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Properties of the zero-and-one inflated Poisson
distribution and likelihood-based inference
methods
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To model count data with excess zeros and excess ones,
in their unpublished manuscript, Melkersson and Olsson
(1999) extended the zero-inflated Poisson distribution to
a zero-and-one-inflated Poisson (ZOIP) distribution. How-
ever, the distributional theory and corresponding properties
of the ZOIP have not yet been explored, and likelihood-
based inference methods for parameters of interest were not
well developed. In this paper, we extensively study the ZOIP
distribution by first constructing five equivalent stochastic
representations for the ZOIP random variable and then de-
riving other important distributional properties. Maximum
likelihood estimates of parameters are obtained by both the
Fisher scoring and expectation—maximization algorithms.
Bootstrap confidence intervals for parameters of interest and
testing hypotheses under large sample sizes are provided.
Simulations studies are performed and five real data sets
are used to illustrate the proposed methods.
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1. INTRODUCTION

Poisson model provides a standard and popular frame-
work to model count data. The over-dispersion problem
emerges in modeling count data due to the greater incidence
of zeros than that permitted by the traditional Poisson dis-
tribution. Lambert [17] proposed the zero-inflated Poisson
(ZIP) regression model to handle count data with excess
zeros. Some examples of ZIP distribution can be found in
Neyman [22], Cohen [4], Singh [29], Martin and Katti [19],
Kemp [16], and Mullahy [21]. Gupta et al. [11] developed a
zero-adjusted generalized Poisson distribution including the
ZIP distribution as a special case. Subsequently, Ridout et
al. [24] reviewed some useful models for fitting count data
with excess zeros. Carrivick et al. [3] applied the ZIP model
to evaluate the effectiveness of a consultative manual han-
dling workplace risk assessment team in reducing the risk of
occupational injury among cleaners within a hospital.
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The over-dispersion may result from other phenomena
such as a high proportion of both zeros and ones in the
count data. For example, Eriksson and Åberg [8] reported a
two-year panel data from Swedish Level of Living Surveys
in 1974 and 1991, where the visits to a dentist have higher
proportions of zeros and ones and one-visit observations are
even much more frequent than zero-visits. It is common to
visit a dentist for a routine control, e.g., school-children go
to a dentist once a year almost as a rule. As the second ex-
ample, Carrivick et al. [3] reported that much of the data
collected on occupational safety involves accident or injury
counts with many zeros and ones. In general, the safety reg-
ulations protect most workers from injury so that many ze-
ros are observed. However, no perfect protection exists, such
that there must be somebody suffering an accident or injury.
This experience would be a signal to warn other workers to
be much more cautious and to avoid more accidents. Hence
there will be respectively more one observed indicating the
majority of people having only one accident or none than
those with two or more injuries.

Thus, the ZIP is no longer an appropriate distribution to
model such count data with extra zeros and extra ones. As
an extension of the ZIP, a so-called zero-and-one-inflated
Poisson (ZOIP) distribution proposed by Melkersson and
Olsson [20] is then a useful tool to capture the characteris-
tics of such count data. The major goal of Melkersson and
Olsson [20] is to fit the dentist visiting data with covari-
ates in Sweden. Later, Saito and Rodrigues [25] presented
a Bayesian analysis of the same dentist visiting data with-
out considering any covariates by the data augmentation
algorithm (Tanner and Wong, [30]). However, the distribu-
tional theory and corresponding properties of the ZOIP have
not yet been explored, and likelihood-based methods for pa-
rameters of interest were not well developed, because, to
our best knowledge, only two papers (i.e., Melkersson and
Olsson, [20]; Saito and Rodrigues, [25]) involve the ZOIP
to date. The main objective of this paper is to fill the
gap.

For convenience, in this paper we denote a degenerate
distribution at a single point c by ξ ∼ Degenerate(c), where
ξ is a random variable with probability mass function (pmf)
Pr(ξ = c) = 1 and c is a constant.

Let ξ0 ∼ Degenerate(0), ξ1 ∼ Degenerate(1), X ∼
Poisson(λ) and they are independent. A discrete random
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variable Y is said to follow a ZOIP distribution, denoted by
Y ∼ ZOIP(φ0, φ1;λ), if its pmf is (Melkersson and Olsson,
[20])

f(y|φ0, φ1;λ)(1.1)

= φ0 Pr(ξ0 = y) + φ1 Pr(ξ1 = y) + φ2 Pr(X = y)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ0 + φ2e

−λ, if y = 0,

φ1 + φ2λ e
−λ, if y = 1,

φ2
λye−λ

y!
, if y = 2, 3, . . .

= (φ0 + φ2e
−λ)I(y = 0) + (φ1 + φ2λ e

−λ)I(y = 1)

+

(
φ2

λye−λ

y!

)
I(y � 2),

where φ0 ∈ [0, 1) and φ1 ∈ [0, 1) respectively denote the un-
known proportions for incorporating extra-zeros and extra-
ones than those allowed by the traditional Poisson distri-
bution, and φ2 =̂ 1 − φ0 − φ1 ∈ (0, 1]. The ZOIP distribu-
tion is a mixture of two degenerate distributions with all
mass at zero and one, respectively and a Poisson(λ) dis-
tribution. In particular, when φ0 = 0, the ZOIP distribu-
tion reduces to one-inflated Poisson (OIP) distribution (de-
noted by OIP(φ1, λ)); when φ1 = 0, the ZOIP distribution
reduces to ZIP distribution (denoted by ZIP(φ0, λ)); when
φ0 = φ1 = 0, the ZOIP distribution becomes the traditional
Poisson distribution.

The remainder of the paper is organized as follows. Sec-
tion 2 presents five equivalent stochastic representations for
the ZOIP random variable. Section 3 develops other dis-
tributional properties. In Section 4, we derive the Fisher
scoring algorithm and the expectation–maximization (EM)
algorithm for finding the MLEs of parameters. Bootstrap
confidence intervals are also provided. The likelihood ra-
tio test and the score test for one inflation, zero infla-
tion and simultaneous zero-and-one inflation are developed
in Section 5. Simulation studies to compare the likeli-
hood ratio test with the score test are conducted in Sec-
tion 6. In Section 7, five real data sets are used to illus-
trate the proposed methods. A discussion is given in Sec-
tion 8.

2. VARIOUS STOCHASTIC
REPRESENTATIONS AND THEIR

EQUIVALENCE

In this section, we present five different stochas-
tic representation (SR) for the random variable Y ∼
ZOIP(φ0, φ1;λ) and show their equivalence. These SRs
reveal the relationship of the ZOIP(φ0, φ1;λ) distri-
bution with Degenerate(0), Degenerate(1), Poisson(λ),
Bernoulli(φ1/(φ0 + φ1)), ZIP(φ0/(1 − φ1), λ), ZTP(λ) and
OTP(λ).

2.1 The first stochastic representation

Let z = (Z0, Z1, Z2)
� ∼ Multinomial (1;φ0, φ1, φ2), X ∼

Poisson(λ), and z and X be mutually independent (denoted
by z ⊥⊥ X). It is easy to show that the first SR of the random
variable Y ∼ ZOIP(φ0, φ1;λ) is given by

Y
d
= Z0 · 0 + Z1 · 1 + Z2X = Z1 + Z2X(2.1)

=

⎧⎪⎨⎪⎩
0, with probability φ0,

1, with probability φ1,

X, with probability φ2,

where the symbol “
d
=” means that the random variables

in both sides of the equality have the same distribution.
The justification of this fact is as follows. By noting that
Z0 + Z1 + Z2 = 1 and Pr(Zi = 1) = φi for i = 0, 1, 2, from
(2.1), we have
(2.2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(Y = 0) = Pr(Z0 = 1) + Pr(Z2 = 1, X = 0)

= φ0 + φ2e
−λ,

Pr(Y = 1) = Pr(Z1 = 1) + Pr(Z2 = 1, X = 1)

= φ1 + φ2λ e
−λ,

Pr(Y = y) = Pr(Z2 = 1, X = y) = φ2
λye−λ

y!
, y � 2,

which is identical to (1.1), implying that Y ∼
ZOIP(φ0, φ1;λ). The SR (2.1) means that Y ∼
ZOIP(φ0, φ1;λ) is a mixture of three distributions:
Degenerate(0), Degenerate(1) and Poisson(λ).

2.2 The second stochastic representation

Alternatively, we can develop the second SR of the
zero-and-one inflated Poisson random variable. Let Z ∼
Bernoulli(1 − φ), η ∼ Bernoulli(p), X ∼ Poisson(λ) and
(Z, η,X) be mutually independent. Then
(2.3)

Y
d
= (1− Z)η + ZX =

{
η, with probability φ,

X, with probability 1− φ

follows the distribution ZOIP(φ0, φ1;λ) with φ0 = φ(1− p)
and φ1 = φp. This fact can be verified as follows:
(2.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(Y = 0) = Pr(Z = 0, Y = 0) + Pr(Z = 1, Y = 0)

= Pr(Z = 0, η = 0) + Pr(Z = 1, X = 0)

= φ(1− p) + (1− φ)e−λ,

Pr(Y = 1) = Pr(Z = 0, Y = 1) + Pr(Z = 1, Y = 1)

= Pr(Z = 0, η = 1) + Pr(Z = 1, X = 1)

= φp+ (1− φ)λ e−λ,

Pr(Y = y) = Pr(Z = 1, X = y)

= (1− φ)λye−λ/y!, y � 2.
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By comparing (2.4) with (2.2), we obtain a one-to-one
mapping between (φ, p) and (φ0, φ1):

(2.5)

⎧⎪⎨⎪⎩
φ(1− p) = φ0,

φp = φ1,

1− φ = φ2,

⇐⇒

⎧⎨⎩
φ = φ0 + φ1,

p =
φ1

φ0 + φ1
.

The SR (2.3) indicates that Y ∼ ZOIP(φ0, φ1;λ) is also
a mixture of a Bernoulli(φ1/(φ0 + φ1)) distribution and a
Poisson(λ) distribution.

2.3 The third stochastic representation

Now we consider the third SR of Y ∼ ZOIP(φ0, φ1;λ).
Let Z ∼ Bernoulli(1 − φ), ξ1 ∼ Degenerate(1), Y ∗ ∼
ZIP(φ∗, λ) and (Z, ξ1, Y

∗) be mutually independent. Then
(2.6)

Y
d
= (1− Z)ξ1 + ZY ∗ =

{
1, with probability φ

Y ∗, with probability 1− φ

follows the distribution ZOIP(φ0, φ1;λ) with φ0 = (1−φ)φ∗

and φ1 = φ. This fact can be shown as follows:
(2.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(Y = 0) = Pr(Z = 1, Y ∗ = 0)

= (1− φ)[φ∗ + (1− φ∗)e−λ],

Pr(Y = 1) = Pr(Z = 0) + Pr(Z = 1, Y ∗ = 1)

= φ+ (1− φ)(1− φ∗)λ e−λ,

Pr(Y = y) = Pr(Z = 1, Y ∗ = y)

= (1− φ)(1− φ∗)λye−λ/y!, y � 2.

By comparing (2.7) with (2.2), we obtain a one-to-one map-
ping between (φ, φ∗) and (φ0, φ1):⎧⎪⎨⎪⎩

(1− φ)φ∗ = φ0,

φ = φ1,

(1− φ)(1− φ∗) = φ2,

(2.8)

⇐⇒

⎧⎨⎩
φ = φ1,

φ∗ =
φ0

1− φ1
.

The SR (2.6) shows that Y ∼ ZOIP(φ0, φ1;λ) is also a mix-
ture of a degenerate distribution with all mass at 1 and a
ZIP(φ∗, λ) distribution.

2.4 The fourth stochastic representation

To derive the fourth SR of Y ∼ ZOIP(φ0, φ1;λ), we
first introduce the zero-truncated Poisson (ZTP) distribu-
tion (David and Johnson, [6]), denoted by V0 ∼ ZTP(λ),
whose pmf is defined as

(2.9) Pr(V0 = v) =
λve−λ/v!

1− e−λ
, v = 1, 2, . . . ,∞.

