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Sieve bootstrap monitoring persistence change
in long memory process
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∗
, Zheng Tian, and Yuhong Xing

This paper adopts a moving ratio statistic to monitor per-
sistence change in long memory process. The limiting dis-
tribution of monitoring statistic under the stationary long
memory null hypothesis is derived. We show that the pro-
posed monitoring scheme is consistent for stationary to non-
stationary change. In particular, a sieve bootstrap approxi-
mation method is proposed. The sieve bootstrap method is
used to determine the critical values for the null distribu-
tion of monitoring statistic which depends on unknown long
memory parameter. The empirical size, power and average
run length of the proposed monitoring procedure are eval-
uated in a simulation study. Simulations indicate that the
new monitoring procedure performs well in finite samples.
Finally, we illustrate our monitoring procedure using a set
of foreign exchange rate data.
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1. INTRODUCTION

Since the founding of regime switch between trend sta-
tionary and difference stationary by De Long and Summers
(1988) [13], there is a growing body of evidence shown that
economic and financial time series display changes in per-
sistence. This has been an issue of substantial empirical
interest, especially concerning inflation rate series, short-
term interest rates, government budget deficits and real out-
put. Recently, a number of testing procedures have been
suggested that aim to distinguish such behavior. These in-
clude, inter alia, ratio tests (Kim (2000) [21]), LBI tests
(Busetti and Taylor (2004) [1]), CUSUM of squares-based
test (Leybourne et al. (2007a) [23]). More recently, Cava-
liere and Taylor (2008) [3] considered persistence change test
under non-stationary volatility innovation case, Sibbertsen
and Kruse (2009) [28] studied long-range dependence in-
novation case, Hassler and Scheithauer (2011) [17] applied
ratio tests and LBI tests to detect change point from short
to long memory. Since multiple change-point test also is an
important issue in change point analysis, Leybourne et al.

∗Corresponding author.

(2007b) [24] proposed a multiple change points detection
procedure based on sequences of doubly-recursive implemen-
tations of the regression-based unit root statistic of Elliott
et al. (1996) [14]. Chen et al. (2012b) [7] proposed a moving
ratio statistic to test multiple persistence changes in infinite
variance linear processes. The finite variance case had been
studied by Chen and Tian (2012a) [6] via a modified ra-
tio statistic for the traditional ratio statistic is sensitive for
variance change (Chen and Tian (2014) [9]). Kejriwal et al.
(2012) [20] adopted a Wald statistic to test multiple struc-
tural changes in persistence. Martins and Rodrigues (2012)
[25] and Hassler and Meller (2013) [18] considered multiple
change point detecting problem in long memory process and
illustrated their test procedure by some inflation rate series.

All of the above works are a retrospective test, namely,
detect change point in a fixed historical sample. How-
ever, many economic and financial data arrive steadily and
cheaply. It is desirable to sequentially detect whether the
new arrival of data can be described by the current model
or indicates that a change in the stochastic structure has
taken place. This leads to a sequential test also which is
an important issue in change point analysis. For surveys we
refer the reader to Chu et al. (1996) [10], Gombay and Ser-
ban (2009) [16], Chen and Tian (2010b) [5] among many
others. Steland (2007) proposed a kernel weighted variance
ratio statistic to monitor change in persistence. Chen et al.
(2012c) [8] extended the results to infinite variance case. For
the kernel weighted variance ratio statistic does not provide
a consistent monitoring procedure for I(1) to I(0) change,
Chen et al. (2010a) [4] proposed a moving ratio statistic to
overcome this problem. However, all these tests stay in the
classical I(1)/I(0) framework.

