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An application of stochastic control theory
to a bank portfolio choice problem

FATMA CHAKROUN®T AND FATHI ABID?

This paper presents an application of stochastic control
theory to a bank portfolio choice problem. By applying a
dynamic programming principle, we find a closed form solu-
tion for the CRRA utility function. A case study is given to
illustrate our results and analyze the effect of the parameters
on the optimal asset allocation strategy.
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1. INTRODUCTION

In this paper, we study an optimal portfolio choice prob-
lem for a bank under a stochastic interest rate. Our goal
is to present the numerical aspects of the resolution of the
Hamilton-Jacobi-Bellman (HJB) equation and focus on the
results of the portfolio choice model taking a practical view-
point. This is motivated by the need of banks to invest in
assets with an acceptable level of risk and high returns. For
instance, if the returns on a specific loan turn out to be
very high at the end of a loan contract period, the bank
might regret not having allocated a fairly large portion of
its capital to that loan type. A dynamic portfolio position is
particularly important in bank risk management, since most
banks select an initial loan portfolio at the beginning of a
loan period but often do not actively manage their portfo-
lio thereafter unless a possibility of default arises. Another
motivation to discuss bank optimal portfolio is the failure of
spark risk management strategies and regulatory prescripts
to mitigate this risk. One of these prescriptions is the Basel
accord on capital adequacy requirements', which mandates
that all major international banks hold capital in proportion
to their perceived risks.

We propose to apply the model in a simplified frame-
work in order to find an analytically tractable solution for
the bank portfolio choice problem. In particular, the repre-
sentative bank dynamically allocates its wealth among the
following assets: bank account, securities and loans (i) the
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1Basel III regulation establishes procedures for assessing credit, mar-
ket, and operational risk (see, BCBS, 2011).

asset prices assumed to satisfy the geometric Brownian mo-
tion hypothesis which implies that asset prices are station-
ary and log-normally distributed. All expected asset returns
are given as the interest rate plus a constant risk premium,
(ii) the interest rates are described by an Ornstein Uhlen-
beck process, notably the case of Vasicek model, (iii) and
the optimal asset allocation strategy is derived with power
utility function. A dynamic programming principle is used
to derive the HJB equation. We find a closed form solution
for the optimal asset allocation strategy. We try to provide,
through a case study on a Tunisian bank, a new insight of
the model in terms of practical use.

The rest of the paper is organised as follows: In Section
2, we present the relevant literature. In Section 3, we intro-
duce the bank portfolio model. In Section 4, we define and
solve the optimization problem in the power utility case. In
Section 5, we numerically illustrate our results and in the
last section we draw the conclusion.

2. LITERATURE REVIEW

The portfolio choice is one of the most difficult decision
problems faced by the banking institutions. The bank man-
agers’ objective is to choose an optimal structure of net
wealth by allocating assets and liabilities with respect to
revenue and cost proportions. In general, they often use As-
set Liability Management (ALM) to rebalance the bank’s
portfolio based on the risk-return trade-off. The earliest ap-
proach to solving a portfolio choice problem is the mean-
variance approach pioneered by Markowitz (1952) in a one-
period decision model. It still has great importance in real-
life applications, and is widely applied in the risk manage-
ment departments of banks. The main reasons for this is
being the simplicity with which the algorithm can be imple-
mented, and that it requires no special knowledge on proba-
bility. Indeed, the risk is only measured by the variance, the
returns are normally distributed and the bank managers uti-
lize risk-averse utility functions. One criticism of the mean-
variance criterion is the assumption of static nature of fi-
nancial market or myopic optimization character. This is an
extreme simplification of reality which totally ignores the
highly volatile behavior and dynamic nature of prices. How-
ever, two main approaches dealing with the dynamic port-
folio choice problem use continuous-time models. Stochastic
control theory developed by Merton [19, 20] was based on
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the solution of the HJB equation arising from dynamic pro-
gramming under the real world probability measure. Several
studies related to dynamic portfolio choice problem in bank-
ing have recently surfaced in literature (see, for instance,
Repullo [27], Hackbarth [14], Mukuddem-Petersen and Pe-
tersen [22, 24], Bosch et al. [3], Fouche et al. [12]...). In par-
ticular, Mukuddem-Petersen and Petersen [22] suggested an
optimal portfolio choice and a rate of bank capital inflow
that will keep the loan level as close as possible to an ac-
tuarially determined reference process. In a paper [24], the
capital adequacy ratio can be optimized in terms of bank
equity allocation and the rate at which additional debt and
equity is raised. The dynamic programming algorithm for
stochastic optimization is employed to verify the results.
Afterwards, a general case of maximization problem with
Constant Relative Risk Aversion (CRRA) utility function
is discussed in [23] that determine an analytical solution
for the associated HJB equation in the case where the util-
ity functions are either of power, logarithmic or exponential
type. In this case, the control variates are the depository
consumption, value of the depository financial institution’s
investment in loans and provisions for loan losses.