Now let z∗ = (Z∗
0 , Z

∗
1 , Z

∗
2 )

� ∼ Multinomial (1;φ∗
0, φ

∗
1, φ

∗
2),

V0 ∼ ZTP(λ) and z∗ ⊥⊥ V0. Then

(2.10) Y
d
= Z∗

1 + Z∗
2V0 =

⎧⎪⎨⎪⎩
0, with probability φ∗

0,

1, with probability φ∗
1,

V0, with probability φ∗
2

follows the distribution ZOIP(φ0, φ1;λ) with φ0 = φ∗
0 −

φ∗
2/(e

λ−1) and φ1 = φ∗
1. This fact can be verified as follows:

(2.11)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Pr(Y = 0) = Pr(Z∗
0 = 1) = φ∗

0,

Pr(Y = 1) = Pr(Z∗
1 = 1) + Pr(Z∗

2 = 1, V0 = 1)

= φ∗
1 + φ∗

2λ e
−λ/(1− e−λ),

Pr(Y = y) = Pr(Z∗
2 = 1, V0 = y)

= φ∗
2λ

ye−λ/[y!(1− e−λ)], y � 2.

By comparing (2.11) with (2.2), we obtain a one-to-one map-
ping between (φ∗

0, φ
∗
1, φ

∗
2) and (φ0, φ1, φ2):⎧⎪⎨⎪⎩
φ∗
0 = φ0 + φ2e

−λ,

φ∗
1 = φ1,

φ∗
2 = φ2(1− e−λ),

(2.12)

⇐⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ0 = φ∗

0 −
φ∗
2

eλ − 1
,

φ1 = φ∗
1,

φ2 = φ∗
2e

λ/(eλ − 1).

The SR (2.10) shows that Y ∼ ZOIP(φ0, φ1;λ) is also a mix-
ture of three distributions: Degenerate(0), Degenerate(1)
and ZTP(λ).

2.5 The fifth stochastic representation

First of all, we introduce the one-truncated Poisson
(OTP) distribution (Cohen, [5]; Hilbe, [13], p. 388) with
pmf defined by
(2.13)

Pr(V1 = v) =
λve−λ/v!

1− e−λ − λ e−λ
, v = 2, 3, . . . ,∞,

and denote it by V1 ∼ OTP(λ). Now let z∗ =
(Z∗

0 , Z
∗
1 , Z

∗
2 )

� ∼ Multinomial (1;φ∗
0, φ

∗
1, φ

∗
2), V1 ∼ OTP(λ)

and z∗ ⊥⊥ V1. Then

(2.14) Y
d
= Z∗

1 + Z∗
2V1 =

⎧⎪⎨⎪⎩
0, with probability φ∗

0,

1, with probability φ∗
1,

V1, with probability φ∗
2

follows the distribution ZOIP(φ0, φ1;λ) with φ0 = φ∗
0 −

φ∗
2/(e

λ − 1− λ) and φ1 = φ∗
1 − φ∗

2λ/(e
λ − 1− λ). This fact
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can be verified as follows:
(2.15)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pr(Y = 0) = Pr(Z∗
0 = 1) = φ∗

0,

Pr(Y = 1) = Pr(Z∗
1 = 1) = φ∗

1,

Pr(Y = y) = Pr(Z∗
2 = 1, V1 = y)

= φ∗
2λ

ye−λ/[y!(1− e−λ − λ e−λ)], y � 2.

By comparing (2.15) with (2.2), we obtain a one-to-one map-
ping between (φ∗

0, φ
∗
1, φ

∗
2) and (φ0, φ1, φ2):⎧⎪⎨⎪⎩

φ∗
0 = φ0 + φ2e

−λ,

φ∗
1 = φ1 + φ2λ e

−λ,

φ∗
2 = φ2(1− e−λ − λ e−λ),

(2.16)

⇐⇒

⎧⎪⎨⎪⎩
φ0 = φ∗

0 − φ∗
2/(e

λ − 1− λ),

φ1 = φ∗
1 − φ∗

2λ/(e
λ − 1− λ),

φ2 = φ∗
2e

λ/(eλ − 1− λ).

The SR (2.14) shows that Y ∼ ZOIP(φ0, φ1;λ) is also a mix-
ture of three distributions: Degenerate(0), Degenerate(1)
and OTP(λ).

3. DISTRIBUTIONAL PROPERTIES

3.1 The cumulative distribution function

Let Y ∼ ZOIP(φ0, φ1;λ). For any non-negative real num-
ber y, the cumulative distribution function of Y is given by

Pr(Y � y)(3.1)

= (φ0 + φ2e
−λ)I(0 � y < 1)

+

⎛⎝φ0 + φ1 + φ2

�y�∑
i=0

λie−λ

i!

⎞⎠ I(y � 1)

= (φ0 + φ2e
−λ)I(0 � y < 1)

+

[
φ0 + φ1 + φ2

Γ(�y + 1	, λ)
�y	!

]
I(y � 1),

where �k	 denotes the largest integer not greater than k,
and

(3.2) Γ(k, λ) =̂

∫ ∞

λ

tk−1e−t dt

is the upper incomplete gamma function.

3.2 Moments

The SR (2.1) is a useful tool to derive the mo-
ments of the ZOIP random variable. Since (Z0, Z1, Z2)

� ∼
Multinomial (1;φ0, φ1, φ2), we have E(Zi) = φi, Var(Zi) =
φi(1−φi), Cov(Zi, Zj) = −φiφj and E(ZiZj) = 0 for i 
= j.
From (2.1), we immediately obtain

E(Y ) = φ1 + φ2λ =̂ μ,(3.3)

E(Y 2) = φ1 + φ2(λ+ λ2),

Var(Y ) = μ− μ2 + (μ− φ1)
2/φ2.

In general, for any positive integers r and s, we have
Zr
i Z

s
j ∼ Degenerate(0) for i 
= j. Let n be an arbitrary

positive integer, we have

E(Y n) =

n∑
k=0

(
n
k

)
E(Zk

1Z
n−k
2 )E(Xn−k)(3.4)

= φ1 + φ2E(Xn).

Alternatively, the SR (2.3) can be applied to calculate
E(Y n), and we can obtain the same result as (3.4) by noting
that (1− Z)rZs ∼ Degenerate(0) for any Bernoulli random
variable Z, where r and s are two arbitrary positive integers.

3.3 Moment generating function

By using the formula of E(W1) = E[E(W1|W2)], the mo-
ment generating function of Y ∼ ZOIP(φ0, φ1;λ) is given
by

MY (t) = E[exp(tY )](3.5)

(2.3)
= E

{
exp[t(1− Z)η + tZX]

}
= E

{
E{exp[t(1− Z)η + tZX] |Z}

}
= E[Mη(t(1− Z)) ·MX(tZ)]

= E
{
[p et(1−Z) + 1− p] · exp[λ(etZ − 1)]

}
= φ(p et + 1− p) + (1− φ) exp[λ(et − 1)].

3.4 Conditional distributions based on the
first SR

In Section 2.1, we assumed that z = (Z0, Z1, Z2)
� ∼

Multinomial (1;φ0, φ1, φ2) and Y ∼ ZOIP(φ0, φ1;λ). It is
clear that z only takes one of the three base-vectors (1, 0, 0)�,
(0, 1, 0)� and (0, 0, 1)�. We first consider the joint conditional
distribution of z|Y , which is stated as follows.

Theorem 1. (Joint conditional distribution of z|Y ). Let z ∼
Multinomial (1;φ0, φ1, φ2) and Y ∼ ZOIP(φ0, φ1;λ). Based
on the SR (2.1), we have
(3.6)

z|(Y = y) ∼

⎧⎪⎨⎪⎩
Multinomial (1;ψ1, 0, 1− ψ1), if y = 0,

Multinomial (1; 0, ψ2, 1− ψ2), if y = 1,

Multinomial (1; 0, 0, 1), if y � 2,

where

(3.7) ψ1 =̂
φ0

φ0 + φ2e−λ
and ψ2 =̂

φ1

φ1 + φ2λ e−λ
.

Proof. The joint conditional pmf of z|(Y = y) is given by

Pr(z = z|Y = y) =
Pr(Z0 = z0, Z1 = z1, Z2 = z2, Y = y)

f(y|φ0, φ1;λ)
.
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If y = 0, then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Pr{z = (1, 0, 0)�|Y = 0} (1.1)

=
φ0

φ0 + φ2e−λ

(3.7)
= ψ1,

Pr{z = (0, 1, 0)�|Y = 0} = 0,

Pr{z = (0, 0, 1)�|Y = 0} =
φ2e

−λ

φ0 + φ2e−λ
= 1− ψ1,

which imply the first assertion of (3.6).

If y = 1, then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr{z = (1, 0, 0)�|Y = 1} = 0,

Pr{z = (0, 1, 0)�|Y = 1} (1.1)
=

φ1

φ1 + φ2λ e−λ

(3.7)
= ψ2,

Pr{z = (0, 0, 1)�|Y = 1} =
φ2λ e

−λ

φ1 + φ2λ e−λ

= 1− ψ2,

which imply the second assertion of (3.6).

If y � 2, then⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr{z = (1, 0, 0)�|Y = y} = 0,

Pr{z = (0, 1, 0)�|Y = y} = 0,

Pr{z = (0, 0, 1)�|Y = y} (1.1)
=

φ2λ
ye−λ/y!

φ2λye−λ/y!
= 1,

implying the last assertion of (3.6).

Next, we consider the marginal conditional distributions
of Zi|Y for i = 0, 1, 2. As a corollary of Theorem 1, we
summarize these results as follows.

Corollary 1. (Marginal conditional distributions of Zi|Y ).
Let z ∼ Multinomial (1;φ0, φ1, φ2) and Y ∼ ZOIP(φ0,
φ1;λ). Based on the SR (2.1), we have

Z0|(Y = y) ∼
{
Bernoulli(ψ1), if y = 0,

Degenerate(0), if y 
= 0,
(3.8)

Z1|(Y = y) ∼
{
Bernoulli(ψ2), if y = 1,

Degenerate(0), if y 
= 1,
(3.9)

Z2|(Y = y) ∼

⎧⎪⎨⎪⎩
Bernoulli(1− ψ1), if y = 0,

Bernoulli(1− ψ2), if y = 1,

Degenerate(1), if y � 2,

(3.10)

where ψ1 and ψ2 are given by (3.7).

Finally, based on the SR (2.1), we discuss the conditional
distribution of X|Y , which is stated in the following theo-
rem.

Theorem 2. (Conditional distribution of X|Y ). Let X ∼
Poisson(λ) and Y ∼ ZOIP(φ0, φ1;λ). Based on the SR (2.1),
we have

(3.11) X|(Y = y) ∼

⎧⎪⎨⎪⎩
ZIP(1− ψ1, λ), if y = 0,

OIP(1− ψ2, λ), if y = 1,

Degenerate(y), if y � 2,

where ψ1 and ψ2 are given by (3.7).

Proof. If y = 0, we have

Pr(X = x|Y = 0) =
Pr(X = x, Y = 0)

Pr(Y = 0)

=
Pr(X = 0, Z1 = 0)

f(0|φ0, φ1;λ)
I(x = 0)

+
Pr(X = x, Z0 = 1)

f(0|φ0, φ1;λ)
I(x 
= 0)

(1.1)
=

(1− φ1)e
−λ

φ0 + φ2e−λ
I(x = 0) +

φ0λ
xe−λ/x!

φ0 + φ2e−λ
I(x 
= 0)

(3.7)
= (1− ψ1 + ψ1e

−λ)I(x = 0) +

(
ψ1

λxe−λ

x!

)
I(x 
= 0),

implying X|(Y = 0) ∼ ZIP(1− ψ1, λ).
If y = 1, we have

Pr(X = x|Y = 1) =
Pr(X = x, Y = 1)

Pr(Y = 1)

=
Pr(X = 1, Z0 = 0)

f(1|φ0, φ1;λ)
I(x = 1)

+
Pr(X = x, Z1 = 1)

f(1|φ0, φ1;λ)
I(x 
= 1)

(1.1)
=

(1− φ0)λ e
−λ

φ1 + φ2λ e−λ
I(x = 1) +

φ1λ
xe−λ/x!