It is broadly accepted that many economic variables ex-
hibit long-range dependencies that cannot be covered by the
classical framework. Also in the more flexible I(d) frame-
work, 0 ≤ d < 3/2, it is crucial to know whether the mem-
ory parameter is in the stationary or in the non-stationary
region throughout or whether there is a change in persis-
tence. Chen et al. (2012b) [7] showed by simulation that the
moving ratio statistic also has power to distinguish such be-
havior, but it undergoes serious size distortions if one uses
critical values which are obtained at the short memory case.
In this paper, we derive the limiting distribution of our pro-
posed moving ratio monitoring statistic under the stationary
long memory null hypothesis. The derived limiting distri-
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butions are functionals of fractional Brownian motion de-
pending on long memory parameter. We further prove the
consistency of our monitoring procedure under the alterna-
tive hypothesis. In order to determine the critical values of
the monitoring statistic which contains unknown long mem-
ory parameter, we propose a sieve bootstrap approximation
method. The sieve bootstrap method was first introduced by
Bühlmann (1997) [2]. Since then, many authors have stud-
ied this method. For surveys we refer the reader to Park
(2002) [26] and references therein. Poskitt (2008) [27] stud-
ied the properties of the sieve bootstrap for fractionally in-
tegrated series and concluded that the sieve bootstrap is
particularly useful in analyzing fractionally integrated pro-
cess. Gerolimetto and Procidano (2008) [15] has studied
fractional cointegration test using sieve bootstrap. Although
Kirch (2008) [22] has argued that bootstrap method per-
forms well to sequentially detect change point in online data,
there are few papers that concentrate on sieve bootstrap for
online long memory process. Our simulations indicate that
the sieve bootstrap method proposed in this paper can not
only circumvent the estimation of long memory parameter,
but also can obtain asymptotically correct critical values of
the moving ratio monitoring statistic. Finally, we illustrate
our monitoring procedure via some Sweden/U.S. foreign ex-
change rate data.

The rest of the paper is organized as follows. Section 2
introduces the model and monitoring procedure. Section 3
shows the sieve bootstrap approximation method. In Sec-
tion 4 we use Monte Carlo method to evaluate the finite
sample performance of our monitoring procedure and sieve
bootstrap method, an empirical application example also
will be reported in this section. We conclude the paper in
Section 5. All technical proofs of the theoretical results are
gathered in the Appendix Section.

2. MONITORING PROCEDURE

Let y1, y2, . . ., be an observed time series that can be de-
composed as

(1) yt = μt + xt, (1− L)dxt = εt, t = 1, 2, . . . ,

where μt = E(yt) = δ′γt is a deterministic component
modelled as a linear combination of a vector of nonrandom
regressors γt. Typical components of γt are a constant, a
time trend or dummy variables. This paper concentrates on
γt = 0, γt = 1 and γt = (1, t)T three different typical com-
ponents. Namely, μt = 0 if γt = 0, μt = δ0 �= 0 if γt = 1,
and μt = δ0 + δ1t with δ1 �= 0 if γt = (1, t)T. δ0 and δ1 are
unknown parameters. Random component xt is the fraction-
ally integrated process, in which L is the lag operator, εt are
i.i.d. random variables with mean zero and variance σ2. xt

has the MA representation

(2) xt =

∞∑
j=0

wj(d)εt−j

where, letting Γ(·) denotes the gamma function,

wj(d) =
Γ(d+ j)

Γ(d)Γ(1 + j)
.

The degree of integration of yt is therefore solely deter-
mined by the memory parameter d. The memory param-
eter is restricted to 0 ≤ d < 3/2. Note that the process
yt is a stationary long memory process if 0 < d < 1/2,
the process yt is a non-stationary long memory process
if 1/2 < d < 3/2. To simplify the notation we denote
yt ∼ I(d1) with 0 < d1 < 1/2 if yt is a stationary long
memory process, and yt ∼ I(d2) with 1/2 < d2 < 3/2 if yt
is a non-stationary long memory process.

We focus on the following change point problem: ob-
serve sequences y1, y2, . . ., and detect whether a stationary
to non-stationary change occurs in long memory process (1),
namely, we want to test the null hypothesis

(3) H0 : yt ∼ I(d1), t = 1, 2, . . . , T,

against the alternative hypothesis

H1 : yt ∼ I(d1), t = 1, . . . , k∗,(4)

yt ∼ I(d2), t = k∗ + 1, . . . , T.

where T denotes the largest monitoring sample size, k∗ is the
unknown change point. Our monitoring procedure is based
on the following assumption:

Assumption 2.1. Assume yt ∼ I(d1), t = 1, . . . , [Tτ ],
τ ∈ (0, 1).

This assumption is similar to the “noncontamination as-
sumption” of Chen and Tian (2010b) [5] who monitors pa-
rameter changes in linear regression models. We start from
the ([Tτ ] + 1)st sample sequentially detect I(d1) to I(d2)
change until time horizon T by the following moving ratio
statistic

ΓT (s) =

∑[Ts]
t=[Ts]−[Tτ ]+1(

∑t
i=[Ts]−[Tτ ]+1 ε̂1,i)

2∑[Tτ ]
t=1 (

∑t
i=1 ε̂0,i)

2
,(5)

where [x] denotes the largest integer smaller than x, ε̂1,i
represents the OLS residuals from the regression of yt on γt,
t = [Ts] − [Tτ ] + 1, . . . , [Ts], and ε̂0,i represents the OLS
residuals from the regression of yt on γt, t = 1, . . . , [Tτ ].

