-
sumptions for linear regression models. Meanwhile, LASSO
and its variants have been adopted for variable selection in
survival settings. For example, Tibshirani [13] applied the
LASSO method in the Cox model and Ishwaran [14] ex-
tended it to the high-dimensional survival data. Liu and
Zeng [15] proposed adaptive LASSO in general transforma-
tion models for right-censored data and Zou [16] proposed
least absolute deviations (LAD) variable selection for linear
models with randomly censored data. Recently, Liu, Wang
and Wu [17] applied grouped LASSO in the Tobit censored
response model.

However, there has been few attempts at using penalized
regression on the Tobit models. Furthermore, we face addi-
tional challenges that the dimension of covariates is larger
than the sample size. In this paper we develop an adap-
tive LASSO-based variable selection procedure for the Tobit
model with high-dimensional covariates. The application of
L1 penalty on the Tobit model achieves the goal of variable
selection and overcomes the potential problems when han-
dling undetected observations using deletion, dichotomizing
or imputation. The variable selection procedure has the or-
acle property [11] in the sense that it estimates as well as
when zero components and nonzero components are known
a prior.

The paper is organized as follows. Section 2 introduces
the model and the estimation procedure and presents the
theoretical results of the estimators. Section 2.3 discusses
the computational algorithm and tuning parameter selec-
tion. Section 3 illustrates the method through the analysis

of an HIV study and Section 4 describes simulation studies.
A discussion is given in Section 5. Technical proofs are given
in the Appendix.

2. MODEL AND METHODS

Consider the Tobit model [18]

(1) Y 1
i = XT

i β + εi, i = 1, 2, . . . , n,

where β = (β1, . . . , βpn)
T is the vector of unknown pa-

rameters, Xi = (Xi1, . . . , Xipn)
T, εi ∼ N(0, σ2), and Y 1

i

is a latent variable. The observable variable Yi is defined as
Yi = Y 1

i if Y 1
i > τ and τ otherwise, where τ is a pre-specified

value. For notational simplicity, without loss of generality,
assume τ = 0. That is, Yi = max(Y 1

i , 0). Note that pn,
the dimension of parameters, is allowed to increase with the
sample size n and it can be larger than n.

Let di be the undetected indicator; i.e., di = 1 if Yi > 0
and 0 otherwise. Then the likelihood function based on the
independent observations Yi is given by

L(Y;X,β) =

n∏
i=1

{
φ

(
Yi −XT

i β

σ

)
/σ

}di

{
1− Φ

(
XT

i β

σ

)}(1−di)

,

where Y = (Y1, . . . , Yn)
T, X = (XT

1 , . . . ,X
T
n )

T, and φ and
Φ are the density and distribution functions of the standard
normal distribution, respectively. The log-likelihood func-
tion (up to a constant) is

l(Y;X,β) =

n∑
i=1

[
di

{
− log σ − (Yi −XT

i β)
2

2σ2

}
(2)

+ (1− di) log

{
1− Φ

(
XT

i β

σ

)}]
.

The first part of (2) is the log-likelihood for uncensored ob-
servations, and the second part is the log-likelihood for cen-
sored observations, for which we only know that they are
smaller than 0.

2.1 Penalized-likelihood estimation

To achieve simultaneous variable selection and estimation
for the Tobit model, we apply the adaptive Lasso method
proposed by Zou [10] to the log-likelihood function given in
(2). The adaptive LASSO estimators are defined as

(3) β̂n(λn) = argmin

⎧⎨⎩−l(Y;X,β) + λn

pn∑
j=2

wj |βj |

⎫⎬⎭ ,

where λn is the tuning parameter controlling the degree of
the shrinkage and chosen by some data-driven method, wj ’s

are adaptive weights 1/|β̃nj |, which we will discuss how to
choose later. Note that we usually don’t put any penalty
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on the intercept. The LASSO penalty [9] is a special case
of the adaptive LASSO penalty with all wj being 1. The
solution to (3) can be obtained through a locally quadratic
approximation. We describe selection of tuning parameter
and the estimation procedure below.

To find an initial estimator for providing appropriate
weights, we conduct marginal regression (response vs each
covariate, respectively) for uncensored observations. The
reciprocal of corresponding estimators are served as the
weights. This strategy is motivated by the conclusion drawn
by Huang, Ma and Zhang [12] that the marginal regression
estimators are good candidates for the weights without cen-
sored observations.

Without loss of generality, let Yn1 = (Y1, . . . , Yn1) be the
collection of the response values for the uncensored observa-
tions. Let Xn1 = (XT

1 , . . . ,X
T
n1
)T be the matrix containing

the first n1 rows of X and Xn1·j be the jth column of Xn1

for 1 ≤ j ≤ pn. The initial estimator of βj is given as

(4) β̃nj = (XT
n1·jXn1·j)

−1XT
n1·jYn1 .

The simulation study shows that this initial estimator works
very well. And it has been shown that using such initial
estimators could theoretically guarantee that our adaptive
LASSO estimators possesses an oracle property under cer-
tain regularity conditions, that is, with proper choice of the
weights, the nonzero parameters can be correctly identified
with probability approaching 1 and their estimators have
the same asymptotic distributions as the estimators when
the true model is known.

2.2 Tuning parameter selection

We know that the tuning parameter λn controls the de-
gree of shrinkage. So, with a different λn, the estimates of
βj ’s would be different, especially for the components where
exact zeros are present. Tuning parameter selection is equiv-
alent to model selection or model comparison among multi-
ple competing models. One of the most popular model selec-
tion criterions is Bayesian information criterion ([BIC 19]).

Denote β by β(s), whose components not in the candi-
date model s are set to 0 or some prespecified value. Define

(5) BIC(s) = −2 logL(β̂(s)) + k logn

where β̂(s) is the maximum likelihood estimator of β(s)
and k is the size of s, that is, the number of components
in s. The model that minimizes BIC(s) is favored. However,
the classical definition of BIC assumes constant prior and
thus it would assign probabilities to Sj (the class of models
with j covariates) proportional to their sizes. This would
be strongly against the purpose of variable selection in the
large space model scenario, for example, when sample size is
smaller than the number of covariates under consideration,
a model with a larger number of covariates would receive
much higher prior probabilities than models with fewer co-
variates because the former would have much larger sizes

and therefore the classic BIC defined in (5) would tend to
select a model with many spurious covariates. This problem
was first noticed by Broman and Speed [20] when they used
BIC for quantitative trait loci mapping, and it was later ob-
served [21, 22] as well. To improve the performance of BIC in
variable selection in large model spaces, Chen and Chen [23]
proposed a class of extended Bayesian information criteria,
defined as

(6) BICγ(s) = −2 logL(β̂(s)) + k logn+ 2γ log

(
p

k

)
,

for 0 ≤ γ ≤ 1, where k is the number of covariates that are
estimated to be nonzero, L is the corresponding likelihood
value and p is the total number of covariates under consid-
eration. They suggested γ = 1 − 1/(2 logn p), and proved
that this extended BIC is consistent in model selection. We,
therefore, applied the extended BIC to select the tuning pa-
rameter in our numerical experiments.