The second approach developed by Pliska [26], Karatzas
et al. [15] and Cox-Huang [8] for complete markets relies on
martingale theory and convex optimization. These methods
frequently appear in research on the optimal asset allocation
of a pension fund or life insurance policy (Boulier et al. [4],
Campbell and Viceira [6], Brennan and Xia [5], Battocchio
and Menoncin [2],...). Furthermore, some recent papers used
martingale approach in analyzing the behavior of banks. In
Gideon et al. [13], by considering a theoretical quantitative
approach for bank liquidity provisioning, the authors used
martingale approach to solve a nonlinear stochastic optimal
liquidity risk management problem for subprime originators
with deposit inflow rates and marketable securities alloca-
tion as controls. In this case, they provided an explicit ex-
pression for the aggregate liquidity risk when a locally risk
minimizing strategy is utilized.

The groundbreaking work of Merton [19, 20] has an im-
practical assumption of constant interest rate while it is not
appropriate to assume a constant interest rate in portfolios
with a long horizon, such as banks. Indeed, understanding
the term structure of interest rates is essential for appraising
the interest rate risk of banks because: banks’ interest in-
come is at risk essentially by reason of the continuous move-
ments of interest rates. Future interest rates of borrowing or
lending-investing are unknown, if no hedge is contracted be-
fore. Banks tend to lend long and borrow short. When long-
term interest rates are above short-term interest rates, this
exposure of banks looks beneficial. Often, banks effectively
lend at higher rates than the cost of their debts because of
a positive spread between long-term rates and short-term
rates. Unfortunately, the banks’ interest income is at risk
with the changes of shape and slope of the term structure.
However, much less research efforts have been devoted to
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bank portfolio choice problem with stochastic interest rates.
The optimal portfolio choice for banks with stochastic in-
terest rates has been only discussed in the work of Witbooi
et al. [30]. The main novel feature of their research is the
combination of the interest rate model of Cox-Ingersoll and
Ross and the Cox-Huang methodology to a banking fund
portfolio. They obtained a closed form solution for the opti-
mal equity allocation strategy that will optimize the termi-
nal utility of the bank’s shareholders under a power utility
function. In fact, in some occasions they had to directly
quote some results from Deelstra et al. [9]. For some other
authors, a closed form solutions for some term structure
models is determined. For instance, Korn and Kraft [17]
investigated the case where interest rates follow a Vasicek
and Ho-Lee model. Sgrensen, [28], Wachter, [29], and Munk,
Sgrensen and Vinther, [25] suggested a similar problem un-
der the Vasicek interest rates model of a CRRA agent. Like-
wise, Bajeux-Besnainou et al. [1] and Kim and Omberg, [16],
considered the dynamic asset allocation problem for the Hy-
perbolic Absolute Risk Aversion (HARA) utility function
where investors can invest in a bank account, stocks and
bonds.