φ1 + φ2λ e−λ
I(x 
= 1)

(3.7)
= (1− ψ2 + ψ2λ e

−λ)I(x = 1)+

(
ψ2

λxe−λ

x!

)
I(x 
= 1),

implying X|(Y = 1) ∼ OIP(1− ψ2, λ).
If y � 2, we have

Pr(X = x|Y = y) =
Pr(X = x, Y = y)

f(y|φ0, φ1;λ)

(1.1)
=

Pr(X = y, Z2 = 1)

φ2λye−λ/y!
= 1,

implying X|(Y = y � 2) ∼ Degenerate(y).

3.5 Conditional distributions based on the
second SR

In Section 2.2, we assumed that Z ∼ Bernoulli(1 − φ),
η ∼ Bernoulli(p), X ∼ Poisson(λ) and (Z, η,X) are mu-
tually independent. According to (2.4), the pmf of Y ∼
ZOIP(φ0, φ1;λ) can be rewritten as

f(y|φ, p;λ) =
[
φ(1− p) + (1− φ)e−λ

]
I(y = 0)(3.12)
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+
[
φp+ (1− φ)λ e−λ

]
I(y = 1)

+
[
(1− φ)λye−λ/y!

]
I(y � 2).

Based on the SR (2.3), we will derive the conditional distri-
butions of Z|Y , η|Y and X|Y , which are given in Theorems
3, 4 and 5, respectively.

Theorem 3. (Conditional distribution of Z|Y ). Let Z ∼
Bernoulli(1 − φ) and the pmf of Y be specified by (3.12).
Based on the SR (2.3), we have

(3.13) Z|(Y = y) ∼

⎧⎪⎨⎪⎩
Bernoulli(ϕ1), if y = 0,

Bernoulli(ϕ2), if y = 1,

Degenerate(1), if y � 2,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ1 =̂

(1− φ)e−λ

φ(1− p) + (1− φ)e−λ
= 1− ψ1,

ϕ2 =̂
(1− φ)λ e−λ

φp+ (1− φ)λ e−λ
= 1− ψ2,

(3.14)

and (ψ1, ψ2) are given by (3.7).

Proof. Since Z ∼ Bernoulli(1−φ), Z only takes the value 0
or 1. By the SR (2.3), we have

Pr(Z = 1|Y = y)

=
Pr(Z = 1, X = y)

f(y|φ, p;λ)

=
(1− φ)λye−λ/y!

f(y|φ, p;λ)

(3.12)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− φ)e−λ

φ(1− p) + (1− φ)e−λ

(3.14)
= ϕ1, if y = 0,

(1− φ)λ e−λ

φp+ (1− φ)λ e−λ

(3.14)
= ϕ2, if y = 1,

1, if y � 2,

which implies (3.13). In addition, by applying (2.5), we can
immediately verify that ϕ1 = 1− ψ1 and ϕ2 = 1− ψ2.

Theorem 4. (Conditional distribution of η|Y ). Let η ∼
Bernoulli(p) and the pmf of Y be specified by (3.12). Based
on the SR (2.3), we have

(3.15) η|(Y = y) ∼

⎧⎪⎨⎪⎩
Bernoulli(pϕ1), if y = 0,

Bernoulli(1− ϕ2 + pϕ2), if y = 1,

Bernoulli(p), if y � 2,

where ϕ1 and ϕ2 are given by (3.14).

Proof. Since η ∼ Bernoulli(p), η only takes the value 0 or 1.
By the SR (2.3), we have

Pr(η = 1|Y = y)

=
Pr(η = 1, 1− Z + ZX = y)

f(y|φ, p;λ)

(3.12)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p · (1− φ)e−λ

φ(1− p) + (1− φ)e−λ

(3.14)
= pϕ1,

if y = 0,

p[φ+ (1− φ)λ e−λ]

φp+ (1− φ)λ e−λ

(3.14)
= 1− ϕ2 + pϕ2,

if y = 1,

p · (1− φ)λye−λ/y!

(1− φ)λye−λ/y!
, = p

if y � 2,

which implies (3.15).

By combining Theorem 2 with (3.14), we immediately
obtain the following results.

Theorem 5. (Conditional distribution of X|Y ). Let X ∼
Poisson(λ) and the pmf of Y be specified by (3.12). Based
on the SR (2.3), we have

(3.16) X|(Y = y) ∼

⎧⎪⎨⎪⎩
ZIP(ϕ1, λ), if y = 0,

OIP(ϕ2, λ), if y = 1,

Degenerate(y), if y � 2,

where ϕ1 and ϕ2 are given by (3.14).

4. LIKELIHOOD-BASED INFERENCES

Assume that Y1, . . . , Yn
iid∼ ZOIP(φ0, φ1;λ) and y1, . . . , yn

denote their realizations. LetYobs = {yi}ni=1 denote the ob-
served data. Moreover, let I0 =̂ {i|yi = 0, 1 � i � n} and
m0 =

∑n
i=1 I(yi = 0) denote the number of elements in I0;

I1 =̂ {i|yi = 1, 1 � i � n} and m1 =
∑n

i=1 I(yi = 1) denote
the number of elements in I1. The observed-data likelihood
function for (φ0, φ1, λ) is then given by

L(φ0, φ1, λ|Yobs)(4.1)

= (φ0 + φ2e
−λ)m0 × (φ1 + φ2λ e

−λ)m1

× φn−m0−m1
2

∏
i/∈I0∪I1

λyie−λ

yi!
,

so that the log-likelihood function is

� =̂ �(φ0, φ1, λ|Yobs)

= m0 log(φ0 + φ2e
−λ) +m1 log(φ1 + φ2λ e

−λ)

+ (n−m0 −m1)(log φ2 − λ) +N log λ,

where φ2 = 1 − φ0 − φ1 and N =
∑

i/∈I0∪I1
yi. To calculate

the Fisher information matrix, we need the following results.

Theorem 6. (Expectations). The expectations of m0, m1

and N are given by

E(m0) = n(φ0 + φ2e
−λ),(4.2)
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E(m1) = n(φ1 + φ2λ e
−λ),

E(N) = nφ2λ(1− e−λ).

Proof. It is easy to show the expressions of E(m0) and
E(m1), and we have two methods to verify the last one.
The first way is to directly calculate E(N) as follows. Since

E(Yi|Yi � 2) =
λ(1− e−λ)

1− e−λ − λ e−λ
, i /∈ I0 ∪ I1,

we have

E(N) =
[
E(N |m0,m1)

]
= E

[
(n−m0 −m1)λ(1− e−λ)

1− e−λ − λ e−λ

]
=

[n− E(m0)− E(m1)]λ(1− e−λ)

1− e−λ − λ e−λ

(4.2)
= nφ2λ(1− e−λ).

Alternatively, we noted that

(4.3) N =
∑

i/∈I0∪I1

yi =

n∑
i=1

yi −m1.

Thus, E(N) = nE(Y1) − E(m1)
(3.3)
= n(φ1 + φ2λ) − n(φ1 +

φ2λ e
−λ) = nφ2λ(1− e−λ).

4.1 MLEs via the Fisher scoring algorithm

In this section, we use the Fisher scoring algorithm to
calculate the MLEs of φ0, φ1 and λ. The score vector ∇�
and the Hessian matrix ∇2� are given by

∇�(φ0, φ1, λ|Yobs) =

(
∂�

∂φ0
,
∂�

∂φ1
,
∂�

∂λ

)�
and

∇2�(φ0, φ1, λ|Yobs) =

⎛⎜⎜⎜⎜⎜⎜⎝

∂2�

∂φ2
0

∂2�

∂φ0∂φ1

∂2�

∂φ0∂λ

∂2�

∂φ1∂φ0

∂2�

∂φ2
1

∂2�

∂φ1∂λ

∂2�

∂λ∂φ0

∂2�

∂λ∂φ1

∂2�

∂λ2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

respectively, where

∂�

∂φ0
=

m0(1− e−λ)

φ0 + φ2e−λ
− m1λ e

−λ

φ1 + φ2λ e−λ
− n−m0 −m1

φ2
,

∂�

∂φ1
= − m0e

−λ

φ0 + φ2e−λ
+

m1(1− λ e−λ)

φ1 + φ2λ e−λ
− n−m0 −m1

φ2
,

∂�

∂λ
= − m0φ2e

−λ

φ0 + φ2e−λ
+

m1φ2(1− λ)e−λ

φ1 + φ2λ e−λ

− (n−m0 −m1) +
N

λ
,

and

∂2�

∂φ2
0

= −m0(1− e−λ)2

[φ0 + φ2e−λ]
2 − m1λ

2e−2λ

[φ1 + φ2λ e−λ]
2

− n−m0 −m1

φ2
2

,

∂2�

∂φ2
1

= − m0e
−2λ

[φ0 + φ2e−λ]
2 − m1(1− λ e−λ)2

[φ1 + φ2λ e−λ]
2

− n−m0 −m1

φ2
2

,

∂2�

∂λ2
=

m0φ0φ2e
−λ

[φ0 + φ2e−λ]
2

+
m1φ2e

−λ
[
φ1(λ− 2)− φ2e

−λ
]

[φ1 + φ2λ e−λ]
2 − N

λ2
,

∂2�

∂φ0∂φ1
=

m0e
−λ(1− e−λ)

[φ0 + φ2e−λ]
2 +

m1λ e
−λ(1− λ e−λ)

[φ1 + φ2λ e−λ]
2

− n−m0 −m1

φ2
2

,

∂2�

∂φ0∂λ
=

m0(1− φ1)e
−λ

[φ0 + φ2e−λ]2
− m1φ1(1− λ)e−λ

[φ1 + φ2λ e−λ]2
,

∂2�

∂φ1∂λ
=

m0φ0e
−λ

[φ0 + φ2e−λ]2
− m1(1− φ0)(1− λ)e−λ

[φ1 + φ2λ e−λ]2
.

Thus, by utilizing (4.2), we can calculate the Fisher infor-
mation as follows:

(4.4) J(φ0, φ1, λ) = E
[
−∇2�(φ0, φ1, λ|Yobs)

]
.

Let (φ
(0)
0 , φ

(0)
1 , λ(0)) be initial values of the MLEs (φ̂0, φ̂1, λ̂).

If (φ
(t)
0 , φ

(t)
1 , λ(t)) denote the t-th approximations of

(φ̂0, φ̂1, λ̂), then their (t + 1)-th approximation can be ob-
tained by the following Fisher scoring algorithm:

⎛⎜⎜⎝
φ
(t+1)
0

φ
(t+1)
1

λ(t+1)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
φ
(t)
0

φ
(t)
1

λ(t)

⎞⎟⎟⎠
(4.5)

+ J−1(φ
(t)
0 , φ

(t)
1 , λ(t))∇�(φ

(t)
0 , φ

(t)
1 , λ(t)|Yobs).

As a by-product, the standard errors of the MLEs (φ̂0, φ̂1, λ̂)
are the square roots of the diagonal elements Jkk of the
inverse Fisher information matrix J−1(φ̂0, φ̂1, λ̂). Thus, the
(1− α)100% asymptotic Wald confidence intervals (CIs) of
φ0, φ1 and λ are given by

[φ̂k−1 − zα/2
√
Jkk, φ̂k−1 + zα/2

√
Jkk], k = 1, 2,(4.6)

[λ̂− zα/2
√
J33, λ̂+ zα/2

√
J33],

respectively, where zα denotes the α-th upper quantile of
the standard normal distribution.
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4.2 MLEs via the EM algorithm

The zero observations from a ZOIP distribution can be
categorized into the extra zeros resulted from the degenerate
distribution at zero because of population variability at the
point zero and the structural zeros came from an ordinary
Poisson distribution. The one observations can similarly be
classified into the extra ones resulted from the degenerate
distribution at one because of population variability at the
point one and structural ones came from an ordinary Poisson
distribution. Thus, we partition

I0 = I
extra
0 ∪ I

structral
0 and I1 = I

extra
1 ∪ I

structral
1 .