The denominator and numerator of statistic (5) have the
same converge rate if yt keep I(d1) process. On the con-
trary, the denominator has a faster converge rate than the
numerator if yt occur a change from I(d1) to I(d2) at time
t > [Tτ ]. This causes the statistic (5) to diverge to infinity.
So, we can define the stopping time as

RT (n) = min{[Tτ ] < n ≤ T : ΓT (n/T ) > c},(6)

with the convention min{Φ} = T for some critical value c.
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Before deriving the asymptotic distribution of statistic
(5), we have to define type I fractional Brownian motion
(see Davidson and Hashimzade (2009) [12])

Wd(r) =
1

Γ(d+ 1)

∫ r

0

(r − s)ddB(s)

+
1

Γ(d+ 1)

∫ 0

−∞
[(r − s)d − (−s)d]dB(s),

where −1
2 < d < 1

2 and B denotes regular Brownian motion.

Theorem 2.1. If Assumption 2.1 holds, then under the null
hypothesis (3)

ΓT (s) = Υ(s) ⇒
∫ s

s−τ
(Uj,0(d1, u))

2
du∫ τ

0
(Uj,1(d1, u))

2
du

,

where ⇒ denotes weak convergence, Uj,0(d1, u) and
Uj,1(d1, u), j = 1, 2, 3 are functionals of type I fractional
Brownian motion Wd1(·), j = 1 denotes γt = 0, j = 2 de-
notes γt = 1 and j = 3 denotes γt = (1, t)T,

U1,0(d1, u) = Wd1(u);

U1,1(d1, u) = Wd1(u)−Wd1(s− τ);

U2,0(d1, u) = Wd1(u)− uτ−1Wd1(τ);

U2,1(d1, u) =
s− u

τ
(Wd1(s)−Wd1(s− τ))

− (Wd1(s)−Wd1(u)) ;

U3,0(d1, u) = Wd1(u)−
3u2(2− τ)− 2uτ(3− τ)

2τ3
Wd1(τ)

− 3u(u− τ)

τ3

∫ τ

0

Wd1(v)dv;

U3,1(d1, u) = Wd1(u− s+ τ)

− 6τ(s− u)K

∫ s

s−τ

Wd1(v)dv

− τ [6s(s− u− 1) + 6u]KWd1(τ)

+ τ2(τ − 3s+ 3u)KWd1(τ);

and

(7) K =
u− s+ τ

4τ (s3 − (s− τ)3)− 3τ2(2s− τ)2
.

Theorem 2.1 implies that

RT (s)
d→ min{τ < s ≤ 1 : Υ(s) > c}, as T → ∞.

Theorem 2.1 supplies the asymptotic distribution of mon-
itoring statistic ΓT (s) when innovation process {εt,−∞ <
t < ∞} in model (1) are i.i.d. In fact, this result is still hold
when innovation process {εt} satisfies the following Assump-
tion 2.2. For more detail discussions about this assumption,
we refer the reader to Davidson and De Jong (2000) [11].

Assumption 2.2. The mean zero sequence {εt}
(1) is uniformly Lr-bounded for r > 2,

(2) is L2-NED of size −1/2 on Vt with dt = 1, where Vt

is either an α-mixing sequence of size −r/(r − 2), or a
φ-mixing sequence of size −r/(2(r − 1)),

(3) is covariance stationary, and

0 < σ2
ε = lim

n→∞
n−1

n∑
t=1

n∑
s=1

E(εtεs) < ∞.

Corollary. If the innovation process {εt,−∞ < t < ∞} in
model (1) satisfies Assumption 2.2, then Theorem 2.1 still
holds.

The following Theorem 2.2 shows the consistency of mov-
ing ratio statistic (5) for stationary to non-stationary per-
sistence change.

Theorem 2.2. Under Assumption 2.1 or 2.2, if there oc-
curs a change from I(d1) to I(d2) at [Tτ

∗], then we have

ΓT (s) = Op(T
2(d2−d1)), s ∈ (τ∗, 1].

3. SIEVE BOOTSTRAP APPROXIMATION

One drawback of statistic ΓT (s) is that having asymptotic
distribution depends on long memory parameter d1. In order
to avoid estimating this nuisance parameter, we now resort
to the bootstrap methodology. The object of this section
is to develop an approximation to the null distribution of
statistic ΓT (s), even if long memory parameter is unknown.
We will now explain how the sieve bootstrap is applied in
our context.