The closest literature to the present paper is the work of
Witbooi et al. [30]. Having the same objectives, they solved
for the exact solution of optimal portfolio strategies through
the advent of loans as a new asset class. The main differ-
ences between this work and ours are that: they consider
the Cox-Ingersoll and Ross interest rates model while we
include the Vasicek type model. The martingale method is
the means of finding the result against the present research
paper applies the dynamic programming principle to inves-
tigate the optimal asset allocation strategy. Moreover, the
portfolio includes treasuries, securities and loans while in our
study the bank can invest in a riskless asset and two risky
investment alternatives with risks depicted by the variance.
This is a scope of banks with low risk aversion to foster cap-
ital by attracting risk-free deposits which they use to invest
in risk-bearing loans. Therefore, there is more complications
to find a closed form solution of our portfolio choice prob-
lem. For this reason, we choose the CRRA utility function
because it is very tractable and the optimal asset alloca-
tion strategy is independent of wealth level. Another type of
portfolio choice problem related to this paper is the optimal
portfolio with defaultable assets established by Korn [18] in
the framework of Merton’s firm value model (see Merton
[21]). In this regard, our setup differs from that on the use
of options as investment classes and the presentation of the
worst-case investment approach that takes the possibility of
stock market crashes into account.

3. BANK PORTFOLIO MODEL

In this section, we show that the bank’s assets may be
modelled as random variables that are driven by an associ-
ated standard and independent Brownian motions and can



be bought and sold without incurring any transaction costs
or restriction on short sales. The uncertainty is modelled by
a probability space (2, F,P) where, F = {F;};>¢ is the fil-
tration generated by the Brownian motions W = {W(t),t >
0}.

The dynamics of a security price S(t) are presented by
the following stochastic differential equation (SDE):
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where, og is the security volatility, Ag denotes the risk pre-
mium. Under the Capital Asset Pricing Model (CAPM) it
could be quantified by the relation A\g = B[E(R) — Ry],
with E(R,,) is the market expected return, Ry is the risk-
free interest rate and S is the sensitivity of the expected
excess asset returns to the expected excess market returns.

The instantaneous interest rate dynamics r(t) are de-
scribed by an Ornstein-Uhlenbeck process:

(2)

where the parameter 6, p and o, are strictly positive con-
stants and correspond, respectively, to the degree of mean-
reversion, the long-run mean and the volatility of the inter-
est rate.

The interest rate term structure has the same form as
in Vasicek (1977). In particular, the price of a zero coupon
bond with time to maturity (T — t) is given by:

3)

dr(t) = 0(u —r(t))dt + o.dW,(1),
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where;
o2
a(r) = R(0o) (T = 1) = b(T' = 1)) + 5 (o(T — t)?,
b - = L ) 67;(%)),

and where R(0c0) = p + 25 — %g—; represents the yield to
maturity of a zero-coupon bond and A, denotes the interest
rate risk premium.

Any loan is essentially an interest rate contingent claim
and by It6 lemma, the dynamics of the loan price L(t) can
be assumed as follows:

dL(t)
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(4)
where A\, = M\.or + §. As in Merton [21] the default risk
premium, ¢ is the bank charged credit spread, which is the
function? of the probability of default PD and the loss given
default LG'D. It is also assumed that the investor available
loans have a constant duration D similar to a zero-coupon
bond expiring at the finite investment horizon. Hence, loans’
volatility is also constant and given by o, = o, D.

2Spread = PD*LGD.

Let X(t) denote the value of the bank asset portfo-
lio at time t € [0,7] and 7(t), ms(t) are the propor-
tions invested in the loans and securities, respectively. Then,
(1 — mp(t) — ws(¢)) is the proportion invested in the bank
account. Owing to the independence of the Brownian mo-
tions and the self-financing assumptions, the asset portfolio
value can be expressed as the following stochastic process:

d)f((tt)) — (1_7TL(t)_7rS(t))dB§—(Ejt)) +7TL(t)%Sf))
+7Ts(t)(fss—§f)>

= (r(t) + ()M + ms(t)Ag)dt
(5) (8oL dW, () + ms(t)osdWs(1),

where, X (0) = Xy stands for an initial wealth.

4. BANK OPTIMAL CONTROL PROBLEM

The bank shareholders expect a good return on their cap-
ital investment while minimizing the risk. In fact, bank man-
agement needs to strategically allocate the shareholders’ eq-
uity in order to maximize the terminal wealth. However, the
changes in the bank’s asset value are reflected in the share-
holders’ equity fluctuations prompting the bank to maximize
asset portfolio return relative to risk. In this regard, the as-
sociated utility function is assumed to belong to the CRRA
utility function class.