Note that a major obstacle from obtaining explicit solutions
of MLEs of parameters from (4.1) is the first and second
terms in the right-hand-side of (4.1). To overcome this diffi-
culty, we augment Yobs with two latent variablesW0 andW1,
where W0 denotes the number of Iextra0 to split m0 into W0

and m0 −W0 and W1 denotes the number of Iextra1 to split
m1 into W1 and m1 − W1. Thus, the resulting conditional
predictive distributions of W0 and W1 given (Yobs, φ0, φ1, λ)
are given by

(4.7)

W0|(Yobs, φ0, φ1, λ) ∼ Binomial

(
m0,

φ0

φ0 + φ2e−λ

)
and

W1|(Yobs, φ0, φ1, λ) ∼ Binomial

(
m1,

φ1

φ1 + φ2λ e−λ

)
,

respectively. On the other hand, the complete-data likeli-
hood function is proportional to

L(φ0, φ1, λ|Ycom)

(4.8)

∝ φw0
0 [(1− φ0 − φ1)e

−λ]m0−w0

× φw1
1 [(1− φ0 − φ1)λ e

−λ]m1−w1

× (1− φ0 − φ1)
n−m0−m1e−(n−m0−m1)λλN

= φw0
0 φw1

1 (1− φ0 − φ1)
n−w0−w1e−(n−w0−w1)λλm1−w1+N .

Thus the M-step is to find the complete-data MLEs

φ̂0 =
w0

n
, φ̂1 =

w1

n
and(4.9)

λ̂ =
N +m1 − w1

n− w0 − w1
=

N +m1 − nφ̂1

n(1− φ̂0 − φ̂1)
.

The E-step is to replace w0 and w1 in (4.9) by their condi-
tional expectations:

(4.10)

E(W0|Yobs, φ0, φ1, λ) =
m0φ0

φ0 + (1− φ0 − φ1)e−λ
and

E(W1|Yobs, φ0, φ1, λ) =
m1φ1

φ1 + (1− φ0 − φ1)λ e−λ
.

4.3 Bootstrap confidence intervals

The Wald CIs of φ0 and φ1 specified by (4.6) may fall out-
side the unit interval [0,1). The Wald CI of λ given by (4.6)
is reliable only for large sample sizes and its lower bound
may be less than 0. For small sample sizes, the bootstrap
method is a useful tool to find a bootstrap CI for an arbi-
trary function of φ0, φ1 and λ, say, ϑ = h(φ0, φ1, λ). Let

ϑ̂ = h(φ̂0, φ̂1, λ̂) denote the MLE of ϑ, where (φ̂0, φ̂1, λ̂) rep-
resent the MLEs of (φ0, φ1, λ) calculated by either the Fisher
scoring algorithm (4.5) or the EM algorithm (4.9)–(4.10).

Based on the obtained MLEs (φ̂0, φ̂1, λ̂), by using the SR

(2.1) we can generate Y ∗
1 , . . . , Y

∗
n

iid∼ ZOIP(φ̂0, φ̂1, λ̂). Hav-
ing obtained Y ∗

obs = {y∗1 , . . . , y∗n}, we can calculate the boot-

strap replications (φ̂∗
0, φ̂

∗
1, λ̂

∗) and get ϑ̂∗ = h(φ̂∗
0, φ̂

∗
1, λ̂

∗).
Independently repeating this process G times, we obtain G
bootstrap replications {ϑ̂∗

g}Gg=1. Consequently, the standard

error, se(ϑ̂), of ϑ̂ can be estimated by the sample standard
deviation of the G replications, i.e.,
(4.11)

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
G)/G]2

}1/2

.

If {ϑ̂∗
g}Gg=1 is approximately normally distributed, the first

(1− α)100% bootstrap CI for ϑ is

(4.12) [ϑ̂− zα/2 · ŝe(ϑ̂), ϑ̂+ zα/2 · ŝe(ϑ̂)].

Alternatively, if {ϑ̂∗
g}Gg=1 is non-normally distributed, the

second (1− α)100% bootstrap CI of ϑ is given by

(4.13) [ϑ̂
L
, ϑ̂

U
],

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1 − α/2) per-

centiles of {ϑ̂∗
g}Gg=1, respectively.

5. TESTING HYPOTHESES WITH LARGE
SAMPLE SIZES

In this section, we consider the testing hypotheses for (i)
H0: (φ0, φ1) = (0, 0); (ii) H0: φ1 = 0; (iii) H0: φ0 = 0; (iv)
H0: λ = λ0. For (i), when H0 is true, since the parameter
values are located at the vertex boundary of the bounded pa-
rameter space, the traditional asymptotic property of LRT
is not applicable. Therefore, we only consider the score test.
For (ii)–(iii), although the parameter value is still on the
boundary of the parameter space, we can provide appropri-
ate reference distribution. Finally for (iv), it is a standard
two-sided test.

5.1 Score test for simultaneous
zero-and-one inflation

First, we develop a score test to examine whether there
exist excessive zeros and excessive ones in the observa-
tions simultaneously, i.e., zero-and-one inflation in the ZOIP
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model. The null and alternative hypotheses are as follows
(5.1)

H0: (φ0, φ1) = (0, 0) against H1: (φ0, φ1) 
= (0, 0).

By reparametrization, three new parameters are introduced
as follows:
(5.2)

θ0 =
φ0

1− φ0 − φ1
, θ1 =

φ1

1− φ0 − φ1
and β = log λ.

Then, testing H0 specified in (5.1) is equivalent to testing
H∗

0 : (θ0, θ1) = (0, 0). The observed-data log-likelihood func-
tion now becomes

�1 =̂ �1(θ0, θ1, β) =

n∑
i=1

{
− log(1 + θ0 + θ1)

+ [log(θ0 + e−λ)]I(yi = 0)

+ [log(θ1 + λ e−λ)]I(yi = 1)

+ [yi log λ− λ− log(yi!)]I(yi � 2)

}
.

The score vector is now denoted by

U(θ0, θ1, β) =

(
∂�1
∂θ0

,
∂�1
∂θ1

,
∂�1
∂β

)�
,

where

∂�1
∂θ0

=

n∑
i=1

[
− 1

1 + θ0 + θ1
+

1

θ0 + e−λ
I(yi = 0)

]
,

∂�1
∂θ1

=

n∑
i=1

[
− 1

1 + θ0 + θ1
+

1

θ1 + λ e−λ
I(yi = 1)

]
,

∂�1
∂β

=

n∑
i=1

[
− λ e−λ

θ0 + e−λ
I(yi = 0)

− (λ2 − λ)e−λ

θ1 + λ e−λ
I(yi = 1) + (yi − λ)I(yi � 2)

]
.

The second derivatives are given by

∂2�1
∂θ20

=

n∑
i=1

[
1

(1 + θ0 + θ1)2
− 1

(θ0 + e−λ)2
I(yi = 0)

]
,

∂2�1
∂θ21

=

n∑
i=1

[
1

(1 + θ0 + θ1)2

− 1

(θ1 + λ e−λ)2
I(yi = 1)

]
,

∂2�1
∂β2

=

n∑
i=1

{
− λ e−λ[θ0(1− λ) + e−λ]

(θ0 + e−λ)2
I(yi = 0)

− [θ1(3λ
2 − λ− λ3)e−λ + λ3e−2λ]

(θ1 + λ e−λ)2
I(yi = 1)

−λI(yi � 2)

}
,

∂2�1
∂θ0∂θ1

=

n∑
i=1

1

(1 + θ0 + θ1)2
,

∂2�1
∂θ0∂β

=

n∑
i=1

[
λ e−λ

(θ0 + e−λ)2
I(yi = 0)

]
,

∂2�1
∂θ1∂β

=

n∑
i=1

[
(λ2 − λ)e−λ

(θ1 + λ e−λ)2
I(yi = 1)

]
.

Since

E[I(yi = 0)] =
θ0 + e−λ

1 + θ0 + θ1
,

E[I(yi = 1)] =
θ1 + λ e−λ

1 + θ0 + θ1
and

E[I(yi � 2)] =
1− e−λ − λ e−λ

1 + θ0 + θ1
,

the Fisher information matrix can be calculated as
J(θ0, θ1, β) = (Jjj′), where

J11 = −E

(
∂2�1
∂θ20

)
=

n(1 + θ1 − e−λ)

(1 + θ0 + θ1)2(θ0 + e−λ)
,

J22 = −E

(
∂2�1
∂θ21

)
=

n(1 + θ0 − λ e−λ)

(1 + θ0 + θ1)2(θ1 + λ e−λ)
,

J33 = −E

(
∂2�1
∂β2

)
=

nλ e−λ[θ0(1− λ) + e−λ]

(θ0 + e−λ)(1 + θ0 + θ1)

+
n[θ1(3λ

2 − λ− λ3)e−λ + λ3e−2λ]

(θ1 + λ e−λ)(1 + θ0 + θ1)

+
nλ(1− eλ − λ eλ)

1 + θ0 + θ1
,

J12 = −E

(
∂2�1

∂θ0∂θ1

)
= − n

(1 + θ0 + θ1)2
,

J13 = −E

(
∂2�1
∂θ0∂β

)
= − nλ e−λ

(1 + θ0 + θ1)(θ0 + e−λ)
,

J23 = −E

(
∂2�1
∂θ1∂β

)
= − n(λ2 − λ)e−λ

(1 + θ0 + θ1)(θ1 + λ e−λ)
.

Under H∗
0 , the score test statistic

(5.3) T1 = U�(0, 0, β̂) J−1(0, 0, β̂)U(0, 0, β̂)
.∼ χ2(2),

where β̂ = log(ȳ) and U(0, 0, β̂) = (m0e
ȳ − n, m1e

ȳ/ȳ −
n, 0)�. The p-value is

(5.4) pv1 = Pr(T1 > t1|H∗
0 ) = Pr(χ2(2) > t1),

where t1 is the observed value of T1.

5.2 Likelihood ratio test for one inflation

If the null hypothesis H0 specified by (5.1) is rejected at
the α level of significance (i.e, at least one of the φ0 and
φ1 are positive), we could next test whether there exist ex-
tra ones in the observations, i.e., one-inflation in the ZOIP
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model. We consider the following null and alternative hy-
potheses

(5.5) H0: φ1 = 0 against H1: φ1 > 0.

Under H0, the likelihood ratio (LR) test statistic is given by

(5.6) T2 = −2{�(φ̂0,H0 , 0, λ̂H0 |Yobs)− �(φ̂0, φ̂1, λ̂|Yobs)},

where (φ̂0,H0 , λ̂H0) denote the constrained MLEs of (φ0, λ)

under H0 and (φ̂0, φ̂1, λ̂) denote the unconstrained MLEs
of (φ0, φ1, λ), which are obtained by either the Fisher scor-
ing algorithm (4.5) or the EM algorithm (4.9)–(4.10). Note
that under H0, the ZOIP(φ0, φ1;λ) distribution reduces to
the zero-inflated Poisson distribution ZIP(φ0, λ). Thus, the
MLEs of (φ0, λ) can be calculated by the following EM it-
eration:

φ
(t+1)
0,H0

=
m0φ

(t)
0,H0

n
[
φ
(t)
0,H0

+
(
1− φ

(t)
0,H0

)
e−λ

(t+1)
H0

] ,(5.7)

λ
(t+1)
H0

=
ȳ

1− φ
(t)
0,H0

,

where ȳ = (1/n)
∑n

i=1 yi.
Standard large-sample theory suggests that the asymp-

totic null distribution of T2 is χ2(1). However, the null hy-
pothesis in (5.5) corresponds to φ1 being on the boundary
of the parameter space and the appropriate null distribution
is a 50:50 mixture of χ2(0) (i.e., Degenerate(0)) and χ2(1),
see Self and Liang [28] and Feng and McCulloch [9]. Hence,
the corresponding p-value (Jansakul and Hinde, [14], p. 78;
Joe and Zhu, [15], p. 225) is

(5.8) pv2 = Pr(T2 > t2|H0) =
1

2
Pr(χ2(1) > t2).

5.3 Score test for one inflation

Alternatively, the score test can be used for testing H0

specified in (5.5), which is equivalent to testing H∗
0 : θ1 = 0.