2.3 Implementation algorithm

We now discuss the computational algorithm. The cen-
sored observations and the L1 penalty complicate the search
of β that minimizes the objective function (3). We apply the
locally quadratic approximation for implementation [11] and
use the coordinate descent algorithm [24] to find the mini-
mizer.

Let β̃ and σ̃ be the current estimates of β and σ, re-
spectively. Using Taylor expansion on l(Y;X,β), we have a
locally quadratic approximation of l(Y;X,β) on β:

lQ(β) = l(Y;X, β̃) +

n∑
i=1

{
wi1X

T
i (β − β̃)

− 1

2
wi2

[
XT

i (β − β̃)
]2}

= −1

2

n∑
i=1

wi2

(
XT

i β −XT
i β̃ − wi1

wi2

)2

+ C(β̃),

where wi1 = di(Yi −XT
i β̃)/σ̃

2 − (1 − di)ν̃i/σ̃, wi2 =

di/σ̃
2 + (1− di)ν̃i(ν̃i − z̃i)/σ̃

2, z̃i = XT
i β̃/σ̃, ν̃i =

φ(z̃i)/{1− Φ(z̃i)}, and C(β̃) is a constant. As a result, the
penalized likelihood function can be rewritten as

Q(β) =− lQ(β) + λ

pn∑
j=2

wj |βj |(7)

=
1

2

{
n∑

i=1

wi2

(
XT

i β −XT
i β̃ − wi1

wi2

)2
}

− C(β̃)

+ λ

pn∑
j=2

wj |βj |.

Suppose we want to partially optimize (7) with respect to

βj given current estimates β̃
[r]
k for k �= j at the rth step
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of the iteration. Thus, we calculate the gradient at βj =

β̃
[r+1]
j for β̃

[r]
j �= 0, and obtain the expression of ∂Q/∂βj at

βk = β̃
[r]
k , k �= j, βj = β̃

[r+1]
j as follows:

n∑
i=1

wi2[X
T
i β −XT

i β̃
[r]

− wi1

wi2
]Xij

+λwjsign(βj)

∣∣∣∣
βk=β̃

[r]
k ,k �=j,βj=β̃

[r+1]
j

=

n∑
i=1

wi2[Xij β̃
[r+1]
j −Xij β̃

[r]
j − wi1

wi2
]Xij

+λwjsign(βj).

Recall w1 = 0 (no penalty imposed to the intercept). A
simple calculation shows that the coordinate-wise update
has the form

β̃
[r+1]
j = S(β̃

[r]
j +

∑n
i=1 w

[r]
i1 Xij∑n

i=1 w
[r]
i2 X

2
ij

, wjλ), j = 1, . . . , pn,

where S(z, γ) is the soft-thresholding operator with value

sign(z)(|z| − γ)+ =

⎧⎨⎩
z − γ if z > 0 and γ < |z|,
z + γ if z < 0 and γ < |z|,
0 if γ ≥ |z|.

σ̃ will be updated to maximize the log-likelihood (2) given

the updated estimates β̃j ’s, which can be easily implemented
with existing optimization algorithm. The iteration can be
repeated until all parameters converge according to some
stopping criterion.

3. ANALYSIS OF THE HIV STUDY

A primary goal of vaccine strategies to prevent HIV in-
fection is the induction of a protective humoral response.
Some HIV infected patients develop potent serum antibod-
ies that are able to neutralize a broad range of HIV iso-
lates. By studying the characteristics of the B cells in such
HIV-infected patients, mechanisms for the induction of po-
tent neutralizing antibodies may be revealed. In this sec-
tion, we apply the proposed method to a cross-sectional
study focused on measuring B cell-related parameters in
HIV infected patients with varying degrees of HIV neutral-
izing serum antibody. There are 59 variables including AGE,
TIME, CD4, VLOAD, BCELL1-51, ANTIBODY1-4, while
there are only 42 observations and among them one third of
IC50 values are left censored at 20. We apply the proposed
adaptive LASSO method with the Tobit model to analyze
this dataset, and compare with three approaches aforemen-
tioned.

All covariates were logarithm transformed and then stan-
dardized such that linearity relationship is appropriate. For
the response variable IC50, the neutralizing activity of the

patients’ sera against the Tier 2 HIV clade B virus 6535.3,
centering was not appropriate due to the presence of cen-
soring, and log-transformation was applied because there
was some extreme values as large as 471 and as small as
20 (censored). One of the observations was deleted prior to
analysis for its corresponding covariates value was an out-
lier and therefore there were 41 observations in our analysis.
Our target is to find the covariates which have significant
effects on IC50. To achieve this, we apply our proposed
variable selection and estimation procedure to the Tobit
model with all of the 59 variables as predictors and IC50
as the response variable. The extended BIC given in Sec-
tion 2.3 was used and the selected tuning parameter was
0.105.

The selected variables and their estimated coefficients are
listed in the last column of Table 1, where the standard er-
rors were obtained by using the expression given in Theo-
rem A.2. Our proposed method adaptive LASSO with Tobit
model identified 3 variables which are subsets of B cells iden-
tified by flow cytometry and defined by their expression of
surface proteins. These included BCELL6, (CD19+CD20+,
percentage of total B cells. See [25] for more details),
BCELL8 (CD19-CD20+, percentage of total B cells), and
BCELL49 (IgD-B220-CD27-, percentage of IgD- B cells),
and LASSO with Tobit model (the LASSO penalty with
weight wj = 1 is applied to the Tobit model) detected an ad-
ditional covariate ANTIBODY2 (anti-dsDNA). To compare
the results, we also used other selection procedures includ-
ing (i) adaptive LASSO with deletion of the censored ob-
servations; (ii) adaptive LASSO with threshold imputation;
(iii) LASSO with deletion of the censored observation and
(iv) LASSO with threshold imputation. R function glmnet

was applied for cases (i)–(iv) and the tuning parameter was
selected by both 5-fold cross-validation and extended BIC.
When excluding the censored observation, no covariate was
selected except the intercept so we didn’t list the results for
the deletion method.

Clearly, with such a small number of observations and
a large number of parameters, simply excluding the un-
detected observations dramatically shrinks the sample size
and therefore no significant covariates can be identified. Im-
puting the undetected values with threshold identified two
variables: BCELL8 and BCELL49. We can observe that
BCELL49 is detected by all the methods as shown in Ta-
ble 1. The covariate BCELL6 which is selected by the (adap-
tive) LASSO is not selected by the imputation method.
BCELL6 and BCELL8 are directly inversely linked to each
other as they are defined with the same markers CD19 and
CD20, since BCELL8 is the minor population perhaps it is
a more sensitive indicator.