The control problem on a time interval [0,T] is defined
by:

sup E[U(Xr)],
w(.)EA
where,
X1
UX)= 0 1.
(X) - <7<

For a well posed control problem one needs additional as-
sumptions about admissible controls set to the effect that
the SDE (5) below admits a unique, strong and almost surely
positive solution. The set of admissible controls is given by:

A = {7r(.):7r(t)t6[oj]7 F- adapted,

T
(6) /0 (rr(t)or)? + (ms(t)og)?)dt < +oo, P — a.s.}.

In this case, the basic source of uncertainty are due to
changes in the interest rates or the value of the asset port-
folio. Moreover, the state variables in equation (5) can be
identified as the interest rates r(t), and the value of the as-
set portfolio X (t), and the control variables is the optimal
proportion 7(t).

We are going to solve this problem via stochastic control.
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Theorem. Suppose that J € CY2 is a solution of the HJB

equation

(7) J(t,r,x) = sup E[U(XE )],
w(t)eA

and the optimal asset allocation strategy (mj (t), 7§(t)), if it
exists

(w7 (t),m&(t)) = argmax J(t,r, X).
w(t)EA

Proof. We provide a mere outline of the proof.

Let w(t) € A and X(t) the corresponding asset portfolio
value process, hence, the HJB equation associated with the
optimal control problem is:

1
Je+ T (0(pn—r(t)))+ §JTT‘7£+ sup

{ij(r(t)—f'ﬂL(t))\L
w(t)EA

rs(ths) + 5 Txx X[(me (o)’ + (s (t)os)’
+ Jx, X[(7p(t)or + Ws(t)as)()'r:| = 0.

Here, Jy, J,., Jx, JrrJxx, and Jx, denote the first and
second-order partial derivatives with respect to t, » and X
in the normal way.

By applying the first-order conditions we get:

5 () = As JIx o Jxr
o 0% XJxx 05 XJxx'
X AL Jx or Jxr
m(t) = — 0

gXJXX 7EXJXX.

The standard approach to solve this kind of PDE is to
try for separability condition. In Merton [20], the separa-
bility condition in wealth by product represents a common
assumption in the attempt to solve explicitly optimal port-
folio problems. Specifically, in order to obtain smooth an-
alytic solution to the maximization problem, we choose a
power utility function. The value function J can be rewritten
as:

(®)

with terminal condition f(7,r) =1 for all r.

Substituting the partial derivatives of the value function
(8) and the optimal proportions 7(¢)* into HJB equation,
leads to a second-order PDE for f of the form:

J(t,r, X)=X"(T)f(¢t,7),

(= DFfo+ (= D70 = () + 51 = 1)f foro?

1, [X2 A2 AL As
+(y =D f*r =5 f? {—é + —5} —ffr {—L + —] oy
o7 0% oL Os
77.](.7“20—72" = 07

with the terminal condition f(T,r) =1 for all r.
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Therefore, by conjencture, a solution of J have the fol-
lowing form: f(t,r) = g(t) exp (A(t)r)*® with terminal con-
ditions: g(T) =1, A(T) = 0.

Simplifications yields:

(v =19+ (v = )(A'(t) + v = A(t)6).rg

The conjencture for f is only meaningful, if A can be calcu-
lated so the factor «(t) becomes zero. As a result we have to
solve the inhomogeneous ODE for A which has the following
form:

A(t) = A(t) — 7,

with A(t) = 0 leading to: A(t) = Z[1 — exp(0(T —t))].
Choosing A as calculated, a first-order homogeneous
ODE for g is obtained again:

(v —=1)g" +h(t)g =0,

with g(T") = 1. Hence,

9(0) = exp | L (o)~ H(T)|.

v—1

with H(t) is the primitive of h(t) (see appendix A).
Therefore,

J(t,r, X) = X" exp [ (%H(t) - H(T))

_|_

|2

(1 —exp(6(T — t)))r] .

and the optimal solution of the portfolio choice problem:

1 Ag B vork(t)

1—7% 1—x "’
N 1 AL ~york(t)
@ o = -
yog 1—7v
———

Merton result Correction term

e—0(T—1)

The optimal proportions of power utility function are con-
tinuous function of time and directly related to the interest
rate. The solution confirms the conjencture of the separable
value function J. The first term coincides with the classical

31s the solution of PDE with g and A are regular functions.



optimal one in Merton [20] when the coefficients are deter-
ministic. The second term can be interpreted as a correction
term, positively and monotonously decreasing to zero up to
the terminal date T.