The steps of our sieve bootstrap methodology are con-
structed as follows:

Step 1. Having observed the first [Tτ ] samples of training
sample y1, y2, . . . , y[Tτ ], compute the OLS residuals x̂t =

yt − δ̂′γt.
Step 2. We fit autoregressive processes to the residuals

x̂t = β1x̂t−1 + β2x̂t−2 + · · ·+ βp(T )x̂t−p(T ) + εt

with fixed p(T ) = 10 log10([Tτ ]) and white nose εt, then,
choose an optimal p using the AIC criterion, p = pAIC .
Then, we obtain the estimated coefficients β̂1, β̂2, . . . , β̂[Tτ ]

via the Yule-Walker equation.
Step 3. Using β̂1, β̂2, . . . , β̂p we construct a set of resid-

uals from the fitted process

ε̂t =

p∑
j=0

β̂j x̂t−j , β̂0 = 1, p+ 1 ≤ t ≤ [Tτ ].

Step 4. Compute the centered residuals

ε̃t = ε̂t −
1

T − p

[Tτ ]∑
i=p+1

ε̂i

Step 5. Select with replacement a sieve bootstrap resid-
uals {ε∗j , j = 1, . . . , T} from {ε̃j , j = p+ 1, . . . , [Tτ ]}.
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Step 6. Generate sieve bootstrap observations x∗
t using

ε∗j according to

x∗
t = β̂1x

∗
t−1 + β̂2x

∗
t−2 + · · ·+ β̂px

∗
t−p + ε∗t , t = 1, . . . , T,

y∗t = δ̂′γt + x∗
t ,

where the order p was chosen in Step 2, and the starting p
observations x∗

p−1, x
∗
p−2, . . . , x

∗
0 can be set equal to ȳ[Tτ ] =

1
[Tτ ]

∑[Tτ ]
t=1 yt.

Step 7. Calculate the statistic

Γ∗
T (s) =

∑[Ts]
t=[Ts]−[Tτ ]+1(

∑t
i=[Ts]−[Tτ ]+1 ε̂

∗
1,i)

2∑[Tτ ]
t=1 (

∑t
i=1 ε̂

∗
0,i)

2
,

where ε̂∗1,i denotes the OLS residuals from the regression of
y∗t on γt, t = [Ts]− [Tτ ] + 1, . . . , [Ts], ε̂∗0,i denotes the OLS
residuals from the regression of y∗t on γt, t = 1, . . . , [Tτ ].

Step 8. Repeat Step 5 to Step 7 B times, approximate the
asymptotic critical value of statistic ΓT (s) by the empirical
quantile of Γ∗

T (s).

Remark: Kapetanios and Psaradakis (2006) [19] have es-
tablished this procedure’s asymptotic validity in approxi-
mating sample mean and covariance of long memory pro-
cess. The advantage of the above sieve bootstrap is that we
only have to calculate the critical values once at the begin-
ning of the monitoring period. Although we have only few
historical data to base on a bootstrap for a much longer
time series, simulations which will be listed in the next sec-
tion show that this sieve bootstrap controls empirical size
well and gives satisfactory empirical power. We do not con-
struct sieve bootstrap procedure based on all data available
up to monitoring time point or updated bootstrap procedure
which has been proposed by Steland (2006) [29] not only be-
cause these procedures are computationally very expensive,
but also they will lose some test power.

4. SIMULATIONS AND EMPIRICAL
APPLICATION

4.1 Simulations

In this section, we use Monte Carlo methods to investi-
gate the finite sample performance of our monitoring proce-
dure introduced in Section 2 and sieve bootstrap approach
proposed in Section 3. First, we consider the following data
generating process (DGP)

(8) yt = r0 + r1t+ xt, xt =

J∑
j=0

wt−j(d)εj , t = 1, . . . , T,

where r0, d are parameters, and J is some given constant.
{εt} are i.i.d. N(0, 1) innovations and

(9) w0(d) = 1, wj(d) =
j + d− 1

j
· wj−1(d).

The values of parameters in model (8) were chosen to be
J = 1,000, long memory parameter d varying among 0.1,
0.3, r0 = 0.1 for de-meaned data, and r0 = r1 = 0.1 for
de-trended data. Throughout this section we fix the sieve
bootstrap frequency B = 500. The start time was set to be
τ = 0.2, 0.3, sample size T = 200, 500, and all simulations
are obtained by 1,000 replications at α = 5% nominal level.