The model has resolved additional features associated
with HIV neutralizing activity, although the data set was
limited to examining activity against only a single viral iso-
late, intriguing biological insight was obtained. The B cell
subset described by BCELL49, the IgD-B220-CD27- pop-
ulation is the dominate subset within the IgD-CD27- pop-
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Table 1. Estimated values and the associated standard errors (se) obtained by using LASSO and adaptive LASSO for the HIV
study

LASSO Adaptive LASSO
Imputation Tobit Imputation Tobit

eBIC CV eBIC CV
BCELL6 0.058(0.389) 0.233(0.397)
BCELL8 −0.042(0.137) −0.255(0.285) −0.185(0.137) −0.179(0.137) −0.318(0.291)
BCELL49 −0.230(0.132) −0.279(0.127) −0.506(0.219) −0.406(0.185) −0.398(0.127) −0.555(0.224)
ANTIBODY2 0.113(0.185)

ulation, which is infrequently observed in healthy subjects,
however increases in instances of B cell dysregulation such as
in patients with Systemic Lupus Erythematosus [26]. This
population overlaps with CD21-CD27- B cells which have
been described as “tissue-like memory” and “exhausted”
and expanded in viremic HIV patients [4], although its asso-
ciation with HIV neutralization is unknown. The negative
correlation of the IgD-B220-CD27- subset with IC50 HIV
neutralizing activity may suggest B cell exhaustion nega-
tively impacts the development and maintenance of HIV
neutralizing antibodies. Similarly, a negative correlation of
BCELL8 (CD19-CD20+ B cells) with IC50 was observed.
The CD19-CD20+ subset is a rare and poorly studied sub-
set, and may also be a hallmark of a dysregulated B cell com-
partment. The positive correlation of ANTIBODY2 (anti-
dsDNA) with IC50, HIV neutralizing activity is consistent
with previous observations of increased auto-reactive anti-
bodies in patients with increased HIV neutralizing activ-
ity [4, 27, 28], which may in part be a direct consequence
of a population of HIV-specific antibodies also having reac-
tivity to these self antigens, a phenomenon that has been
observed previously [29, 30]. A critical goal of HIV vaccine
strategies is to induce antibodies with neutralizing activity
against multiple HIV strains, and as such it will be impor-
tant to extend our model to incorporating multiple IC50
parameters.

4. SIMULATION STUDIES

In this section the proposed variable selection and esti-
mation procedure is evaluated by Monte Carlo simulation
studies through assessing accuracy of variable selection and
prediction performance measured mean square error. That
is, we evaluate the frequency of correctly identifying zero
and nonzero coefficients, and the discrepancy between the
predicted and the true values of responses, the latter is eval-
uated in an independent test sample. We compare the results
obtained by applying adaptive LASSO to the linear regres-
sion model after deleting the censored observations (dele-
tion), or replacing the unobserved values with the threshold
(imputation) or the Tobit model, respectively. Marginal re-
gression estimators are used as the initial estimators in the
simulation study. The tuning parameter is selected by using
the extended BIC described in Section 2.3.

The data are generated from the linear model Yi =
XT

i β + εi, where εi are generated independently from
N(0, σ2) with σ = 1.5. Eight examples with pn > n are
considered, representing eight different and commonly en-
countered scenarios. In each case, the covariate vector is nor-
mally distributed with mean zero and the covariance matrix
is specified below. To examine the performance of adaptive
LASSO with Tobit models under different censoring rate, we
let Y be censored at two different values in each case, cor-
responding to approximately 15% and 38% censoring rates,
respectively. Summary statistics are computed based on 100
replications.

The eight simulation examples considered are given as
follows:

Ex 1. p = 81 and n = 40. For the ith row of X, Xi1 = 1 is for
the intercept, the first 9 covariates (Xi,2, . . . , Xi,10)
and the remaining 71 covariates (Xi,11, . . . , Xi,81) are
independent; The pairwise correlation between the
kth and the jth components of (Xi,2, . . . , Xi,10) for
k, j = 2, . . . , 10; and of (Xi,11, . . . , Xi,81) for k, j =
11, . . . , 81 is r|k−j| with r = 0.5. β1 = 5, β2 = β3 =
β4 = 2.5, β5 = β6 = β7 = 1.5, β8 = β9 = β10 = 0.5,
and βj = 0 for 11 ≤ j ≤ 81.

Ex 2. The same as Example 1, except that r = .95.
Ex 3. The same as Example 1, except that p = 201 and

n = 100.
Ex 4. The same as Example 3, except that r = .95.
Ex 5. p = 81 and n = 40; the pairwise correlation between

the jth and the kth components of (Xi,2, . . . , Xi,81) is
r|j−k| with r = 0.5, j, k = 2, . . . , 81; and β1 = 5, β2 =
β3 = β4 = 2.5, β5 = β6 = β7 = 1.5, β8 = β9 = β10 =
0.5, and βj = 0 for 11 ≤ j ≤ 81.

Ex 6. The same as Example 5, except that r = .95.
Ex 7. The same as Example 5, except that p = 201 and

n = 100.
Ex 8. The same as Example 7, except that r = .95.

In all examples, the sample size is smaller than the num-
ber of unknown coefficients. The values 2.5, 1.5 and 0.5
correspond to strong, moderate and weak coefficients. It is
worth pointing that partial orthogonal condition is satisfied
in Example 1–4, yet in Example 5–8 since the covariates with
nonzero coefficients are correlated to the rest. Furthermore,
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Table 2. Simulation results. C: median of number of correctly identifying zero coefficients. I: median of number of incorrectly
missing the nonzero coefficients. Low: relatively lower censor rate, inside “()” are the approximated mean censor rate. High:

relatively higher censor rate. ALasso: adaptive LASSO for Tobit model

n p r Method Low (15% ) High (38%)
C I PMSE C I PMSE

Examples 1–4

40 81 0.5 Deletion 70 2 4.14 71 3 5.80
Imputation 71 3 9.80 71 4 25.97

ALasso 71 2 3.84 60 2 4.82

40 81 0.95 Deletion 71 2 2.91 71 3 4.11
Imputation 71 3 5.48 71 6 59.49

ALasso 71 1 2.77 70 2 3.62

100 201 0.5 Deletion 191 1 3.09 190 2 4.64
Imputation 190 2 4.83 191 3 21.95

ALasso 191 1 2.91 191 2 3.53

100 201 0.95 Deletion 191 2 2.60 191 2 3.08
Imputation 191 2 6.57 191 4 37.98

ALasso 191 1 2.55 191 1 2.66

Examples 5–8

40 81 0.5 Deletion 71 2 4.18 71 2 5.75
Imputation 71 2 7.60 71 4 25.88

ALasso 71 2 3.78 70 2 4.64

40 81 0.95 Deletion 71 3 3.37 71 3 3.63
Imputation 71 4 7.83 71 5 46.05

ALasso 70 2 3.01 70 3 3.45

100 201 0.5 Deletion 191 1 2.92 191 1 4.71
Imputation 191 1 4.74 191 3 24.25

ALasso 191 1 2.76 191 1 3.23

100 201 0.95 Deletion 191 2 2.73 191 2 3.12
Imputation 191 3 11.11 191 4 55.59

ALasso 190 1 2.60 190 1 2.67

Examples 1, 3, 5, 7 have moderately to weakly correlated co-
variates and Examples 2, 4, 6 and 8 have strongly correlated
covariates. For each example, using the three different meth-
ods: deletion, imputation and adaptive LASSO with Tobit
model, we report 3 values: C, the number of correctly iden-
tifying zero coefficients; I, the number of incorrectly missing
the nonzero coefficients, and the estimated prediction mean
square errors (PMSE) defined below.