5. NUMERICAL RESULTS

In this section we present the numerical results for op-
timal control program with power utility function. The in-
vestment horizon is set to 10 years and the degree of risk
aversion is vy = 0.5.

The estimation of parameters related to the risk and re-
turn of each asset is a more difficult task since the con-
fidential nature and the little data sample. The estima-
tion is based on maximum likelihood method* using his-
torical data collected from over the counter market and the
Tunisian stock exchange for the period 2004—2012. The in-
terest rate parameters are adopted from the estimation of
the Vasicek term structure® using the 52 weeks Treasury
bond yields. Most bank loans are divided into corporate
and consumer categories, respectively. However, we focus
on corporate loans only because there is no information for
consumer loans. The loans have constant duration similar
to a 10 year zero-coupon bond. Using the historical bank fi-
nancial statement data (Balance sheet and Cash flow state-
ment) and by calibrating the Merton’s [21] model we get the
parameter of the loan’s volatility and the default risk pre-
mium®. Regarding the securities, they are represented by
a portfolio of three SICAV”(SICAV Prosperity, SICAV Op-
portunity and SICAV Tresor). The estimation results are
displayed in Table 1. Fig. 1 highlights how the evolution
of the optimal asset allocation strategy is actually affected
by the realization of the stochastic variables characterizing
the economy. The optimal asset allocation strategy, shows
that the optimal proportion invested in the bank account
(represented by the downward sloping curve) decreases from
75.68% to 23.57%. On the other hand, the optimal propor-
tion invested in securities and loans increase with respect to
time. In particular, the loans’ proportion rises from an initial

4See Appendix B, C and D for more detail.
5See Chakroun and Abid, [7].
6

Default risk premium = R(7) —r = _L In {d)(hg) + éqﬁ(fhl)} ,
T

where;

h = (@) = (+ 5o3)rl/on VT,
hg = ]’Ll - O’L\/ﬂ_ﬂ

We denote by: R(7) is the yield to maturity on the loans, 7 =T — ¢ is
length of time until maturity, o, is the loan’s volatility, D is the deposit
reimbursed at time T and ¢(.) is the cumulative Normal distribution
function.

"Investment company with variable capital held by the bank.

Table 1. Parameter values

Definition Symbol  value Standard Error
Interest rate premium Ar 0.0002 5.26 x 107°
Mean rate U 0.044  6.96 x 107°
Volatility oy 0.0003  4.47 x 107°
Mean-reversion 0 0.0037  2.53x 107"
Securities risk premium  Ag 0.007 2.27 x 107*
Securities volatility os 0.046 1.5x107*
Default risk premium 1 0.023 3x 1074
Loans volatility oL 0.1 0.0062
Investment horizon T 10

0.8 T T T T T T T T

o —— Securities
07t Tl — == Loans
e — = Bank account

06

Proportions
o o o
w £ (8]

o
N

0.1

Time

Figure 1. Optimal proportions invested in bank account,
loans and securities.

value of about 19.94% to just above 46%, while the propor-
tion invested in the securities increases from an initial value
close to 4.38% to a proportion of about 30.43%. However,
the bank account plays a residual role in the optimal portfo-
lio composition. At the beginning of the investment period,
the need of a conservative strategy for creating a higher
wealth level and a lower risk leads to a high proportion of
bank account in the optimal portfolio, while the investment
in the loans and securities asset is very low. Consistently,
as time approaches to maturity T, a shift in wealth from
bank account investment to the risky assets will be noticed.
The riskiness of strategy increases both the investment in
securities and loans increases and the proportion of wealth
invested in the bank account decreases. Then, the bank man-
ager maintains a diversified portfolio until maturity with a
high percentage of wealth is allocated to the loans. These re-
sults are very intuitive and reasonable since it indicates that
the bank optimal strategy is to borrow money to invest in
securities.
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Figure 3. Effect of the risk aversion degree.

