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An invariant allocation function
for multi-treatment clinical trials

UrtTAM BANDYOPADHYAY AND RAHUL BHATTACHARYA®

An allocation function, invariant under monotonic trans-
formation, is proposed in the context of multi-arm clinical
trials for a class of continuous response distributions. The
aim is to skew the allocation towards the most promising
treatment using the whole information about the response
distributions. A response adaptive implementation based on
the proposed allocation function is suggested and assessed
through some useful performance measures.
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1. INTRODUCTION

Ethics is always an important concern in clinical trials
involving human beings. Naturally, favouring the best treat-
ment for the allocation of patients becomes necessary. But
the age old practice of assigning an equal number of sub-
jects to each treatment arm does not discriminate the ef-
fects of the superior and the inferior treatments and hence
is not preferred from an ethical perspective. Response adap-
tive randomization is often recommended in this context for
its ability to skew the allocation towards more promising
treatments on the basis of repeated analysis of the alloca-
tion and response data available so far. A number of alloca-
tion designs utilizing the intermediate data to find the more
promising treatment is available in the literature. For binary
treatment outcome, the popular method is to use urns where
the urn composition is continuously updated based on the
available data with a view to favour the better performing
treatment for further allocation. A thorough review explor-
ing the usefulness of urns for sequential treatment allocation
can be found in [1]. However, in continuous response trials,
the idea of treatment effect mapping [2] is mostly adopted
where the chance of allocation for an entering subject is
determined by some function of the available measures of
the treatment effects. Such a function is chosen for ensuring
higher allocation to the more promising treatment.

However, the one way strategy to promote the better per-
forming treatment should not be the only objective for a
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good clinical trial. A minimum requirement may be to de-
tect a little departure in treatment effectiveness most of the
times, which in statistical language amounts to ensuring
a higher power for a relevant test of hypothesis. Jennison
and Turnbull [3] provided a unified way to achieve differ-
ent aims within the same framework through a constrained
optimization problem. Their suggestion resulted in a flurry
of research activities exploring different optimal response
adaptive designs. The earliest attempt [4] derived an op-
timal proportion minimising the total expected failures for
binary responses and implemented through a response adap-
tive procedure. Further examples of optimal target based
designs for binary responses can be found in the works of
[5, 6, 7], among others. As a variant to the above approach,
optimum design theory is used in a recent work to develop
optimal allocation design [8]. The approach of [3] is also use-
ful for the subsequent development when the responses are
continuous. Considering different optimality criterion (e.g.
total expected responses and total number of responses ex-
ceeding a clinically relevant threshold) a number of optimal
allocation designs are developed [9, 10, 11, 12, 13, 14].

However, most of the available optimal allocation designs
are developed for two treatments and are not straightfor-
ward to extend for several treatments. The only problem
seems to define an appropriate function ensuring a specified
level of statistical precision. In a recent work [15], the prob-
lem is solved by considering the non-centrality parameter
of a suitable test of homogeneity as the statistical preci-
sion specifying function. With some additional constraints,
a multi-treatment analogue of the Neyman allocation of sur-
vey sampling is obtained. The same approach is followed
[16, 17] to derive optimal allocation for exponential and bi-
nary responses, respectively. Optimum design theory based
approach for the derivation of optimal target in a multi-
treatment set up is also found in the context of continuous
responses [18, 19]. An alternative approach consisting sev-
eral constraints for the development of multi-treatment op-
timal target allocations can be found in more recent work
[20]. Further applications of the above methodologies are
also found in time-to-event trials. The main references in-
clude the works of [21], where total expected hazards is min-
imized for exponential and Weibull distributions under uni-
form censoring, and [22, 23], which provides an optimum
design theory based approach for the development of opti-
mal targets.
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However, most of the optimal allocations are developed
solely on the basis of the summary measures (e.g. mean and
variance) and ignore other information about the response
distributions. But, if we look at the exploratory data anal-
ysis of [24], the possibility of a heavy tailed response distri-
bution is observed and hence, the summary measure based
procedure may be inappropriate. Another drawback of the
summary measure based allocation function is that it has to
be derived afresh depending on the response distribution.
That is, the allocation function for a normal response trial
is of no use in a trial with log-normal response. The current
work is a heuristic attempt to develop an invariant allo-
cation function incorporating the whole information about
the class of continuous response variables. We start with
the definitions of a promising treatment and a measure of
treatment effectiveness under a multi-treatment set up and
explore the properties in Section 2. A sequential estimation
based response adaptive randomization together with the
derivation of some related asymptotics is also provided in
Section 2. Numerical study investigating the performance of
the proposed procedure for normal, exponential and Cauchy
responses is given in detail in Section 3. Redesigning real
clinical trials adopting the proposed allocation procedure
and the related assessment can be found in Section 4. Sec-
tion 5 concludes with a discussion.