Table 1 reports the empirical sizes of monitoring statis-
tic ΓT (s) both asymptotic and bootstrap for the de-meaned
data. The empirical sizes for the de-trended data are listed
in Table 2. The asymptotic critical values are obtained via
direct simulation from 1,0000 repetitions by setting T =
1,000 in model (8). From these two tables we can see that
both tests exhibit similar size distortions, and all these size
distortions becoming light as sample size or start time in-
creases. Although the value of long memory parameter also
has some influence to the empirical size, we can not conclude
that a larger value gives more severe size distortion. This
indicates that our proposed sieve bootstrap procedure in
Section 3 gives asymptotic correct critical values for statis-
tic ΓT (s) under the stationary long memory null hypothesis.
This supports the motivation of Section 3. Since the size dis-
tortion of statistic ΓT (s) is still not significant if d = 0, we
say that our proposed sieve bootstrap method is still robust
for short memory process. Compare Table 1 and Table 2
we can see, it gives lighter size distortion for the de-meaned
data. We think it mainly because one has to estimate one
more unknown parameter under the de-trended case.

To investigate the alternative performance of the pro-
posed monitoring procedure and the sieve bootstrap approx-
imation method, we consider the following DGP

yt = r0 + r1t+ xt,

xt =

{
xk∗+1 +

∑J
j=0 wj(d1)et−j , t = 1, 2, . . . , k∗,∑J

j=0 wj(d2)et−j , t = k∗ + 1, k∗ + 2, . . . , T,

(10)

where r0, r1, wj(d) and et have same definitions as in (9).
DGP (10) shows that the long memory parameter d1
changes to d2 at change point k∗. We add the value xk∗+1 in
the first k∗ samples. We just want to delete the sharp change
point at k∗. To evaluate the influence of change point loca-
tion, we are varying k∗ among 0.3T, 0.5T and 0.7T . The
empirical powers and average run length (ARL) which is
defined as the average sample number between change time
and giving signal time, for the de-meaned and de-trended
data are presented in Table 3 and Table 4 respectively. From
these tables, we can see that the empirical power increases
as sample size or start time increases. This is an expected re-
sult for our monitoring procedure which is a consistent test.
Further, a smaller start time and larger change size provide
shorter ARL, larger distance between start time and loca-
tion of change often causing the signal to come late. These
conclusions are similar to Chen et al. (2010) [4] who ob-
tained it under the short memory null hypothesis. Although
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Table 1. Empirical sizes with de-meaned data

τ = 0.2 τ = 0.3
T d = 0 d = 0.1 d = 0.3 d = 0 d = 0.1 d = 0.3

Bootstrap 200 0.047 0.054 0.057 0.054 0.061 0.045
500 0.050 0.048 0.052 0.048 0.059 0.049

Asymptotic 200 0.053 0.055 0.058 0.052 0.044 0.055
500 0.049 0.047 0.051 0.050 0.052 0.046

Table 2. Empirical sizes with de-trended data

τ = 0.2 τ = 0.3
T d = 0 d = 0.1 d = 0.3 d = 0 d = 0.1 d = 0.3

Bootstrap 200 0.054 0.057 0.060 0.051 0.060 0.055
500 0.055 0.053 0.058 0.052 0.062 0.064

Asymptotic 200 0.047 0.054 0.058 0.050 0.043 0.056
500 0.051 0.052 0.053 0.048 0.051 0.058

Table 3. Empirical powers and ARL with de-meaned data

k∗ = 0.3 k∗ = 0.5 k∗ = 0.7
T d τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3

200 0.1 → 0.6 0.318 0.409 0.260 0.328 0.186 0.246
[57.2] [65.3] [39.6] [47.6] [14.7] [21.7]

0.1 → 0.9 0.629 0.765 0.576 0.681 0.441 0.499
[49.9] [51.5] [37.0] [43.6] [22.4] [27.0]

0.3 → 0.6 0.188 0.229 0.163 0.204 0.125 0.153
[57.2] [67.1] [34.7] [40.5] [3.26] [16.8]

0.3 → 0.9 0.447 0.573 0.388 0.495 0.294 0.337
[54.2] [59.8] [38.4] [44.7] [17.0] [27.2]

500 0.1 → 0.6 0.491 0.563 0.423 0.503 0.306 0.375
[132] [144] [101] [105] [52.6] [67.7]

0.1 → 0.9 0.879 0.951 0.851 0.884 0.708 0.791
[96.9] [94.2] [82.2] [84.8] [55.0] [65.9]

0.3 → 0.6 0.255 0.327 0.193 0.253 0.153 0.201
[135] [156] [103] [110] [38.8] [51.4]

0.3 → 0.9 0.724 0.820 0.603 0.739 0.509 0.518
[116] [129] [93.2] [106] [56.5] [66.6]

it gives lower empirical power and longer ARL for the de-
trended data than the de-meaned data, the main conclusions
are similar. This result is similar to the results of Sibbertsen
and Kruse (2009) [28] who obtained it in the retrospective
test.