To test how sensitive the optimal strategy is to changes
in the different underlying variables, we have performed a
sensitivity analysis, keeping the parameters in Table 1 and
changing each time the value of one parameter.

Fig. 2 shows for a given value of gamma (y = 0.5), how
the proportions are modified as time passes. With horizons
ranging from 5 years to 15 years the proportion in bank
account increases and remains positive. However, the allo-
cation to loans and securities decrease as the investment
horizon increases. As a result, it seems that a long horizon
bank manager behaves more conservatively. Fig. 3 presents
the effect of varying the degree of risk aversion. The optimal
asset allocation strategy is quite sensitive to the risk aver-
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sion. For a given time horizon (¢ € [5,10]) the proportion
invested in securities and loans increases with risk aversion.
For shorter horizon and higher risk aversion, the proportion
in a bank account remains positive. However, the allocation
to the asset are constant across time for a risk aversion lower
than 0.8 and the investment behavior seems to be stabilized
until maturity. Fig. 4 shows the effect of changes the mean-
reversion parameter on the proportions of the optimal asset
allocation strategy. Obviously, increasing the interest rate
mean-reversion parameter has the same impact on the al-
location of the loans and securities. As time approaches to
maturity, the asset allocation is relatively insensitive to the
interest rate mean-reversion parameter. As a consequence, a
strong correlation has been established between assets and
interest rate. In order to monitor the fluctuations in the
interest rate, in practice, the securities may partially be
used to hedge real interest rate uncertainty. Increasing inter-
est rate volatility causes the bank manager to shift money
from securities and loans into a bank account (see Figure 5).
Therefore, this result can be explained by the fact that the
loans and securities becomes more risky for the same risk
premium. Varying the interest rate long-run mean has no
effect. This is linked to the assumption of CRRA utility
function, which yields proportions that are mainly a func-
tion of the risk premiums and independent of the interest
rates level.

Our analysis has great potential implications on the bank
management. Indeed, it is often said that the portfolio choice
is an important decision making and a key source of compet-
itive advantage. Actually most bankers implicitly promote
an ALM approach to bank asset management. In particu-
lar, ALM cannot be separated from the decision about how
much equity the bank owner should invest. This means that
banking decisions and equity policies have to be simulta-
neously addressed by bank managers. In our research, we
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provide a simplified framework suggesting that ALM can
ensure that bank managers are able to adequately manage
their asset portfolios. Our analysis shows that taking an
ALM approach generates two main benefits. First, it has a
direct impact on the selection of asset classes, in particu-
lar, it leads to a focus on the liability hedging properties of
various asset classes. Second, it leads to define the risk and
returns in relative rather than in absolute terms, with the
liability portfolio used as a benchmark or numeraire. This is
a critical improvement on the portfolio choice models which
fail to recognise that changes in the asset values must be
analysed in comparison to the changes in the liability val-
ues.

This work can be extended in a number of directions.
First, it would be desirable to incorporate the impact of
inflation risk in the analysis of the optimal asset allocation
strategy. Other elements that are left for further research
are the introduction of capital adequacy decisions as well as
the extension of the portfolio choice model to more general
forms of state dependent optimal allocation strategies.

6. CONCLUSION

This paper addresses the problem of bank optimal portfo-
lio choice. The bank shareholders have a power utility func-
tion and can invest in the bank account, securities and loans
in a complete market setting where the Vasicek term struc-
ture model applies. The solution approach is based on the
dynamic programming principle. Indeed, a verification theo-
rem claims that the related HJB equation has a closed form
solution under the separation condition. The estimation of
parameters is based on the maximum likelihood method.
With this parameterization a case study confirms the prac-
tical potential of the results and shows that this model can

adequately account for the essential aspects of the bank.
The sensitivity analysis highlights the importance of dy-
namic considerations in optimal asset allocation depending
on the stochastic characteristics of the investment opportu-
nity set.
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APPENDICES

Appendix A
H(t) is the primitive of h(t), by replacing A(t) we get:
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Appendix B

The estimation of the Vasicek parameters which max-
imise the likelihood function. Given N observations of 52-
week Treasury bond yields {r¢,,i = 1, ..., N}. The likelihood
function is as follow:

N-1

L) = [] plreclres b ),

i=1

(10)

with At time step, ¥ = (0, u,0) a parameter vector to be
estimated and p(r;|¢)) defined as the transition function of
the Vasicek and CIR process respectively. Then, the log-
likelihood function is,

N—-1
(11) ML) = Y Inp(re,,|re;v; At).
=1

Therefore, the maximum likelihood estimator zﬁ of parame-
ter vector v is:

¢ =(0,11,6) = argmax In L(¢)).
P

(12)

Moreover, the application of the maximum likelihood re-
quires the specification of the transition function of each
process. Hence, the conditional density function for Vasicek
model is given by:

P(regaelre; ¥, At)
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with, 02 = &21_%020&. The corresponding log-likelihood

function is:

In L(v) = f% In(27) —

1 X
-3 Z [ —— e~ 0At _ 1 (1 _ efeAt)

Nln(o)

2

Appendix C

Let X, Y and Z be three random variables that define the
SICAV Opportunity, SICAV Prosperity and SICAV Tresor,
respectively. In order to determine the maximum likelihood
function, we only consider random variables with multivari-
ate normal transition density,

B BN TEEE )

T, X
where, u € RY is the mean vector and ¥ € RN*N
is symmetric and positive definite covariance matrix.
Where,

Ky, Ky,
2—1 — . .

Kn,l Kn,n

The maximum likelihood estimation of the parameters
(1, X) of a multivariate distribution X ~ N(u,¥) can be
solved efficiently as a convex optimization problem.

The log-likelihood function of the observations is:

N
L(z;p, 2 lan x;) = —?lndet(Z)

- 521‘(% —)TE (@i — ).

LNz and £ =
Then, the likelihood function can

Define the sample estimates g =
NI (2 — @) (2 — )T
be written as:

L(z;p, %) = g(—ln(det(E)

—(p ="

—Tr(27'%)

— [1))-

Thus, the maximum likelihood problem is as follows:
maxIndet(K) — Tr(KY).

In our implementation we used the Tunisia Stock Market
index (TUNINDEX) to estimate the risk premium.
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Appendix D

The estimation of Merton’s [21] parameters are proposed
by Duan et al. [10, 11] based on the transformed-data max-
imum likelihood estimation method.

The loan value process follows the geometric Brownian
motion, we can derive its discrete-time form with time step
Ti — Ti—1 — h as:

2
InL :lnLn—F(u—%)h—l—U\/heHl,
where, €¢;,7 =1, N are i.i.d standard normal random vari-
ables. We denote the log-likelihood function of observed data
set under a specific model as L(6; data) where 6 is the set of
unknown parameters under the model. The maximum like-
lihood estimation is to find the value of 8 at which the data
set has the highest likelihood of occurrence under Merton
[21] model and assuming that one could directly observe the
firm’s loan values {Lg, L, ..., L} the log-likelihood func-
tion could be written as:

Ti4+1

L"(ur,op; Lo, L, .. Lk)

(R — (p

n

n 2 1
:—511'1 27'('— —5;

_O—L

Zln Lin,

where, Ry, = ln(ﬁ)

Recognizing that Merton’s [21] model implicitly provides
a one-to-one smooth relationship between the equity FE(t)
and loan values, one can invoke the standard transforma-
tions to derive the log-likelihood function solely based on
the bank observed equity data. If we denote the density of
the loan value as f(L), the density associated with the eq-
uity will be given by f(L)| % |. Applying this knowledge
yields the following log-likelihood function on the bank ob-
served equity data:

(13)  L®(pr,or; Eo, En, ... Enp)
=Lt (ﬂLaaL;i/O(UL)ai/h(JL)a ~'~7f/nh(UL))
7ZIH dkh O’L ))
where, ﬁkh(UL) = g YEgp;or) and din =
N 2
1n(Lkh(0L;f\)/;(iZf(Tikh). One can easily find the
maximum-likelihood estimates by numerically maxi-

mizing the function (13) based on the function fmincon in
MATLAB. Then, the estimation procedure is as follows:

Step 1: Estimate the Merton [21] model using the log-
likelihood function in equation (13).

Step 2: Compute § which represent the point estimates
for default risk premium.
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