In each example, we generate a training set and a test set.
The tuning parameter is selected using the extended BIC
described in Section 2.3 with the training set only. After se-
lecting the tuning parameter, the adaptive LASSO estimates
are computed using the training set. We calculate the PMSE
using the test set, which is defined as

∑n
i=1(Ŷi−Yi)

2/n with

Ŷi(= Xiβ̂) being obtained by using the training set estimate
and Yi being the independent test set. The reported values
are the median from 100 replications.

The results are presented in Table 2, where we can ob-
serve that the imputation method has comparable capabil-
ity to detect zero coefficients but is more likely to miss the
important nonzero coefficients. In terms of PMSE, imputa-
tion is the worst. This is because when simply replacing the
unobserved values with the threshold, the resulting initial

estimator may be far away from the true value and thus the
weight applied to the L1 penalty is inappropriately chosen,
which causes estimators of the parameter severely tortured,
and leads to larger biases. Deletion method has worse perfor-
mance than the proposed method, especially when sample
size is small and censor rate is large. This is not surpris-
ing because our method uses the censored information and
therefore we have more accurate variable selection results.
When partial orthogonality holds, the performance of adap-
tive LASSO for Tobit model is better than that when this
assumption doesn’t hold. We also notice that with stronger
correlation (r = 0.95), the PMSE values based on our pro-
posed method are smaller. This trend has been observed in
the literature for similar simulation settings [12, 31].

5. DISCUSSION

We have proposed an adaptive LASSO procedure for si-
multaneous variable selection and estimation in sparse high-
dimensional Tobit models. We have shown that the adaptive
LASSO estimator for Tobit models has the oracle property
under certain regularity conditions such that the model can
be correctly selected with probability approaching 1 and the
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estimators for the nonzero coefficients have the same asymp-
totic distributions as the estimators if the true model were
known. Moreover, we develop a Newton-Ralphson compu-
tational algorithm by combining locally quadratic approxi-
mation and the coordinate descent algorithm. In both sim-
ulation studies and the real data applications, we illustrate
that the proposed method has superior performance over
the commonly used approaches such as the deletion and im-
putation methods. Our method provides an intuitively ap-
pealing, theoretically reliable, and computationally efficient
tool for the analysis of data with censored observations and
high-dimensional covariates. Recalling the discussions on the
deficiency of the deletion and imputation methods, and the
results based on these two methods for the real dataset,
we expect that the Tobit model and the associated method
should increase the power. However, theoretically justifying
such a superiority is very difficult, if is not impossible. We
hope this can be addressed in the future. The method can
be extended to semiparametric Tobit models to relax the
linearity assumption of the relationship between response
and covariates, which will be the focus of our future work.

We are concerned with the case that the threshold is a
constant. We have not studied the case with different cen-
soring values. It should be possible to extend our method
in a similar way. The procedure would change only in the
sense that the likelihood function would be modified to a
more complex expression. However, the obvious analogue of
main results presented in the Appendix holds in such a case.

It would appear possible in principle to extend the
method to a nonlinear relationship. We need only replace the
likelihood function accordingly. However, in general nonlin-
ear models, it is not guaranteed that the minimizer is well-
defined, and this would appear to be the difficulty in extend-
ing our approach. We expect that the theoretical justifica-
tion and numerical implementation can be achieved without
substantial difficulties. The detailed investigation of these
issues is interesting, but beyond the scope of this paper.

We have compared the situations of total deletion and re-
placement by the threshold. There are alternatives proposed
in the literature. For example, replacement by half thresh-
old, or threshold divided by root 2, or even more complex
methods such as probabilistic imputation [32] of the values
below the detection limit by the left tail distribution of the
response variable. This is currently under our investigation.
We have used PMSE for a comparison of several methods.
Alternative measures proposed in the literature [33] may be
used for comparison of prediction errors as well.

It should bear in mind that the oracle property of the pro-
posed estimators only holds with the assumption of partial
orthogonality; i.e, the covariates with zero and nonzero coef-
ficients only have a weak correlation, which may not be sat-
isfied sometimes. Interpretation should be careful when this
assumption doesn’t hold, though our simulation study indi-
cates that the numerical performance of the proposed proce-
dure still works well when even covariates with zero and non-
zero coefficients have a moderate or even strong correlation.

APPENDICES

A.5.1 Initial statements

Let β0 = (β01, . . . , β0pn)
T denote the true parameters.

Assume that model (1) is sparse, that is, some components
in β0 are exactly zero corresponding to predictors that are
irrelevant to the response. Without loss of generality, we as-
sume that the true model has parameters β0 = (βT

01,β
T
02)

T,
where β01 is the kn×1 vector with nonzero components and
β02 is the (pn−kn)×1 vector with zero components, and kn
is much smaller than (pn − kn). Correspondingly, we write

β̂n = (β̂
T

n1, β̂
T

n2)
T, where β̂n1 and β̂n2 are the estimators of

β01 and β02, respectively.
Since we have censored observations in the response, it is

not appropriate to center Y. We, however, can still center
and standardize the covariates as

n∑
i=1

Xij = 0 and
1

n

n∑
i=1

X2
ij = 1, j = 2, . . . , pn.

Let X·j = (X1j , . . . , Xnj)
T for j = 1, . . . , pn, Xi =

(Xi1, . . . , Xipn)
T for i = 1, . . . , n, X = (X·j , 1 ≤ j ≤

pn)n×pn and D be the diagonal matrix with diagonal ele-

ments I(Yi > 0)
Δ
= di. Let Jn1 = {j : β0j �= 0} and X

1 =
(X·j , j ∈ Jn1)n×kn , which is the design matrix correspond-
ing to the nonzero coefficients. Denote X1

i = (Xij , j ∈ Jn1)
T

and Σn1 = n−1(X1)TX1. Write Zi = XT
i β0/σ, φi = φ(Zi),

Φi = Φ(Zi) and ν = (ν1, . . . , νn)
T where νi = φi/(1 − Φi).

For any vector c = (c1, c2, . . . , cs)
T, its sign vector is de-

noted by sgn(c) = {sgn(c1), sgn(c2), . . . , sgn(cs)}T, with the
convention that sgn(0) = 0. Following Zhao and Yu [34], we

say that β̂n =s β if and only if sgn(β̂n) = sgn(β). Define

(A.8) bn1 = min{|β0j | : j ∈ Jn1}

A.5.2 Assumptions

(A1) n−1/2 max1≤i≤n{(X1
i )

TX1
i }1/2 → 0, as n → ∞ and

there exists a constant 0 < τ2, such that τn2 ≥ τ2
for all n, where τn2 is the smallest eigenvalue of A =
n−1{

∑n
i=1 X

1
i (X

1
i )

Tσ2
1i} with σ1i = σ2{Φi − Ziφi +

φ2
i /(1− Φi)}.