Let (θ0, θ1, β) be defined by (5.2). Under H∗
0 , the score test

statistic

(5.9) T3 = U�(θ̂0, 0, β̂) J
−1(θ̂0, 0, β̂)U(θ̂0, 0, β̂)

.∼ χ2(1),

where θ̂0 = φ̂0,H0/(1 − φ̂0,H0) and β̂ = log(λ̂H0) denote

the MLEs of θ0 and β under H∗
0 , and (φ̂0,H0 , λ̂H0) are de-

termined by (5.7). Note that the score vector U(θ0, θ1, β)

evaluated at (θ0, θ1, β) = (θ̂0, 0, β̂) is given by

U(θ̂0, 0, β̂) =

(
0, − n

1 + θ̂0
+

m1

λ̂H0e
−λ̂H0

, 0

)�

,

where m1 =
∑n

i=1 I(yi = 1). The corresponding p-value is

(5.10) pv3 = Pr(T3 > t3|H∗
0 ) = Pr(χ2(1) > t3).

5.4 LR test for zero inflation

To test whether there exist extra zeros in the observa-
tions, i.e., zero-inflation in the ZOIP model, we consider the
following null and alternative hypotheses

(5.11) H0: φ0 = 0 against H1: φ0 > 0.

Under H0, the LR test statistic (Jansakul and Hinde, [14],
p. 78; Joe and Zhu, [15], p. 225)

T4 = −2{�(0, φ̂1,H0 , λ̂H0 |Yobs)− �(φ̂0, φ̂1, λ̂|Yobs)}(5.12)
.∼ 0.5χ2(0) + 0.5χ2(1),

where (φ̂1,H0 , λ̂H0) denote the constrained MLEs of (φ1, λ)

under H0 and (φ̂0, φ̂1, λ̂) denote the unconstrained MLEs
of (φ0, φ1, λ), which are obtained by either the Fisher scor-
ing algorithm (4.5) or the EM algorithm (4.9)–(4.10). Note
that under H0, the ZOIP(φ0, φ1;λ) distribution reduces to
the one-inflated Poisson distribution OIP(φ1, λ). Thus, the
MLEs of (φ1, λ) can be calculated by the following EM it-
eration:

φ
(t+1)
1,H0

=
m1φ

(t)
1,H0

n
[
φ
(t)
1,H0

+
(
1− φ

(t)
1,H0

)
λ
(t+1)
H0

e−λ
(t+1)
H0

] ,(5.13)

λ
(t+1)
H0

=
ȳ − φ

(t)
1,H0

1− φ
(t)
1,H0

,

where ȳ = (1/n)
∑n

i=1 yi. Hence the corresponding p-value
is

(5.14) pv4 = Pr(T4 > t4|H0) =
1

2
Pr(χ2(1) > t4).

5.5 Score test for zero inflation

Let (θ0, θ1, β) be defined in (5.2), testing H0 specified by
(5.11) is equivalent to testing H∗

0 : θ0 = 0. Under H∗
0 , the

score test statistic

(5.15) T5 = U�(0, θ̂1, β̂) J
−1(0, θ̂1, β̂)U(0, θ̂1, β̂)

.∼ χ2(1),

where θ̂1 = φ̂1,H0/(1 − φ̂1,H0) and β̂ = log(λ̂H0) denote

the MLEs of θ1 and β under H∗
0 , and (φ̂1,H0 , λ̂H0) are de-

termined by (5.13). Note that the score vector U(θ0, θ1, β)

evaluated at (θ0, θ1, β) = (0, θ̂1, β̂) is given by

U(0, θ̂1, β̂) =

(
− n

1 + θ̂1
+m0e

λ̂H0 , 0, 0

)�
,

where m0 =
∑n

i=1 I(yi = 0). The corresponding p-value is

(5.16) pv5 = Pr(T5 > t5|H∗
0 ) = Pr(χ2(1) > t5).
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5.6 LR test for testing λ = λ0

Suppose that we want to test the null hypothesis

(5.17) H0: λ = λ0 against H1: λ 
= λ0.

Under H0, the LR test statistic

T6 = −2{�(φ̂0,H0 , φ̂1,H0 , λ0|Yobs)(5.18)

− �(φ̂0, φ̂1, λ̂|Yobs)} .∼ χ2(1),

where (φ̂0, φ̂1, λ̂) are the unconstrained MLEs of (φ0, φ1, λ)

and (φ̂0,H0 , φ̂1,H0) are the restricted MLEs of (φ0, φ1) under
H0, which can be obtained by the following EM iteration:
(5.19)

φ
(t+1)
0,H0

=
m0φ

(t)
0,H0

n
[
φ
(t)
0,H0

+ (1− φ
(t)
0,H0

− φ
(t)
1,H0

)e−λ0

] ,
φ
(t+1)
1,H0

=
m1φ

(t)
1,H0

n
[
φ
(t)
1,H0

+ (1− φ
(t)
0,H0

− φ
(t)
1,H0

)λ0e−λ0

] .
The corresponding p-value is

(5.20) pv6 = Pr(T6 > t6|H0) = Pr(χ2(1) > t6).

5.7 Score test for testing λ = λ0

Let (θ0, θ1, β) be defined in (5.2), then, testing H0 spec-
ified by (5.17) is equivalent to testing H∗

0 : β = β0 = log λ0.
Under H∗

0 , the score test statistic
(5.21)

T7 = U�(θ̂0, θ̂1, β0) J
−1(θ̂0, θ̂1, β0)U(θ̂0, θ̂1, β0)

.∼ χ2(1),

where (θ̂0, θ̂1) are the MLEs of (θ0, θ1) under H
∗
0 . Hence the

p-value is

(5.22) pv7 = Pr(T7 > t7|H∗
0 ) = Pr(χ2(1) > t7).

6. SIMULATION STUDIES

To investigate the performance of the likelihood ratio test
(LRT) and the score test, we compare the type I error rate
and the power of the two tests for (1) φ1 = 0, (2) φ0 = 0
and (3) λ = λ0. And the sample sizes are set to be n =
50(50)500.

6.1 Tests for one inflation

In this subsection, we compare the type I error rates
(with H0: φ1 = 0) and powers (with H1: φ1 > 0) between
the LRT and the score test for various sample sizes via
simulations, where the values of φ1 in H1 are chosen to
be 0.01, 0.03, 0.05, 0.07, 0.10, 0.15. For a given combination
of (n, φ0 = 0.5, φ1, λ = 2), we first independently draw

z
(l)
1 , . . . , z

(l)
n

iid∼ Multinomial (1;φ0, φ1, φ2) for l = 1, . . . , L,

where z
(l)
i = (Z

(l)
0i , Z

(l)
1i , Z

(l)
2i )

�, i = 1, . . . , n. And then we in-

dependently generate X
(l)
1 , . . . , X

(l)
n

iid∼ Poisson(λ). Finally,
we set

Y
(l)
i = Z

(l)
1i + Z

(l)
2i ·X(l)

i , i = 1, . . . , n;(6.1)

l = 1, . . . , L (L = 1,000).

All hypothesis testings are conducted at significant level of
α = 0.05. Let rk denote the number of rejecting the null
hypothesis H0: φ1 = 0 by the test statistics Tk (k = 2, 3)
given by (5.6) and (5.9), respectively. Hence, the actual sig-
nificance level can be estimated by rk/L with φ1 = 0 and
the power of the test statistic Tk can be estimated by rk/L
with φ1 > 0. We repeat the process of estimating each sig-
nificance level and each power for 1,000 times, respectively,
to obtain {α̂k}1000k=1 and {1− β̂k}1000k=1 . Then we use the mean,
100(α/2) and 100(1 − α/2) percentiles of these values to
estimate the empirical level/power and the corresponding
(1− α)100% upper and lower bounds.

Figure 1 shows the comparison of type I error rates be-
tween the LRT and the score test for various sample sizes,
and the 95% CIs for the empirical significance level associ-
ated with the two tests. We can see that the score test has
the correct size around α = 0.05, while the LRT can control
its type I error rates in a lower level (around 0.045). As far as
we know, the lower the type I error rate the better the test’s
performance, thus the LRT has a better performance in con-
trolling its type I error rates around the pre-chosen nominal
level than the score test. An interpretation is as follows: For
testing H0: φ1 = 0 and H0: φ0 = 0 (corresponding to Fig-
ure 3), since the LRT considers both the null and alternative
situations, it is more sensitive in distinguishing two models,
which results in a lower type I error rate.

Figure 2 gives the comparison of powers between the LRT
and the score test for different values of φ1 > 0. It is not dif-
ficult to find that the LRT is always more powerful than the
score test. A possible interpretation is as follows: For test-
ing H0: φ1 = 0 and H0: φ0 = 0 (corresponding to Figure 4)
which are one-sided tests, the LRT should be more power-
ful than the score test in the sense that the LRT evaluates
things under both the null and alternative while the score
test only evaluates things under the null, thus it is blind to
the sign of the φ. Then the score test is more likely to make
type II error rates and is less powerful.

The empirical levels/powers of the LRT statistic T2 and
the score test statistic T3 are summarized in Tables 1 and
2, respectively, for six scenarios: φ1 = 0.01, 0.03, 0.05, 0.07,
0.10, 0.15.

6.2 Tests for zero inflation

In this subsection, we compare the type I error rates
(with H0: φ0 = 0) and powers (with H1: φ0 > 0) be-
tween the LRT and the score test for various sample sizes
via simulations, where the values of φ0 in H1 are set to
be 0.01, 0.03, 0.05, 0.07, 0.10, 0.15. For a given combination
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Figure 1. (i) Comparison of type I error rates between the
LRT (solid line) and the score test (dotted line) for testing

one inflation in the ZOIP model with H0: φ1 = 0 against H1:
φ1 > 0. The dashed line is set as the predetermined

significance level of α = 0.05; (ii) 95% CIs for the empirical
level of significance of the LRT; (iii) 95% CIs for the

empirical level of significance of the score test.

Figure 2. Comparison of powers between the LRT (solid line)
and the score test (dotted line) for testing one inflation in the
ZOIP model with H0: φ1 = 0 against H1: φ1 > 0 for different

values of φ1.

Table 1. Empirical levels/powers of the LRT statistic T2

based on 1,000 replications for φ0 = 0.5 and λ = 2

Sample Empirical Empirical power
size level φ1

(n) 0.010 0.030 0.050 0.070 0.100 0.150

50 0.036 0.049 0.074 0.107 0.145 0.214 0.343
100 0.040 0.059 0.102 0.161 0.236 0.365 0.582
150 0.041 0.064 0.125 0.211 0.319 0.496 0.747
200 0.042 0.070 0.147 0.257 0.394 0.604 0.852
250 0.043 0.074 0.166 0.302 0.463 0.692 0.917
300 0.044 0.078 0.184 0.343 0.525 0.764 0.954
350 0.044 0.082 0.204 0.384 0.582 0.821 0.975
400 0.044 0.085 0.222 0.422 0.634 0.864 0.986
450 0.045 0.088 0.240 0.459 0.680 0.898 0.993
500 0.045 0.092 0.256 0.494 0.722 0.924 0.996

of (n, φ0, φ1 = 0.5, λ = 2), we generate Y
(l)
1 , . . . , Y

(l)
n

iid∼
ZOIP(φ0, 0.5; 2) with L = 1,000 replications. All hypothesis
testings are conducted at significant level of α = 0.05.

Let rk denote the number of rejecting the null hypothesis
H0: φ0 = 0 by the test statistics Tk (k = 4, 5) given by (5.12)
and (5.15), respectively. Hence, the actual significance level
can be estimated by rk/L with φ0 = 0 and the power of
the test statistic Tk can be estimated by rk/L with φ0 > 0.
The estimated level/power and 95% CIs are calculated in a
similar way as in Section 6.1.
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Table 2. Empirical levels/powers of the score statistic T3

based on 1,000 replications for φ0 = 0.5 and λ = 2

Sample Empirical Empirical power
size level φ1

(n) 0.010 0.030 0.050 0.070 0.100 0.150

50 0.050 0.050 0.055 0.070 0.092 0.138 0.242
100 0.051 0.051 0.067 0.102 0.154 0.257 0.461
150 0.051 0.052 0.079 0.135 0.216 0.371 0.637
200 0.050 0.053 0.091 0.169 0.280 0.479 0.769
250 0.051 0.055 0.104 0.204 0.341 0.574 0.858
300 0.050 0.056 0.116 0.237 0.401 0.656 0.915
350 0.051 0.057 0.129 0.271 0.458 0.725 0.950
400 0.050 0.059 0.143 0.307 0.512 0.783 0.972
450 0.050 0.061 0.156 0.339 0.563 0.830 0.984
500 0.051 0.062 0.169 0.372 0.609 0.869 0.991

Figure 3 shows the comparison of type I error rates be-
tween the LRT and the score test, and the 95% CIs for the
empirical level. Both the LRT and the score test have the
correct size around α = 0.05. However, the LRT test per-
forms relatively better in controlling its type I error rates
around the pre-chosen nominal level than the score test.