In order to check whether our proposed monitoring pro-
cedure still works in a more general model, we also perform
some simulation by set xt in model (8) follow

(11) (1− 0.5L)(1−B)dxt = εt,

and

(12) (1−B)dxt = (1 + 0.5L)εt.

DGP (11) is an ARFIMA(1,d,0) model, and DGP (12)
is an ARFIMA(0,d,1) model. The other parameters have
the same assumptions as in model (8) and (10). The em-
pirical size and power, ARL at sample size T = 200 for

de-meaned data are reported in Table 5 and Table 6 re-
spectively. From Table 5 we can see that our monitoring
procedure can still control the empirical size well for a small
long memory parameter value. The size distortion becomes
sever for a larger value of long memory parameter. Unre-
ported simulations indicate that a larger sample size has
little influence to control the empirical size well. Although
we can conclude, by comparing the results in Table 6 with
Table 3, that our monitoring procedure gives a better alter-
native performances when DGP follows an ARFIMA(0,d,0)
model than other ARFIMA(p,d,q) model, the main conclu-
sions are not changed.

In conclusion, our proposed moving ratio statistic and
sieve bootstrap approximation method supply an efficient
monitoring procedure to sequentially detect stationary to
non-stationary regime switch for ARFIMA(0,d,0) process.
Many times, the change point can be found very early and
it is not necessary to wait until the time horizon. Unfor-
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Table 4. Empirical powers and ARL with de-trended data

k∗ = 0.3 k∗ = 0.5 k∗ = 0.7
T d τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3

200 0.1 → 0.6 0.226 0.319 0.198 0.2478 0.277 0.302
[50.3] [61.2] [34.6] [45.2] [13.8] [18.7]

0.1 → 0.9 0.519 0.632 0.474 0.576 0.542 0.601
[45.5] [52.1] [33.3] [41.0] [20.8] [24.8]

0.3 → 0.6 0.159 0.189 0.151 0.164 0.235 0.273
[50.2] [61.2] [24.4] [31.7] [25.6] [24.8]

0.3 → 0.9 0.387 0.503 0.298 0.425 0.354 0.411
[47.4] [50.9] [34.4] [39.8] [26.6] [35.0]

500 0.1 → 0.6 0.433 0.502 0.383 0.447 0.288 0.351
[135] [150] [97.6] [104] [46.6] [71.7]

0.1 → 0.9 0.769 0.883 0.802 0.878 0.854 0.921
[87.2] [95.5] [85.2] [89.6] [48.0] [58.7]

0.3 → 0.6 0.215 0.286 0.188 0.244 0.250 0.310
[128] [158] [100] [112] [40.6] [54.4]

0.3 → 0.9 0.608 0.736 0.570 0.704 0.649 0.758
[119] [131] [88.2] [101] [61.5] [70.2]

Table 5. Empirical sizes under AEFIMA(0,d,1) and AEFIMA(1,d,0) model

τ = 0.2 τ = 0.3
Model d = 0 d = 0.1 d = 0.3 d = 0 d = 0.1 d = 0.3

AEFIMA(0,d,1) 0.050 0.056 0.083 0.051 0.056 0.087
AEFIMA(1,d,0) 0.047 0.060 0.078 0.046 0.059 0.081

Table 6. Empirical powers and ARL under AEFIMA(0,d,1) and AEFIMA(1,d,0) model

k∗ = 0.3 k∗ = 0.5 k∗ = 0.7
Model d τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3 τ = 0.2 τ = 0.3

AEFIMA(0,d,1) 0.1 → 0.6 0.304 0.380 0.277 0.347 0.200 0.242
[55.8] [64.9] [39.7] [47.1] [19.9] [22.6]

0.1 → 0.9 0.640 0.736 0.533 0.688 0.412 0.511
[51.2] [52.8] [38.0] [41.5] [21.2] [29.2]