(A2) The initial estimators β̃nj are rn-consistent for the
estimation of certain ηnj :

rn max
1≤j≤pn

|β̃nj − ηnj | = OP (1), rn → ∞,

where ηnj are unknown constants depending on β and
satisfy

max
j /∈Jn1

|ηnj | ≤ Mn2,⎧⎨⎩ ∑
j∈Jn1

(
1

|ηnj |
+

Mn2

|ηnj |2
)2
⎫⎬⎭

1/2

≤ Mn1 = o(rn).
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(A3) (Adaptive irrepresentable condition) Define sn1 =
{|ηnj |−1sgn(β0j), j ∈ Jn1}T. There exists a constant
0 < κ < 1 such that

n−1|XT
·jX

1Σ−1
n1 sn1| ≤

κ

|ηnj |
, ∀j /∈ Jn1.

(A4) The tuning parameter λn and the number of nonzero
(kn) and zero (pn−kn) coefficients satisfy the follow-
ing order requirements:

(log kn)
1/2

√
nbn1

+ {log (pn−kn)}1/2
√
n

λn
(Mn2 +

1

rn
)

+
Mn1λn

bn1n
→ 0.

(A5) There exists a constant 0 < τ1, such that τn1 ≥ τ1 for
all n, where τn1 is the smallest eigenvalue of Σn1.

Remark: Condition (A1) is needed for the proof of asymp-
totic normality of the estimators for the nonzero coefficients.
It makes restriction on kn implicitly, for example, if the co-
variates in X1

i are bounded below by a constant 0 < c0 < 1,
then (X1

i )
TX1

i ≥ knc
2
0, and thus we must have kn = o(n) to

ensure Condition (A1) holds. Because we assume sparsity in
the true model, this condition is reasonable. Condition (A2)

assumes that the initial estimator β̃nj can, at least, estimate
some proxy ηnj of β0j , so that as the sample size grows, the

weights wj = |β̃nj |−1 ≈ |ηnj |−1 for predictors with zero
coefficients is not too small, and the weights for predictors
with nonzero coefficients is not too large. In Condition (A3),
constraints on ηnj are imposed so that it performs as a sur-
rogate of β0j . Condition (A4) is the order requirement of the
tuning parameter and the number of zero and nonzero coef-
ficients. It restricts the number of covariates allowed in the
model. For example, we usually have rn increasing somewhat
slower than

√
n so nδ−1/2rn → ∞ for some small δ > 0 and

λn = na for some 0 < a < 1. If assuming 1/bn1 = O(1) and
Mn1 = O(

√
kn), by condition (A4), the number (pn−kn) of

zero coefficients can be as large as exp(n2(a−δ)). While the
number of nonzero coefficient kn can only be allowed of the
order min{n2(1−a), n1−2δ}. Condition (A5) requires that the
smallest eigenvalue of Σn1 is bounded away from zero but
does not put any restriction on its largest eigenvalue and is
reasonable under sparsity assumption. Condition (A4) is a
special case when d = 2 as in Huang, Ma and Zhang [12]
and Conditions (A2), (A3) and (A5) have been imposed by
these authors.

A.5.3 Preliminary lemmas

The following lemmas are used in the proofs of the the-
orems presented in Sections A.5.4 and A.5.5. Lemma A.1
is a variation of Lemma 1 of Huang, Ma and Zhang [12] in
their online supplement of that article. Lemma A.2 is the
same as theirs [12]. Let ψd(x) = exp (xd) − 1 for d ≥ 1.
The ψd-Orlicz norm of random variable X is defined as

‖X‖ψd
= inf{C > 0 : E{ψd(|X|/C)} ≤ 1}. More details

about Orlicz norm can be found in [35].

Lemma A.1. Suppose ε1, . . . , εn are independent random
variables with Eεi = 0 and V ar(εi) ≤ σ2. Furthermore,
suppose that their tail probabilities satisfy P (|εi| > x) ≤
K exp(−Cx2), i = 1, . . . , n, for constants C and K. Then,
for all constants ai satisfying

∑n
i=1 a

2
i = 1,

‖
n∑

i=1

aiεi‖ψ2 ≤ K1{σ + (1 +K)1/2C−1/2}

where K1 is a constant. Consequently

q∗n(t) = sup
a2
1+···+a2

n=1

P{
n∑

i=1

aiεi > t} ≤ exp(− t2

M
)

for a certain constant M depending on {K,C} only.

Proof. Since εi satisfies P (|εi| > x) ≤ K exp (−Cx2) for
all x > 0 and some positive constants K and C, then it
follows for its Orlicz norm ||εi||ψ2 ≤ {(1+K)/C}1/2 by using
Lemma 2.2.1 of van der Vaart and Wellner [35]). According
to Proposition A.1.6 [35], there exists a constant K1 such
that

∥∥ n∑
i=1

aiεi
∥∥
ψ2

≤ K1

{
E
∣∣ n∑
i=1

aiεi
∣∣+ [ n∑

i=1

||aiεi||2ψ2

]1/2}
≤ K1

{[
E
( n∑
i=1

aiεi
)2]1/2

+(1 +K)1/2C−1/2
[ n∑
i=1

|ai|2
]1/2}

≤ K1

{[
V ar

( n∑
i=1

aiεi
)]1/2

+(1 +K)1/2C−1/2
[ n∑
i=1

|ai|2
]1/2}

≤ K1{σ + (1 +K)1/2C−1/2}.

Based on the definition of ||X||ψ2 we have

E{exp (|X|/||X||ψ2)
2 − 1} = E{ψ2(

|X|
||X||ψ2

)} ≤ 1 and

therefore

P (X > t||X||ψ2) = P (
X

||X||ψ2

> t)

≤ exp(−t2)

{
1 + E{ψ2

(
X

||X||ψ2

)
}
}

≤ 2 exp(−t2), ∀t > 0

The last inequality in the lemma is an immediate conse-
quence of this inequality.

Let s̃n1 = (|β̃nj |−1sgn(β0j), j ∈ Jn1)
′ and sn1 =

(|ηnj |−1sgn(β0j), j ∈ Jn1)
′.
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Lemma A.2 (Huang, Ma and Zhang [12]). Suppose (A2)
holds. Then,
(A.9)

||s̃n1||=(1+oP (1))Mn1, max
j /∈Jn1

∥∥∥|β̃nj |s̃n1 − |ηnj |sn1
∥∥∥= oP (1).

Lemma A.3. Recall Y 1
i = XT

i β0 + εi, for i = 1, . . . , n,
where εi’s are independent distributed with εi ∼ N(0, σ2).
Write Y ∗

i = diY
1
i + (1 − di)(X

T
i β0 − σνi) and ε∗i = Y ∗

i −
XT

i β0, i = 1, . . . , n. Then,

1. ε∗1, . . . , ε
∗
n are independent distributed with E(ε∗i ) = 0

and V ar(ε∗i ) ≤ σ2

2. There exists constants K and C such that P (|ε∗i | > t) ≤
K exp(−Ct2)

Consequently, Lemma A.1 can be applied to such ε∗i ’s.