Figure 4 gives the comparison of powers between the LRT
and the score test for different values of φ0. We found that
the score test is always less powerful than the LRT.

The empirical levels/powers of the LRT statistic T4

and the score test statistic T5 are summarized in Ta-
bles 3 and 4, respectively, for six scenarios: φ0 =
0.01, 0.03, 0.05, 0.07, 0.10, 0.15.

6.3 Tests for λ = λ0

In this subsection, we compare the type I error rates (with
H0: λ = λ0) and powers (withH1: λ 
= λ0) between the LRT
and the score test for various sample sizes, different values
of λ0 (set to be 2, 3, 5, 7 for the comparison of empirical
levels) and λ = 1.5 for the comparison of empirical powers.
For a given combination of (n, φ0 = 0.3, φ1 = 0.1, λ), we

generate Y
(l)
1 , . . . , Y

(l)
n

iid∼ ZOIP(φ0, φ1;λ) with L = 1,000
replications.

Let rk denote the number of rejecting the null hypoth-
esis H0: λ = λ0 by the test statistics Tk (k = 6, 7) given
by (5.18) and (5.21), respectively. Hence, the actual signif-
icance level can be estimated by rk/L with λ = λ0 and the
power of the test statistic Tk can be estimated by rk/L with
λ 
= λ0. All hypothesis testings are conducted at significant
level of α = 0.05. The estimated significance level/power
and 95% CIs are calculated in a similar way as in Sec-
tion 6.1.

Figure 5 shows that some comparison of type I error rates
between the LRT and the score test. When λ0 = 2 and the
sample size is smaller than 200, the score test has a better
performance in controlling its type I error rates around the
pre-chosen nominal level than the LRT, while they are in-
terlaced as the sample size becomes larger. When λ0 � 3, it

Figure 3. (i) Comparison of type I error rates between the
LRT (solid line) and the score test (dotted line) for testing

zero inflation in the ZOIP model with H0: φ0 = 0 against H1:
φ0 > 0. The dashed line is set as the predetermined

significance level of α = 0.05; (ii) 95% CIs for the empirical
level of significance of the LRT; (iii) 95% CIs for the

empirical level of significance of the score test.
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Figure 4. Comparison of powers between the LRT (solid line)
and the score test (dotted line) for testing zero inflation in
the ZOIP model with H0: φ0 = 0 against H1: φ0 > 0 for

different values of φ0.

Table 3. Empirical levels/powers of the LRT statistic T4

based on 1,000 replications for φ1 = 0.5 and λ = 2

Sample Empirical Empirical power
size level φ0

(n) 0.010 0.030 0.050 0.070 0.100 0.150

50 0.036 0.050 0.086 0.131 0.180 0.258 0.380
100 0.039 0.063 0.126 0.210 0.303 0.442 0.626
150 0.041 0.071 0.161 0.281 0.412 0.588 0.785
200 0.043 0.079 0.194 0.349 0.507 0.704 0.882
250 0.043 0.085 0.224 0.410 0.591 0.790 0.937
300 0.044 0.092 0.256 0.468 0.662 0.853 0.966
350 0.044 0.097 0.284 0.521 0.723 0.898 0.983
400 0.045 0.103 0.313 0.570 0.774 0.930 0.991
450 0.044 0.108 0.340 0.615 0.818 0.953 0.996
500 0.045 0.114 0.367 0.656 0.852 0.968 0.998

can be seen that the two lines fluctuate with several points
and sections, so we cannot say which one is more powerful.
Thus when comparing the type I error rates between the
two tests, there is no absolutely better one.

Figure 6 gives the comparison of powers between the LRT
and the score test for the case with λ = 1.5 
= λ0 = 1. It
is not difficult to find that the LRT is slightly less powerful
than the score test when sample size is less than 200 and
the two tests almost have the same powers when the sample
size is larger than 200.

Table 4. Empirical levels/powers of the score statistic T5

based on 1,000 replications for φ1 = 0.5 and λ = 2

Sample Empirical Empirical power
size level φ0

(n) 0.010 0.030 0.050 0.070 0.100 0.150

50 0.049 0.051 0.065 0.092 0.126 0.188 0.298
100 0.051 0.054 0.086 0.144 0.218 0.343 0.531
150 0.050 0.056 0.107 0.198 0.310 0.483 0.706
200 0.050 0.059 0.130 0.252 0.397 0.605 0.823
250 0.050 0.062 0.151 0.305 0.478 0.702 0.897
300 0.050 0.065 0.174 0.356 0.553 0.778 0.942
350 0.051 0.067 0.196 0.407 0.620 0.838 0.968
400 0.050 0.070 0.220 0.454 0.679 0.884 0.983
450 0.050 0.072 0.241 0.501 0.731 0.917 0.991
500 0.050 0.075 0.263 0.543 0.775 0.942 0.995

Figure 5. Comparison of type I error rates between the LRT
(solid line) and the score test (dotted line) for testing H0:
λ = λ0 against H1: λ 
= λ0 with different values of λ0. The
dashed line is set as the predetermined significance level of

α = 0.05.

The empirical levels/powers of the LRT statistic T6 and
the score test statistic T7 are summarized in Tables 5 and
6, respectively.

7. APPLICATIONS

In this section, five real data sets are used to illustrate the
proposed methods, where the Newton–Raphson algorithm
for finding the MLEs of parameters is not available in all
examples because the corresponding observed information
matrices are nearly singular, while the Fisher scoring and
EM algorithms work well in all examples.
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Table 5. Empirical levels/powers of the LRT statistic T6 based on 1,000 replications for φ0 = 0.3 and φ1 = 0.1

Sample size Empirical level Empirical power
(n) λ0 = 2 λ0 = 3 λ0 = 5 λ0 = 7 λ = 1.5 (H0: λ = λ0 = 1)

50 0.040 0.048 0.049 0.050 0.877
100 0.044 0.049 0.050 0.051 0.987
150 0.047 0.050 0.050 0.050 0.999
200 0.049 0.051 0.050 0.050 1
250 0.049 0.050 0.050 0.050 1
300 0.049 0.050 0.049 0.050 1
350 0.050 0.050 0.050 0.050 1
400 0.051 0.050 0.050 0.050 1
450 0.050 0.050 0.050 0.050 1
500 0.050 0.050 0.050 0.050 1

Table 6. Empirical levels/powers of the score statistic T7 based on 1,000 replications for φ0 = 0.3 and φ1 = 0.1

Sample size Empirical level Empirical power
(n) λ0 = 2 λ0 = 3 λ0 = 5 λ0 = 7 λ = 1.5 (H0: λ = λ0 = 1)

50 0.054 0.050 0.050 0.050 0.968
100 0.051 0.050 0.050 0.050 0.998
150 0.050 0.050 0.050 0.050 1
200 0.049 0.050 0.049 0.049 1
250 0.049 0.050 0.049 0.050 1
300 0.049 0.050 0.050 0.050 1
350 0.050 0.050 0.050 0.050 1
400 0.050 0.050 0.050 0.050 1
450 0.050 0.050 0.049 0.050 1
500 0.050 0.050 0.050 0.050 1

Figure 6. Comparison of powers between the LRT (solid line)
and the score test (dotted line) for testing H0: λ = λ0 = 1

against H1: λ = 1.5 
= λ0.

7.1 Dentist visiting data in Sweden

Eriksson and Åberg [8] reported a two-year panel data
from Swedish Level of Living Surveys in 1974 and 1991. To
investigate the long term effect of the regular dentist visits
during childhood and adolescence, the questions were set to
know about people’s habit of visiting dentist. The questions
in the surveys are retrospective and in 1974 (1991) the ques-
tions refer to the individuals’ situation in 1973 (1990). The
panel includes 766 individuals who were between 15 and 29
years old in 1973. The number of visits to a dentist dur-
ing the previous twelve month is only available for 1991,
and whether the individual visits a dentist regularly is only
available for 1974. Since we focus on modeling the distri-
bution of visits to a dentist, we only gives the sample with
different visit frequencies to a dentist in 1990 in Table 7.

7.1.1 Likelihood-based inferences

We noted that the data are characterized by both large
proportions of zero visits and one visits to a dentist which
are 17.5 and 41 percent, respectively. Therefore, the ZOIP
distribution can be considered to capture the data. Let

Y1, . . . , Yn
iid∼ ZOIP(φ0, φ1;λ). To find the MLEs of parame-

ters, we choose (φ
(0)
0 , φ

(0)
1 , λ(0)) = (0.3, 0.3, 3) as their initial

values. The MLEs of (φ0, φ1, λ) converged to (φ̂0, φ̂1, λ̂) as
shown in the second column of Table 8 in 3 iterations for

Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods 25



Table 7. The dentist visiting data from Swedish Level of Living Surveys (Eriksson and Åberg, 1987; Melkersson and Olsson,
1999)

Count 0 1 2 3 4 5 6 7 8 9 10 12 15 20

Frequency 134 314 149 69 32 26 14 6 1 0 11 3 3 4

Table 8. MLEs and CIs of parameters for the dentist visiting data in Sweden

Parameter MLE stdF 95% asymptotic Wald CI stdB 95% bootstrap CI† 95% bootstrap CI‡

φ0 0.1535 0.0144 [0.1253, 0.1817] 0.0146 [0.1250, 0.1821] [0.1255, 0.1828]
φ1 0.3422 0.0210 [0.3010, 0.3834] 0.0212 [0.3000, 0.3831] [0.3009, 0.3828]
λ 3.1580 0.1169 [2.9289, 3.3870] 0.1176 [2.9272, 3.3881] [2.9340, 3.3854]

stdF: Square roots of the diagonal elements of inverse Fisher information matrix J−1(φ0, φ1, λ). std
B: Sample standard deviation

of the bootstrap samples, cf. (4.11). CI†: Normal-based bootstrap CI, cf. (4.12). CI‡: Non-normal-based bootstrap CI, cf. (4.13).

the Fisher scoring algorithm (4.5) and in 24 iterations for
the EM algorithm (4.9)–(4.10), while the Newton–Raphson
method is not available because the observed information
matrix is nearly singular. The standard errors of the MLEs
(φ̂0, φ̂1, λ̂) are given in the third column and 95% asymptotic
Wald CIs (specified by (4.6)) of the three parameters are
listed in the fourth column of Table 8. With G = 6,000 boot-
strap replications, the two 95% bootstrap CIs of (φ0, φ1, λ)
are presented in the last two columns of Table 8.

Suppose we want to test H0: (φ0, φ1) = (0, 0) against
H1: (φ0, φ1) 
= (0, 0). According to (5.3), we calculate the
value of the score test statistic which is given by t1 =
217.3718 and from (5.4), we have pv1 = 0 � 0.05. Thus, the
H0 should be rejected at the significance level of α = 0.05.

If we want to test the null hypothesis H0: φ1 = 0 against
H1: φ1 > 0 at α = 0.05. According to (5.6) and (5.9), we
calculate the values of the likelihood ratio test statistic and
score test statistic, which are given by t2 = 214.6707 and
t3 = 214.0573, respectively. Then, from (5.8) and (5.10), we
have pv2 = pv3 = 0 � α = 0.05, resulting in a rejection of
H0.

If we want to test H0: φ0 = 0 against H1: φ0 > 0. Ac-
cording to (5.12) and (5.15), we calculate the values of the
likelihood ratio test statistic and score test statistic which
are given by t4 = 146.3721 and t5 = 161.5884, respectively.
Then, from (5.14) and (5.16), we have pv4 = pv5 = 0 �
0.05. As a result, the H0 should be rejected at the level of
α = 0.05.