0.3 → 0.6 0.212 0.247 0.210 0.209 0.131 0.168
[57.4] [62.2] [33.4] [42.6] [5.61] [13.8]

0.3 → 0.9 0.490 0.578 0.427 0.534 0.333 0.383
[53.6] [57.7] [39.3] [43.5] [19.5] [25.1]

AEFIMA(1,d,0) 0.1 → 0.6 0.289 0.391 0.259 0.354 0.203 0.255
[54.3] [65.7] [40.0] [46.6] [20.1] 24.4]

0.1 → 0.9 0.626 0.741 0.509 0.702 0.399 0.535
[49.7] [60.0] [34.5] [42.3] [22.2] [30.8]

0.3 → 0.6 0.194 0.251 0.187 0.213 0.155 0.183
[55.1] [63.3] [32.8] [43.0] [8.43] [15.5]

0.3 → 0.9 0.500 0.596 0.413 0.552 0.329 0.404
[50.9] [58.4] [38.9] [44.5] [18.6] [27.2]

tunately, our monitoring procedure still works when DGP
follows a more general ARFIMA(p,d,q) model, but the size
distortions are not neglectable for a large value of long mem-
ory parameter. In this case, a more robust monitoring pro-
cedure has to be designed. Recall that the monitoring proce-
dure is more robust and powerful under a larger start time,
whereas a smaller start time gives shorter ARL. An ideal
way is that we can choose a larger start time for smaller

monitoring horizon T , and choose a smaller start time for
larger monitoring horizon. Although we can not find an op-
timum choice about start time, simulations indicate that the
start time τ = 0.3 is an acceptable choice to obtain satisfac-
tory power and ARL if the monitoring horizon T is not too
large or small. Of course, because the starting time has lit-
tle influence to the empirical size, other small starting times
also are acceptable if the sample size is large enough.
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Figure 1. Sweden/U.S. foreign exchange rate monthly data
from January 1, 1971 to December 1, 1995.

4.2 Empirical applications

In this section, we illustrate our monitoring procedure
using a set of Sweden/U.S. foreign exchange rate monthly
data which was observed from January 1, 1971 to December
1, 1995 with samples of 300 observations. This data set was
download on the web site of the Federal Reserve Bank of St.
Louis. Many papers have studied such a foreign exchange
rate data under short memory or long memory condition.
Fig. 1 reports the original data set.

We apply the monitoring statistic ΓT (s) and sieve boot-
strap method monitor stationary to non-stationary persis-
tence change by setting B = 500, τ = 0.3, and nominal
level α = 5%. The monitoring procedure stopped at obser-
vation 156 for de-meaned data and 158 for de-trend data.
These results indicate that there occurs a stationary to non-
stationary persistence change before October, 1961. Chen
et al. (2012c) [8] has studied this data set using a kernel
weighted variance ratio statistic and found that there is a
stationary to non-stationary persistence change at observa-
tion 104. This coincides with our monitoring result.

5. CONCLUSIONS

This paper concentrates on persistence change point mon-
itoring problem in long memory process. We adopt a mov-
ing ratio statistic sequentially to detect stationary to non-
stationary persistence change. The null distribution of mon-
itoring statistic and its consistency are proved. In order to
avoid estimating long memory parameter in null distribu-
tion, we propose a sieve bootstrap approximation method.
Empirical sizes in simulation study indicate that the sieve
bootstrap method can supply asymptotic correct critical val-
ues. We also evaluated the empirical power and average run
length of proposed monitoring procedures and found that

our new method supplies an efficient monitoring procedure
to sequentially detect stationary to non-stationary regime
switch for long memory process. At last, we illustrate our
monitoring procedure using a set of Sweden/U.S. foreign
exchange rate monthly data.
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APPENDIX SECTION

Proof of Theorem 2.1. Recall that if time series xt follows
a stationary long memory process with i.i.d. innovation and
long memory parameter 0 < d1 < 1/2, then

(13) T−1/2−d1

[Tr]∑
i=1

xi ⇒ ωWd1(r),

where Wd1(·) is the type I fractional Brownian motion with
self-similarity parameter d1, ω

2 is the long-run variance. Let
t = [Tu], i = [Tv], then if γt = 0,

T−1/2−d1

t∑
i=1

ε̂0,i = T−1/2−d1

t∑
i=1

xi(14)

⇒ ωWd1(v) ≡ ωU1,0(d1, u),

T−1/2−d1

t∑
i=[Ts]−[Tτ ]+1

ε̂1,i = T−1/2−d1

t∑
i=[Ts]−[Tτ ]+1

xi

(15)

⇒ ω(Wd1(v)−Wd1(s− u))

≡ ωU1,1(d1, u).