Proof. According to Amemiya [36], when Yi > 0, we have

(A.10) Yi = XT
i β0 + U∗

i ,

where U∗
i is the random variable with the density h(u) given

by h(u) = 1/Φi1/
√
2πσ2 exp{−(u/σ)2/2}, −XT

i β0 < u <
∞ with E(U∗

i ) = σφi/Φi and E(U∗
i
2) = (σ2 − σ2Ziφi/Φi)

and is independent of di. Therefore, Y
∗
i can be re-expressed

as

Y ∗
i = di(X

T
i β0 + U∗

i ) + (1− di)(X
T
i β0 − σνi)

= XT
i β0 + diU

∗
i − σ(1− di)νi,

where νi = φi/(1 − Φi). Therefore, ε∗i = Y ∗
i − XT

i β0 =
diU

∗
i − σ(1− di)νi. It is ready to verify that E(di) = Φi so

E(ε∗i ) = 0 and V ar(ε∗i ) = σ2 − V ar(Yi|Yi < −XT
i β0) ≤ σ2

(See [37]). The first part is then proved.
For the tail probability, when t > maxi{σ|Zi|, σνi},

P (|ε∗i | > t) = P (ε∗i > t) + P (ε∗i < −t)

= P (ε∗i > t, di = 1) + P (ε∗i > t, di = 0)

+P (ε∗i < −t, di = 1)

+P (ε∗i < −t, di = 0)

= P (di = 1)P (U∗
i > t|di = 1)

= P (di = 1)P (U∗
i > t)

= 1− Φ(t/σ),

and there exists constants K1 and C1 such that 1−Φ(t/σ) ≤
K1 exp(−C1t

2). When 0 ≤ t ≤ maxi{σ|Zi|, σνi}, we can
find constants K2 and C2 satisfying K2 exp(−C2t

2) ≥ 1 and
therefore let K = max{K1,K2}, C = min{C1, C2}. We fin-
ish the proof of the second part.

A.5.4 Statistical properties of the proposed
estimators

Theorem A.1 (Consistency in variable selection). Sup-

pose that conditions (A2)–(A5) hold. Let Ĵn1 = {j : β̂j �=
0}. Then limn→∞P (Ĵn1 = Jn1) = 1, or equivalently,

limn→∞P (β̂n =s β0) = 1.

This theorem shows that zero coefficients can be correctly
identified with probability tending to 1, so the adaptive
LASSO method for the Tobit model has the model selec-
tion consistency property. The following theorem presents
the asymptotic normality of the adaptive LASSO estima-
tors for the nonzero coefficients in the Tobit model. Write
s2n = n−1αT

nΣ
−1
n1 {

∑n
i=1(X

1
i )(X

1
i )

Tσ2
1i}Σ−1

n1αn with σ2
1i =

σ2{Φi − Ziφi + φ2
i /(1− Φi)}.

Theorem A.2 (Asymptotic normality). Suppose that con-
ditions (A1)–(A5) hold. For any kn×1 vector αn satisfying

αT
nαn ≤ 1. If Mn1λn/

√
n = o(1), then n1/2s−1

n αT
n (β̂n1 −

β01) →D N(0, 1).

Proof of Theorem A.1. From Karush-Kunh-Tucker condi-
tions we know that β̂n = (β̂n1, . . . , β̂npn)

′ is the unique so-
lution of the adaptive LASSO if

(A.11)

{
XT

·j(Y
∗−Xβ̂n) = σ2λnwnjsgn(β̂nj), β̂nj �= 0,

|XT
·j(Y

∗−Xβ̂n)| < σ2λnwnj , β̂nj = 0,

where Y∗ = (Y ∗
1 , . . . , Y

∗
n )

T is the n × 1 vector with Y ∗
i =

diYi+(1−di)(X
T
i βn−σ φi

1−Φi
). The vectors {X·j : β̂nj �= 0}

are linearly independent. Let s̃n1 = (wnjsgn(β0j), j ∈ Jn1)
T

and

β̂n1 = {(X1)TX1}−1{(X1)TY∗ − σ2λns̃n1}(A.12)

= β01 +
1

n
Σ−1

n1 {(X1)Tε∗ − σ2λns̃n1},

where ε∗ = (ε∗1, . . . , ε
∗
n) with ε∗i = Y ∗

i − (X1
i )

Tβ01. Notice
that (X1

i )
Tβ01 = XT

i β0 so ε∗i = Y ∗
i −XT

i β0 = diUi −σ(1−
di)νi as described in Lemma A.3. If β̂n1 =s β01, then the

equation in (A.11) holds for β̂n = (β̂
T

n1,0
T)T. Thus for this

particular β̂n we have Xβ̂n = X
1β̂n1 and {XT

·j , j ∈ Jn1}T

are linearly independent. Therefore, β̂n =s β0 if

(A.13)

{
β̂n1 =s β01, ∀j ∈ Jn1

|XT
·j(Y

∗−X
1β̂n1)| < σ2λnwnj , ∀j /∈ Jn1.

Write Hn = In−X
1Σ−1

n1 (X
1)T/n, which is the projection

to the null of (X1)T. From (A.12) we have Y∗ − X
1β̂n1 =

(Y∗−X
1β01)−X

1(β̂n1−β01) = Hnε
∗+σ2

X
1Σ−1

n1 s̃n1λn/n,

and thus we have, β̂n =s β0 if
(A.14){

sgn(β0j)(β0j − β̂nj) < |β0j |, ∀j ∈ Jn1

|XT
·j(Hnε

∗ + σ2
X

1Σ−1
n1 s̃n1

λn

n )| < σ2λnwnj , o.t.

Therefore, by (A.12) and (A.14), for any 0 < κ < κ+ ε < 1

P
{
β̂n �=s β0

}
≤ P

{
1

n
|eTj Σ−1

n1

(
X

1
)T

ε∗| ≥ |β0j |
2

for some j ∈ Jn1

}
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+P

{
σ2|eTj Σ−1

n1 s̃n1|
λn

n
≥ |β0j |

2
for some j ∈ Jn1

}
+P

{
|XT

·jHnε
∗| ≥ (1− κ− ε)σ2λnwnj

for some j /∈ Jn1}

+P

{
1

n
|XT

·jX
1Σ−1

n1 s̃n1| ≥ (κ+ ε)wnj

for some j /∈ Jn1

}
= P{Bn1}+ P{Bn2}+ P{Bn3}+ P{Bn4},

where ej is the unit vector in the direction of the jth coor-
dinate.

Since ||(eTj Σ−1
n1 (X

1)T)T||2/n ≤ (nτn1)
−1/2 and |β0j | ≥

bn1 for j ∈ Jn1,

P{Bn1} = P

{
1

n
|eTj Σ−1

n1

(
X

1
)T

ε∗| ≥ |β0j |
2

,

for some j ∈ Jn1

}
≤ knq

∗
n(

√
τn1nbn1

2
)

with the tail probability q∗n(t) defined in Lemma A.1. Thus,
P{Bn1} → 0 as n → ∞, by Lemmas A.1 and A.3, Condi-
tions (A4) and (A5).