7.1.2 Model comparison

We assess the goodness-of-fit by Pearson’s chi-squared
test (Pearson, [23]) via the predicted counts and we also
use the Akaike information criterion (AIC; Akaike, [1]) and
Bayesian information criterion (BIC; Schwarz, [27]) to com-
pare models. A comparison of the fitted Poisson, ZIP and
ZOIP distributions is shown in Table 9. According to Pear-
son’s goodness-of-fit criterion, although the values of Pear-
son’s chi-squared statistics for the three fitted distributions
are sharply decreasing from the highest 792.9705 to 638.0514

Table 9. Comparison of the fitted frequencies from Poisson,
ZIP and ZOIP distribution for the dentist visiting data

Observed
Count frequency Poisson ZIP ZOIP

0 134 110.66 134.00 134.00
1 314 214.10 192.69 314.00
2 149 207.11 196.55 81.88
3 69 133.57 133.66 86.20
4 32 64.60 68.17 68.05
5 26 25.00 27.81 42.98
6 14 8.06 9.46 22.62
7 6 2.23 2.76 10.21
8-20 22 0.68 0.90 6.06

φ0 0.0516 0.1535
φ1 0.3422
λ 1.9347 2.0400 3.1580

Pearson’s χ2 792.97 638.05 131.18
d.f. 7 6 5
p-value <0.001 <0.001 <0.001

AIC 3182.05 3175.78 2963.11
BIC 3186.70 3185.06 2977.03

Table 10. Criminal acts data (Dieckmann, 1981)

Count 0 1 2 3 4 5

Frequency 4037 219 29 9 5 2

to the lowest 131.1833, all of the three distributions exhibit
lack of fit to the data. However, the tests for testing three
hypothesesH0: (φ0, φ1) = (0, 0),H0: φ1 = 0 andH0: φ0 = 0
reject all three H0’s at the significant level α = 0.05, indi-
cating the existence of excess zeros and ones in the distribu-
tion. Moreover, both AIC and BIC criteria favor the ZOIP
distribution.

7.2 Criminal acts data

Dieckmann [7] provided a data set from crime sociol-
ogy consisting a sample of people with deviating behav-
ior. Table 10 lists the distribution of number of criminal
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Table 11. MLEs and CIs of parameters for the criminal acts data

Parameter MLE stdF 95% asymptotic Wald CI stdB 95% bootstrap CI† 95% bootstrap CI‡

φ0 0.9316 0.0053 [0.9212, 0.9420] 0.0064 [0.9176, 0.9428] [0.9157, 0.9405]
φ1 0.0415 0.0045 [0.0326, 0.0504] 0.0048 [0.0314, 0.0504] [0.0309, 0.0498]
λ 1.3431 0.2447 [0.8635, 1.8227] 0.2466 [0.8537, 1.8202] [0.8501, 1.8198]

stdF: Square roots of the diagonal elements of inverse Fisher information matrix J−1(φ0, φ1, λ). std
B: Sample standard deviation

of the bootstrap samples, cf. (4.11). CI†: Normal-based bootstrap CI, cf. (4.12). CI‡: Non-normal-based bootstrap CI, cf. (4.13).

acts of 4301 persons with deviating behavior. Dieckmann
[7] pointed out that the Poisson model does not fit the data
well. Böhning [2] showed that the fit of the ZIP model is
still not good in the upper classes (i.e., number of criminal
acts 3, 4, and 5). By observing that the data have relatively
higher proportions of zeros and ones, while the frequencies
for other categories are quite low, we apply the ZOIP model
to fit the data.

7.2.1 Likelihood-based inferences

Data in Table 10 exhibit excess zeros and ones, while
the traditional Poisson model does not adequately cap-
ture such characteristics, so we consider the ZOIP model.

Let Y1, . . . , Yn
iid∼ ZOIP(φ0, φ1;λ). To find the MLEs of

(φ0, φ1, λ), we choose (φ
(0)
0 , φ

(0)
1 , λ(0)) = (0.3, 0.3, 3) as

the initial values. The MLEs of (φ0, φ1, λ) converged to

(φ̂0, φ̂1, λ̂) as shown in the second column of Table 11 in 6
iterations for the Fisher scoring algorithm (4.5) and in 249
iterations for the EM algorithm (4.9)–(4.10). The standard

errors of the MLEs (φ̂0, φ̂1, λ̂) are given in the third column
and 95% asymptotic Wald CIs (i.e. (4.6)) of the three pa-
rameters are listed in the fourth column of Table 11. With
G = 6,000 bootstrap replications, the two 95% bootstrap
CIs of (φ0, φ1, λ) are shown in the last two columns of Ta-
ble 11.

Let α = 0.05. Suppose we want to test H0: (φ0, φ1) =
(0, 0) against H1: (φ0, φ1) 
= (0, 0). According to (5.3), we
calculate the value of the score test statistic which is given
by t1 = 1848.2450 and from (5.4), we have pv1 = 0 � 0.05.
Thus, the H0 should be rejected at the significance level of
α = 0.05.

Suppose we want to test the null hypothesis H0: φ1 = 0
against the alternative hypothesis H1: φ1 > 0. According
to (5.6) and (5.9), we calculate the values of the likeli-
hood ratio test and score test statistics, which are given
by t2 = 25.5011 and t3 = 30.0044, respectively. Then from
(5.8) and (5.10), we have pv2 = pv3 = 0 � α. Thus, we
should reject H0.

7.2.2 Model comparison

We assess the model fitting by Pearson’s chi-squared test,
AIC and BIC. We list the fitted frequencies from Poisson,
ZIP and ZOIP models in Table 12 and compute the cor-
responding p-values and MLEs of parameters. According
to Pearson’s goodness-of-fit criterion, the Poisson and ZIP

Table 12. Comparison of the fitted frequencies from Poisson,
ZIP and ZOIP distributions for the criminal acts

data

Observed
Count frequency Poisson ZIP ZOIP

0 4037 3979.64 4037.00 4037.00
1 219 309.04 204.54 219.00
2 29 12.00 50.15 27.28
3 9 0.31 8.20 12.21
4 5 0.01 1.01 4.10
5 2 0.00 0.12 1.40

Pearson’s χ2 46582.53 59.31 1.40
d.f. 4 3 2
p-value <0.001 <0.001 0.4958

4+ 7 0.01 1.11 5.51
Pearson’s χ2 8279.97 41.19 1.36
d.f. 3 2 1
p-value <0.001 <0.001 0.2436

φ0 0.8416 0.9316
φ1 0.0415
λ 0.0777 0.4904 1.3431

AIC 2500.43 2346.80 2323.30
BIC 2506.80 2359.54 2342.40

models exhibit lack of fit to the data because of very small
p-values while the ZOIP model shows a satisfactory fit. Fur-
thermore, both the likelihood ratio test and the score test
support the ZOIP model. Finally, both AIC and BIC favor
the ZOIP model, so the ZOIP model is more favorable than
the other two models.

7.3 Fetal lamb movement data

Leroux and Puterman [17] analyzed one particular se-
quence of counts in a study of breathing and body move-
ments in fetal lambs designed to examine the possible
changes in the amount and pattern of fetal activity during
the last two-thirds of gestation. Table 13 lists the number
of movements made by a fetal lamb observed through ultra-
sound in 240 consecutive 5-second intervals. Gupta et al. [11]
further analyzed this data set by the zero-adjusted general-
ized Poisson distribution which results in a better fit than
both the traditional Poisson distribution and a mixture of
two Poisson distributions. Alternatively, we can apply the
ZOIP distribution to fit this data set since there are extra
zeros and ones.

Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods 27



Table 13. Number of movements made by a fetal lamb (Leroux and Puterman, 1992) and fitted frequencies from ZIP and
ZOIP distributions

Number of movements 0 1 2 3 4 5 6 7

Number of intervals 182 41 12 2 2 0 0 1
Fitted frequencies (ZIP) 182.00 36.86 15.61 4.41 0.93 0.16 0.02 0.00
Fitted frequencies (ZOIP) 182.00 41.00 9.56 4.85 1.85 0.56 0.14 0.04

Table 14. MLEs and CIs of parameters for the fetal lamb movement data

Parameter MLE stdF 95% asymptotic Wald CI stdB 95% bootstrap CI† 95% bootstrap CI‡

φ0 0.7240 0.0407 [0.6442, 0.8038] 0.0570 [0.5965, 0.8198] [0.5539, 0.7891]
φ1 0.1185 0.0369 [0.0461, 0.1909] 0.0408 [0.0297, 0.1897] [0.0099, 0.1820]
λ 1.5224 0.4142 [0.7106, 2.3342] 0.4150 [0.6955, 2.3224] [0.7289, 2.3517]

stdF: Square roots of the diagonal elements of inverse Fisher information matrix J−1(φ0, φ1, λ). std
B: Sample standard deviation

of the bootstrap samples, cf. (4.11). CI†: Normal-based bootstrap CI, cf. (4.12). CI‡: Non-normal-based bootstrap CI, cf. (4.13).

7.3.1 Likelihood-based inferences

To find the MLEs of (φ0, φ1, λ), we choose (φ
(0)
0 , φ

(0)
1 ,

λ(0)) = (0.3, 0.3, 3) as the initial values. The MLEs of

(φ0, φ1, λ) converged to (φ̂0, φ̂1, λ̂) as shown in the second
column of Table 14 in 6 iterations for the Fisher scoring al-
gorithm (4.5) and in 131 iterations for EM algorithm (4.9)–

(4.10). The standard errors of the MLEs (φ̂0, φ̂1, λ̂) are given
in the third column and 95% asymptotic Wald CIs (i.e.
(4.6)) of the three parameters are listed in the fourth col-
umn of Table 14. With G = 6,000 bootstrap replications,
the two 95% bootstrap CIs of (φ0, φ1, λ) are reported in the
last two columns of Table 14.

Let α = 0.05. Suppose we want to test H0: (φ0, φ1) =
(0, 0) against H1: (φ0, φ1) 
= (0, 0). According to (5.3), we
calculate the value of the score test statistic which is given
by t1 = 57.0687 and from (5.4), we have pv1 = 0 � 0.05.
Thus, the H0 should be rejected at the significance level of
α = 0.05.

Suppose we want to test the null hypothesis H0: φ1 = 0
against the alternative hypothesis H1: φ1 > 0. According
to (5.6) and (5.9), we calculate the values of the likelihood
ratio test statistic and score test statistic, which are given
by t2 = 4.9434 and t3 = 5.1433, respectively. Then from
(5.8) and (5.10), we have pv2 = 0.0131 and pv3 = 0.0233,
both are less than 0.05. Thus, we should reject H0.

7.3.2 Model comparison

The model fitting is conducted by Pearson’s chi-squared
test, AIC and BIC. The corresponding results are listed in
Table 15. According to Pearson’s chi-squared test statistics,
the ZIP model does not exhibit lack of fit, but the ZOIP
model substantially improves the fit. In Section 7.3.1, we
have shown that the tests for testing H0: (φ0, φ1) = (0, 0)
and H0: φ1 = 0 reject the H0 at the significant level of
α = 0.05, indicating the existence of excess zeros and ones
in the model. The AIC favors the ZOIP model, while the
BIC favors the ZIP model. From Table 13, we can see that
the number of zero counts and the number of one counts

Table 15. Results of the model fitting for the fetal lamb
movement data

ZIP ZOIP

4+
Pearson’s χ2 5.79 2.36
d.f. 2 1
p-value 0.0553 0.1242

5+
Pearson’s χ2 7.46 2.40
d.f. 3 2
p-value 0.0585 0.3011

φ0 0.5771 0.7240
φ1 0.1185
λ 0.8473 1.5224

AIC 384.87 381.93
BIC 391.84 392.37

predicted by the ZOIP model are close to the corresponding
observed counts, and the ZOIP model fits better than the
ZIP model for most of other count categories. Therefore, the
ZOIP model is a more reasonable alternative model.