If γt = 1, observing that ε̂0,i = xi − [Tτ ]−1
∑[Tτ ]

j=1 xj , ε̂1,i =

xi − [Tτ ]−1
∑[Ts]

j=[Ts]−[Tτ ]+1 xj . Thus,

T−1/2−d1

t∑
i=1

ε̂0,i(16)

= T−1/2−d1

t∑
i=1

xi −
tT−1/2−d1

[Tτ ]

[Tτ ]∑
j=1

xj

⇒ ω(Wd1(u)− uτ−1Wd1(τ)).

≡ ωU2,0(d1, u).

T−1/2−d1

t∑
i=[Ts]−[Tτ ]+1

ε̂1,i(17)

= T−1/2−d1

t∑
i=[Ts]−[Tτ ]+1

xi

Sieve bootstrap monitoring persistence change in long memory process 43



− t− [Ts] + [Tτ ]

[Tτ ]T 1/2+d1

[Ts]∑
j=[Ts]−[Tτ ]+1

xj

= −T−1/2−d1

[Ts]∑
i=[Tu]+1

xi

+
[Ts]− [Tu]

[Tτ ]T 1/2+d1

[Ts]∑
j=[Ts]−[Tτ ]+1

xj

⇒ ω

(
s− u

τ
(Wd1(s)−Wd1(s− τ))

)
− ω (Wd1(s)−Wd1(u))

≡ ωU2,1(d1, u)

If γt = (1, t)T, let δ = (α, β)T, then by the definition of
LS we have(

α̂− α

β̂ − β

)
=

( ∑ ∑
t∑

t
∑

t2

)−1 ( ∑
xt∑
txt

)
,

where
∑

=
∑[Tτ ]

t=1 , if we estimate δ using the samples

y1, . . . , y[Tτ ], and
∑

=
∑[Ts]

t=[Ts]−[Tτ ]+1, if we estimate δ us-

ing the samples y[Ts]−[Tτ ]+1, . . . , y[Ts]. Hence, by a tedious
calculation we have

T−1/2−d1

t∑
i=1

ε̂0,i(18)

= T−1/2−d1

[Tu]∑
i=1

(
xi − (α̂− α)− (β̂ − β)i

)

⇒ ω(Wd1(u)−
3u2(2− τ)− 2uτ(3− τ)

2τ3
Wd1(τ)

− 3u(u− τ)

τ3

∫ τ

0

Wd1(v)dv)

≡ ω2V3,0(d1, u).

Let

K =
u− s+ τ

4τ (s3 − (s− τ)3)− 3τ2(2s− τ)2
,

then, a similar arguments gives that

T−1/2−d1

t∑
i=1

ε̂1,i

(19)

⇒ ω(Wd1(u− s+ τ)− 6τ(s− u)K

∫ s

s−τ

Wd1(v)dv

− τ [6s(s− u− 1) + τ(τ − 3s+ 3u) + 6u]KWd1(τ))

≡ ωV3,1(d1, u),

Combining (14)–(19), using the continuous mapping the-
orem and the continuity of functionals of Uj,0(d1, u) and

Uj,1(d1, u), j = 1, 2, 3, we complete the proof of Theo-
rem 2.1.

Proof of Corollary. Davidson and De Jong (2000) [11]
showed that if innovation process satisfies Assumption 2.2,
then the limiting distribution in (13) still holds. So, we can
prove this Corollary using the same proof line as Theorem
2.1. We omit to report here again.

For the remainder of this section we omit proofs for the
γt = 0 and γt = (1, t)T cases; these are straightforward but
tedious and follow the same logical development as those
presented for the γt = 1 case.

Proof of Theorem 2.2. From the proof of Theorem 2.1
we have the denominator of ΓT (s) is Op(T

2+2d1). If s > τ∗,
then

T−1/2−d2

[Ts]∑
i=[Ts]−[Tτ ]+1

xi

= T−1/2−d2

[Tτ∗]∑
i=[Ts]−[Tτ ]+1

xi + T−1/2−d2

[Ts]∑
i=[Tτ∗]+1

xi

⇒ Op(T
d1−d2) + ω

∫ s

τ∗
Wd2(u)du.

This indicates the numerator of ΓT (s) is Op(T
2+2d2) if s >

τ∗. Hence

ΓT (s) = Op(T
2(d2−d1)), s ∈ (τ∗, 1].
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