For P{Bn2}, by Lemma A.2 and Conditions (A4) and
(A5)

σ2|eTj Σ−1
n1 s̃n1|

λn

n
≤ σ2||̃sn1||λn

τn1n

= OP (σ
2Mn1λn

τn1n
) = oP (bn1),

where bn1 = min{|β0j |, j ∈ Jn1}. Therefore, we have
P{Bn2} → 0 as n → ∞.

Since w−1
nj = |β̃nj | ≤ Mn2 + OP (1/rn) and

||(XT
·jHn)

T||2 ≤ √
n, for large C,

P{Bn3} ≤ P

{
|XT

·jHnε
∗| ≥ (1− κ− ε)λn

C(Mn2 +
1
rn
)

for some j /∈ Jn1

}
+ o(1)

≤ mnq
∗
n

{
(1− κ− ε)λn

C(Mn2 +
1
rn
)
√
n

}
.

Thus by Lemmas A.1 and A.3, and Condition (A4),
P{Bn3} → 0 as n → ∞.

Finally for P{Bn4}, it comes from Lemma A.2 and Con-
dition (A5) that

max
j /∈Jn1

(
|XT

·jX
1Σ−1

n1 s̃n1|
nwnj

−
∣∣ηnjXT

·jX
1Σ−1

n1 sn1
∣∣

n

)

≤ max
j /∈Jn1

⎛⎝
∥∥∥(XT

·jX
1Σ−1

n1

)T∥∥∥
n

⎞⎠∥∥∥|β̃nj |s̃n1 − |ηnj |sn1
∥∥∥

≤ τ
−1/2
n1 op(1) = op(1).

By Condition (A3), we have |ηnjXT
·jX

1Σ−1
n1 sn1|/n ≤ κ. So

P{Bn4} → 0 as n → ∞.

Proof of Theorem A.2. By (A.12), we have

n1/2αT
n (β̂n1 − β01) =n−1/2αT

nΣ
−1
n1

(
X

1
)T

ε∗

− n−1/2αT
nΣ

−1
n1 σ

2λns̃n1,

where ε∗ = (ε∗1, . . . , ε
∗
n) with ε∗i = Y ∗

i − XT
i β0. When

||αn||2 ≤ 1,

|n−1/2αT
nΣ

−1
n1 σ

2λns̃n1| ≤ 2n−1/2τ−1
n1 Mn1σ

2λn.

Therefore, by Mn1λn/
√
n → 0, we have

n1/2s−1
n αT

n (β̂n1−β01) = n−1/2s−1
n αT

nΣ
−1
n1 (X

1)Tε∗+op(1) =
n−1/2s−1

n

∑n
i=1 α

T
nΣ

−1
n1X

1
i ε

∗
i + op(1), where (X1

i )
T is the ith

row of X1 and ε∗ is the ith component of ε∗, which is as
discussed in Lemma A.3. It suffices to prove Theorem A.2
by verifying the conditions of the Lindeberg-Feller central
limit theorem.

Let vi = n−1/2s−1
n αT

nΣ
−1
n1X

1
i and wi = viε

∗
i . Note that

E(ε∗i ) = 0 and Var(ε∗i ) = σ2{Φi−Ziφi+φ2
i /(1−Φi)} = σ2

1i.
Then we have

var(

n∑
i=1

wi) = n−1s−1
n αT

nΣ
−1
n1

{
n∑

i=1

X1
i

(
X1

i

)T
σ2
1i

}
Σ−1

n1αns
−1
n = 1.

For any ε > 0,
∑n

i=1 E[w2
i I{|wi| > ε}] =∑n

i=1 v
2
iE[(ε∗i )

2I{|ε∗i vi| > ε}]. Since
∑n

i=1 v
2
i σ

2
1i = 1, it suf-

fices to show that, max1≤i≤n E(ε∗i )
2I{|ε∗i vi| > ε} → 0 or

equivalently,

(A.15) max
1≤i≤n

|vi| = n−1/2s−1
n max

1≤i≤n
|αT

nΣ
−1
n1X

1
i | → 0.

Write A = n−1{
∑n

i=1 X
1
i (X

1
i )

Tσ2
1i}. Then

|αT
nΣ

−1
n1X

1
i | = |αT

n

(
Σ−1

n1AΣ−1
n1

) (
Σn1A

−1X1
i

)
|

≤
(
αT

nΣ
−1
n1AΣ−1

n1αn

)1/2 ((
X1

i

)T
A−1X1

i

)1/2
= sn

((
X1

i

)T
A−1X1

i

)1/2
.

Therefore,

max
1≤i≤n

|vi| ≤ n−1/2 max
1≤i≤n

((
X1

i

)T
A−1X1

i

)1/2
≤ τ

−1/2
2 n−1/2 max

1≤i≤n

((
X1

i

)T
X1

i

)1/2
→ 0

due to Conditions (A1) and (A5). This completes the proof
of Theorem A.2.
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A.5.5 Consistency of the marginal regression
estimators

Without loss of generality, let Yn1 = (Y1, . . . , Yn1) be the
collection of the response values for the un-censored obser-
vations. Correspondingly, let Xn1 = (XT

1 , . . . ,X
T
n1
)T be the

matrix containing the first n1 rows of X and Xn1·j be the
jth column of Xn1 for 1 ≤ j ≤ pn. The initial estimator of
βj is given as

(A.16) β̃nj = (XT
n1·jXn1·j)

−1XT
n1·jYn1 .

According to Amemiya [36], let U∗
i be the random variable

with the density h(u) given by

h(u) =
1

Φi

1√
2πσ2

exp{−(u/σ)2/2}, −XT
i β0 < u < ∞.

Then we have

(A.17) Yi = XT
i β0 + U∗

i , ∀Yi > 0,

with E(U∗
i ) = σφi/Φi. By (A.16) and (A.17) we obtain

β̃nj = (XT
n1·jXn1·j)

−1XT
n1·jYn1 =

XT
n1,j

(Xn1β0 +U∗)∑n1

i=1 X
2
ij

,

where U∗ = (U∗
1 , . . . , U

∗
n1
)T. Define γ = (γ1, . . . , γn1)

T with

γi = φi/Φi. Take ηnj given in Condition (A2) as E(β̃nj) =
XT

n1,j(Xn1β0+σγ)∑n1
i=1 X2

ij

, and consider the following conditions:

(B1) (Partial Orthogonality) The covariates with zero coef-
ficients and those with nonzero coefficients are weakly
correlated such that∣∣∣∣∣ 1n

n∑
i=1

XijXik

∣∣∣∣∣ =
∣∣∣∣∣XT

·jX·k

n

∣∣∣∣∣ ≤ ρn, j /∈ Jn1, k ∈ Jn1,

where ρn satisfies that there is a constant 0 < κ < 1,
such that

(A.18) cn = (max
j /∈Jn1

|ηnj |)(
∑

j∈Jn1

|ηnj |−2

kn
)1/2 ≤ κτn1

knρn
,

with κ given in Condition (A3).