7.4 Death notice data of London Times

The data are the numbers of death notices of women 80
years of age and over, appearing in the London Times on
each day for three consecutive years (Schilling, [26]). The
data set was fitted by Hasselblad [12] with a mixture of
two Poisson distributions. Subsequently, Gupta et al. [11]
analyzed the data by the zero-adjusted generalized Poisson
distribution with smaller variances of estimates when com-
paring with the mixture model. The counts are given in
Table 16. Considering the relatively higher proportions of
zero and one counts, we apply the ZOIP distribution to fit
the data.

7.4.1 Likelihood-based inferences

To find the MLEs of parameters, we choose (φ
(0)
0 , φ

(0)
1 ,

λ(0)) = (0.3, 0.3, 3) as the initial values. The MLEs of
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Table 16. Death notice data of London Times (Schilling, 1947)

Observed death count 0 1 2 3 4 5 6 7 8 9

Frequency 162 267 271 185 111 61 27 8 3 1

Table 17. MLEs and CIs of parameters for the death notice data of London Times

Parameter MLE stdF 95% asymptotic Wald CI stdB 95% bootstrap CI† 95% bootstrap CI‡

φ0 0.0660 0.0144 [0.0379, 0.0942] 0.0143 [0.0375, 0.0936] [0.0371, 0.0931]
φ1 0.0488 0.0212 [0.0072, 0.0904] 0.0207 [0.0074, 0.0885] [0.0062, 0.0874]
λ 2.3816 0.0751 [2.2345, 2.5287] 0.0739 [2.2356, 2.5252] [2.2354, 2.5231]

stdF: Square roots of the diagonal elements of inverse Fisher information matrix J−1(φ0, φ1, λ). std
B: Sample standard deviation

of the bootstrap samples, cf. (4.11). CI†: Normal-based bootstrap CI, cf. (4.12). CI‡: Non-normal-based bootstrap CI, cf. (4.13).

(φ0, φ1, λ) converged to (φ̂0, φ̂1, λ̂) as shown in the second
column of Table 17 in 5 iterations for the Fisher scoring
algorithm (4.5) and in 200 iterations for the EM algorithm

(4.9)–(4.10). The standard errors of the MLEs (φ̂0, φ̂1, λ̂) are
given in the third column and 95% asymptotic Wald CIs (i.e.
(4.6)) of the three parameters are listed in the fourth col-
umn of Table 17. With G = 6,000 bootstrap replications,
the two 95% bootstrap CIs of (φ0, φ1, λ) are provided in the
last two columns of Table 17.

Let α = 0.05. Suppose we want to test H0: (φ0, φ1) =
(0, 0) against H1: (φ0, φ1) 
= (0, 0). According to (5.3), we
calculate the value of the score test statistic which is given
by t1 = 20.6166 and from (5.4), we have pv1 = 0 � 0.05.
Thus, the H0 should be rejected at the significance level of
α = 0.05.

Suppose we want to test H0: φ1 = 0 against H1: φ1 > 0.
According to (5.6) and (5.9), we calculate the values of the
LRT statistic and score test statistic, which are given by
t2 = 5.0760 and t3 = 5.1068, respectively. Then, from (5.8)
and (5.10), we have pv2 = 0.0121 and pv3 = 0.0238, both
are less than 0.05. Thus we should reject H0.

7.4.2 Model comparison

The model fitting is conducted by Pearson’s chi-squared
test, AIC and BIC. We listed the predicted frequencies in
Table 18 to compare Poisson, ZIP and ZOIP models. The
computed Pearson’s chi-square statistics indicate that the
Poisson model exhibits lack of fit, the ZIP model does not
exhibit lack of fit, but the ZOIP model substantially im-
proves the fit. Moreover, both the LRT and the score test
favor the ZOIP model. However, the AIC favors the ZOIP
model, while the BIC favors the ZIP model.

7.5 Ammunition factory accidents data

Table 19 lists the number of accidents of 647 female work-
ers in an ammunition factory (Greenwood and Yule, [10]).
Since the simple Poisson model gave a bad fit to the data,
Böhning [2] fitted the data by the ZIP model. From the re-
sult of Pearson’s chi-squared test from Böhning [2], it seems
that the ZIP model still has a lack of fit to the data, so we
will apply the ZOIP model.

Table 18. Comparison of the fitted frequencies from Poisson,
ZIP and ZOIP distribution for the death notice data of

London Times

Observed
Count frequency Poisson ZIP ZOIP

0 162 126.78 162.00 162.00
1 267 273.47 244.38 267.00
2 271 294.92 277.29 254.22
3 185 212.04 209.76 201.82
4 111 114.34 119.01 120.17
5 61 49.33 54.02 57.24
6 27 17.73 20.43 22.72
7 8 5.46 6.62 7.73
8 3 1.47 1.88 2.30
9 1 0.45 0.61 0.79

Pearson’s χ2 26.47 9.92 4.54
d.f. 8 7 6
p-value 0.0009 0.1931 0.6044

7+ 12 7.38 9.11 10.82
Pearson’s χ2 25.91 9.63 4.39
d.f. 6 5 4
p-value 0.0002 0.0864 0.3558

φ0 0.0496 0.0660
φ1 0.0488
λ 2.1569 2.2694 2.3816

AIC 4004.80 3992.10 3989.03
BIC 4009.80 4002.10 4004.03

Table 19. Ammunition factory accidents data (Greenwood
and Yule, 1920)

Count 0 1 2 3 4 5

Frequency 447 132 42 21 3 2

7.5.1 Likelihood-based inferences

To find the MLEs of parameters, we choose (φ
(0)
0 , φ

(0)
1 ,

λ(0)) = (0.3, 0.3, 3) as the initial values. The MLEs of

(φ0, φ1, λ) converged to (φ̂0, φ̂1, λ̂) as shown in the second
column of Table 20 in 6 iterations for the Fisher scoring
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Table 20. MLEs and CIs of parameters for the ammunition factory accidents data

Parameter MLE stdF 95% asymptotic Wald CI stdB 95% bootstrap CI† 95% bootstrap CI‡

φ0 0.5969 0.0452 [0.5084, 0.6855] 0.0515 [0.4844, 0.6862] [0.4639, 0.6647]
φ1 0.0913 0.0347 [0.0233, 0.1594] 0.0359 [0.0156, 0.1565] [0.0036, 0.1501]
λ 1.1994 0.1918 [0.8236, 1.5752] 0.1915 [0.8196, 1.5704] [0.0036, 0.1501]

stdF: Square roots of the diagonal elements of inverse Fisher information matrix J−1(φ0, φ1, λ). std
B: Sample standard deviation

of the bootstrap samples, cf. (4.11). CI†: Normal-based bootstrap CI, cf. (4.12). CI‡: Non-normal-based bootstrap CI, cf. (4.13).

algorithm (4.5) and in 412 iterations for the EM algorithm

(4.9)–(4.10). The standard errors of the MLEs (φ̂0, φ̂1, λ̂) are
given in the third column and 95% asymptotic Wald CIs (i.e.
(4.6)) of the three parameters are listed in the fourth col-
umn of Table 20. With G = 6,000 bootstrap replications,
the two 95% bootstrap CIs of (φ0, φ1, λ) are presented in
the last two columns of Table 20.

Let α = 0.05. Suppose we want to test H0: (φ0, φ1) =
(0, 0) against H1: (φ0, φ1) 
= (0, 0). According to (5.3), we
calculate the value of the score test statistic which is given
by t1 = 76.6301 and from (5.4), we have pv1 = 0 � 0.05.
Thus, the H0 should be rejected at the significance level of
α = 0.05.

Suppose we want to test H0: φ1 = 0 against H1: φ1 > 0.
According to (5.6) and (5.9), we calculate the values of the
LRT statistic and score test statistic, which are given by
t2 = 4.4298 and t3 = 5.1068, respectively. Then, from (5.8)
and (5.10), we have pv2 = 0.0177 and pv3 = 0.0238, both
are less than 0.05. Thus we should reject H0.

7.5.2 Model comparison

The model fitting is conducted by Pearson’s chi-squared
test, AIC and BIC. We listed the predicted frequencies in
Table 21 to compare Poisson, ZIP and ZOIP models. The
computed Pearson’s chi-square statistics indicate that the
Poisson model exhibits a strong lack of fit and the ZIP model
does not exhibit lack of fit, but the ZOIP model substantially
improves the fit. Moreover, both the LRT and the score test
favor the ZOIP model. However, the AIC favors the ZOIP
model, while the BIC favors the ZIP model.

8. DISCUSSION

In this paper, we extensively study the zero-and-one in-
flated Poisson distribution by first establishing different but
equivalent stochastic representations for the ZOIP random
variable and then developing some important distributional
properties. As we have seen, these stochastic representa-
tions play key roles in obtaining explicit expressions of the
moments, the moment generating function, and in deriv-
ing an EM algorithm and so on. Useful results related to
the conditional distributions based on the first two stochas-
tic representations are also presented. Although the ZOIP
model involves one more parameter indicating the existence
of extra ones when comparing with the ZIP model, the
MLEs and confidence intervals of parameters of interest

Table 21. Comparison of the fitted frequencies from Poisson,
ZIP and ZOIP distribution for the ammunition factory

accidents data

Observed
Count frequency Poisson ZIP ZOIP

0 447 406.31 447.00 447.00
1 132 189.03 124.60 132.00
2 42 43.97 54.95 43.72
3 21 6.82 16.15 17.48
4 3 0.79 3.56 5.24
5 2 0.08 0.73 1.56

Pearson’s χ2 103.14 7.22 1.86
d.f. 4 3 2
p-value <0.001 0.0653 0.3946

4+ 5 0.87 4.30 6.80
Pearson’s χ2 70.37 5.06 1.25
d.f. 3 2 1
p-value <0.001 0.0797 0.2629

φ0 0.4725 0.5969
φ1 0.0913
λ 0.4652 0.8820 1.1994

AIC 1236.37 1190.54 1188.12
BIC 1240.84 1199.49 1201.53

can be easily obtained by the Fisher scoring algorithm or
the EM algorithm, and the bootstrap methods developed
in this paper. We also noted that the Pearson chi-squared
goodness-of-fit test is more useful than both the AIC and
BIC in model selection because the former can provide a
p-value.

In Section 2.5, the SR (2.14) in fact defines a zero-and-
one adjusted (or modified, or altered) Poisson distribution
that can incorporate both inflation and deflation. Therefore,
it is a further extension of the ZOIP model.

In Section 4.2, the MLEs of parameters in ZOIP model
were obtained through the EM algorithm specified by (4.9)
and (4.10). Once the EM converged, the iteration will arrive
at an equilibrium, i.e.,

φ̂0 =
m0φ̂0

n[φ̂0 + (1− φ̂0 − φ̂1)e−λ̂]
and

φ̂1 =
m1φ̂1

n[φ̂1 + (1− φ̂0 − φ̂1)λ̂ e−λ̂]
.

Therefore, we obtain
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m0 = n[φ̂0 + (1− φ̂0 − φ̂1)e
−λ̂] = n[φ̂0 + φ̂2e

−λ̂],(8.1)

m1 = n[φ̂1 + (1− φ̂0 − φ̂1)λ̂ e
−λ̂] = n[φ̂1 + φ̂2λ̂ e

−λ̂].(8.2)

Recall that in the beginning of Section 4, m0 =
∑n

i=1 I(yi =
0) denotes the number of zero observations in the observed
data Yobs = {yi}ni=1, while m1 =

∑n
i=1 I(yi = 1) denotes the

number of 1 observations in Yobs. On the other hand, from
(1.1), we know that the probability of {Y = 0} is φ0+φ2e

−λ

so that the estimated frequency of zero category should be

n[φ̂0+φ̂2e
−λ̂], which must be equal to m0 according to (8.1).

Similar interpretation can be applied to m1. For example, in
Table 9, the observed frequencies for 0 and 1 are m0 = 134
and m1 = 314, while the fitted frequencies for 0 and 1 based
on ZOIP are exactly 134 and 314. In addition, in a ZIP
model (a special case of ZOIP), since we also apply the EM
algorithm, it is not surprising that the fitted frequency for
zero category is exactly equal to the observed frequency for
the zero category.
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