(B2) The minimum b̃n1 = min{|ηnj |, j ∈ Jn1} satisfies

k
1/2
n (1 + cn)

b̃n1rn
→ 0, rn =

√
n

{log (pn − kn)}1/2
.

(B3) There exists a constant 0 < a < 1, such that a ≤
1
n

∑n1

i=1 X
2
ij ≤ 1.

Condition (B1) indicates that the covariates with zero
and nonzero coefficients are weakly correlated. Condition
(B2) implies that the nonzero coefficients are bounded away
from zero at certain rates which depend on the growth of

kn and (pn − kn) and is the special case of Condition (B3)
in Huang, Ma and Zhang [12] with d = 2. Condition (B3)
requires that square sum of the jth covariate for uncensored
part is bounded away from zero. Notice that

∑n
i=1 X

2
ij = n.

This assumption generally holds as long as the censoring
rate is not very large.

Theorem A.3. Suppose that conditions (B1)–(B3)

hold. Then the initial estimator β̃nj in (A.16) satis-
fies rn-consistency for the estimation of ηnj such that

rn max1≤j≤pn |β̃nj − ηnj | = OP (1), as rn → ∞, and ηnj
satisfies Condition (A2) and the adaptive irrpresentable con-
dition in (A3).

Proof of Theorem A.3. For all ε > 0,

P{rn max
1≤j≤pn

|β̃nj − ηnj | > ε}

= P

{
rn max

1≤j≤pn

|XT
n1,j

(U∗ − σγ)|∑n1

i=1 X
2
ij

> ε

}
.

It is easy to verify that E(U∗
i − σγi) = 0 and V ar(U∗

i −
σγi) = σ2(1 − Ziφi/Φi − φ2

i /Φ
2
i ) ≤ σ2. Also it is ready to

show that there exists constants C and K such that P (|U∗
i −

σγi| > t) ≤ K exp(−Ct2), ∀t > 0. So by Lemma A.1 and
Condition (B3), we have

P{rn max
1≤j≤pn

|β̃nj − ηnj | > ε} ≤ pnq
∗
n(

√
anε

rn
) = o(1).

As to the second part of Condition (A2) with Mn2 =
maxj /∈Jn1

|ηnj |, it comes from Condition (B2) that

∑
j∈Jn1

(
1

η2nj
+

M2
n2

η4nj

)
≤ kn

b̃2n1
(1 + c2n) = o(r2n).

For Condition (A3), with the facts that∥∥∥(X1)
T
X·j

∥∥∥2 ≤ knn
2ρ2n

and |ηnj | × ||sn1|| ≤ k
1/2
n cn for all j /∈ Jn1, it comes from

Condition (B1) that

|ηnj |n−1|XT
·jX

1Σ−1
n1 sn1| ≤

cnknρn
τn1

≤ κ, ∀j /∈ Jn1.

The proof is completed.

Received 29 August 2014

REFERENCES
[1] Mascola, J. R. and Haynes, B. F. Hiv-1 neutralizing antibodies:

understanding nature’s pathways. Immunological Reviews 2013;
254(1):225–244.

[2] Wei, C., Jung, J., and Sanz, I. OMIP-003: phenotypic analysis
of human memory B cells. Cytometry. Part A 2011; 79(11):894–
896.

Identification of significant B cell associations 89



[3] Sanz, I., Wei, C., Lee, F., and Anolik, J. Phenotypic and
functional heterogeneity of human memory B cells. Seminars in
Immunology 2008; 20(1):67–82.

[4] Kobie, J. J., Alcena, D. C., Zheng, B., Bryk, P., Mattia-

cio, J. L., Brewer, M., LaBranche, C., Young, F. M., De-

whurst, S., and Montefiori, D. C., et al. 9G4 autoreactiv-
ity is increased in HIV-infected patients and correlates with HIV
broadly neutralizing serum activity. PLoS One 2012; 7(4):e35356.

[5] Schiller, J. and Chackerian, B. Why HIV virions have low
numbers of envelope spikes: implications for vaccine development.
PLoS Pathog 2014; 10(8):e1004254.

[6] Frank, I. and Friedman, J. A statistical view of some chemo-
metrics regression tools (with discussion). Technometrics 1993;
35:109–148.

[7] Breiman, L. Heuristics of instability and stabilization in
model selection. The Annals of Statistics 1996; 24:2350–2383.
MR1425957

[8] Zou, H. and Hastie, T. Regularization and variable selection via
the elastic net. Journal of the Royal Statistical Society, Series B
2005; 67:301–320. MR2137327

[9] Tibshirani, R. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B 1996; 58:267–
288. MR1379242

[10] Zou, H. The adaptive lasso and its oracle properties. Jour-
nal of the American Statistical Association 2006; 101:1418–1429.
MR2279469

[11] Fan, J. and Li, R. Variable selection via nonconcave penalized
likelihood and its oracle properties. Journal of the American
Statistical Association 2001; 96:1348–1360. MR1946581

[12] Huang, J., Ma, S., and Zhang, C. H. Adaptive Lasso for
sparse high-dimensional regression models. Statistica Sinica 2008;
18:1603–1618. MR2469326

[13] Tibshirani, R., et al. The lasso method for variable selection in
the Cox model. Statistics in Medicine 1997; 16(4):385–395.

[14] Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J.,
and Lauer, M. S. High-dimensional variable selection for sur-
vival data. Journal of the American Statistical Association 2010;
105(489):205–217. MR2757200

[15] Liu, X. and Zeng, D. Variable selection in semiparametric
transformation models for right-censored data. Biometrika 2013;
100(4):859–876. MR3142337

[16] Zhou, Z., Jiang, R., and Qian, W. LAD variable selection
for linear models with randomly censored data. Metrika 2013;
76(2):287–300. MR3018834

[17] Liu, X., Wang, Z., and Wu, Y. Group variable selection and
estimation in the tobit censored response model. Computational
Statistics & Data Analysis 2013; 60:80–89. MR3007020

[18] Tobin, J. Estimation of relationships for limited dependent vari-
ables. Econometrica 1958; 26:24–36. MR0090462

[19] Schwarz, G. Estimating the dimension of a model. The Annals
of Statistics 1978; 6:461–464. MR0468014

[20] Broman, K. and Speed, T. A model selection approach for the
identification of quantitative trait loci in experimental crosses.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 2002; 64(4):641–656. MR1979381

[21] Siegmund, D. Model selection in irregular problems: applications
to mapping quantitative trait loci. Biometrika 2004; 91(4):785–
800. MR2126033

[22] Bogdan, M., Ghosh, J., and Doerge, R. Modifying the
Schwarz Bayesian information criterion to locate multiple inter-
acting quantitative trait loci. Genetics 2004; 167(2):989–999.

[23] Chen, J. and Chen, Z. Extended Bayesian information criteria
for model selection with large model spaces. Biometrika 2008;
95(3):759–771. MR2443189

[24] Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R.
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