2. THE ALLOCATION

2.1 The general allocation function

Consider a clinical trial involving ¢ treatments with Xy
denoting the potential outcome for a subject assigned to
treatment k = 1,2, .., t. Instead of considering a specific dis-
tribution for Xy, we assume that X has an absolutely con-
tinuous distribution with distribution function Fj. In clin-
ical trials, often a higher [25] or a lower [26] response in-
dicates a favourable situation. However, for the purpose of
development we assume that a higher response indicates a
favourable situation. Then from an ethical point of view, the
largest fraction of subjects would receive the most promis-
ing treatment, the next largest fraction would receive the
next promising treatment and so on. Now treatment s can
be regarded as the most promising if it is capable of produc-
ing larger responses more frequently than its competitors. In
particular, if X is stochastically larger than any Xy (k # s),
treatment s will become the most promising one. However,
defining treatment effectiveness in terms of summary mea-
sures (e.g. mean or median) for a general class of distribu-
tions does not always make sense as the information on the
whole distribution is ignored. For the sake of illustration,
we consider two treatments, say, treatments 1 and 2. Then
the effect of treatment 1 relative to treatment 2 can be mea-
sured by m = P(X; > X3). Naturally, treatment 1 is more
effective than treatment 2 if P(X; > Xa) > P(X2 > X;)
or, equivalently m; > %, and the treatments are equally ef-
fective if m = % For example, if the response variable for
the k th treatment is normal with mean i, and variance o2,
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the above expression reduces to the allocation given by [27]
with the allocation function

H1 — p2
m=1-m=0| ———
' ? (\/50)

having the tuning constant \/2¢, where ®(.) denotes the
distribution function of a standard normal variable. Clearly,
m gives a treatment effect mapping where the treatment
effect measure and the function of mapping are dictated by
the distribution of responses itself. A simple analogy to the
above suggests to use the quantity

P(Xy> X k=12, .tk #s)

Ty =

to measure the relative effectiveness of treatment s in a
multi-treatment set up. Now 7, can be expressed as
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so that 22:1 m, = 1. Thus treatment s will be the most
effective if ms > m for every s(# k) = 1,2,...,t, which
simply implies that 75 > % Again all the treatments will be
equally effective if
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In particular, when X is stochastically larger than X/, that
is, treatment s is more promising than treatment s’ then we
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Moreover, when F(z) = Fy(z) = ... = Fy(x) for all z, that
is, if the treatments are equally promising then we get

o= [IBE) R -

for s = 1,2, .., t. Therefore, if treatment s is the most promis-
ing then the proposed effectiveness measure is not only the
highest but also higher than %, the effectiveness measure
for equally effective treatments. It also follows that, if the
treatments are ordered according to effectiveness, the corre-
sponding measures of effectiveness also maintain the same
ordering.

However, if a lower response indicates a favourable clini-
cal situation, we need to assign the lowest(highest) fraction
of subjects to the treatment having the highest(lowest) re-
sponse, and hence we can fix up the allocation strategy by
using the functions
1 m=

S

P(Xs < X, k=1,2,.,t,k #s).

my, s =1,2,..,t, as earlier, can be ordered according to treat-
ment effectiveness. Another interesting feature of the rela-
tive effectiveness measure 7, (or %) is that it remains un-
changed under a monotonic transformation of the response
variables. The sensitivity of the defined measure in clinically
relevant situations, therefore, suggests to use the collection
{ms( or w¥),s = 1,2,..,t} to fix up a multi-treatment eth-
ical allocation strategy for a general system of continuous
response distributions.

2.2 The allocation in practice

Although the allocation function has the capability of as-
signing subjects ethically without requiring the assumption
of the existence of moments it can not be implemented in
practice unless the response distributions are known to the
experimenter. We assume that the response distributions
are distinct and have a common support and specifically,
the response to treatment k has the density fi(z,0y), for
almost all x, k = 1,2, ..,t, where 0y is a d(> 1) component
vector of parameters with elements 6y;,5 = 1,2,..,d. We
further assume that the densities are distinct with a com-
mon support. Then 7, can be looked upon as a function of
the unknown parameters, say ms(01, 02, ..., 0;). Naturally, it
would be reasonable to use sequentially updated estimates
of the allocation function at every intermediate stage of the
trial for the selection of a treatment to assign an entering
subject. The trial starts with assigning an initial number
ng of subjects to each treatment arm to start the response
adaptive randomization from the (tng + 1) th entering sub-
ject. If 0y ; is the allocation indicator of the i th entering
subject (=1; if the subject is assigned to treatment k and
=0; otherwise), X}, denotes the potential response if the ¢
th subject assigned to treatment & and F; is the sigma alge-
bra generated by {0k, Xxi,k = 1,2,..,¢;1 < i < j} then a

multi-treatment response adaptive allocation can be defined
by the following allocation probabilities:

P(Oriy1=1|F) = Wk(alia§2i7 ~-~7§ti)ai > tng,

where wk(éu,é%...,éﬁ) is the maximum likelihood esti-
mate of m, based on the available response and allocation
history prior to the entrance of the (i + 1) th subject. In
practice, ém with elements ékﬂ,j =1,2,..,d, is the solution
of the equations ggi = 0, where £; = £;(01,09,...,0;) =

k
szl H};:l{fk(ij,Ok)}‘SW denotes the likelihood of the
data after i responses are observed.

However, it would be worthwhile to mention that re-
sponse adaptive designs, in general, increase the variability
of the allocation. But such variability has strong influence
on statistical precision (e.g. power of a relevant test) and,
in particular, the lower variability increases the power [5].
Therefore, we need to design the allocation to keep the vari-
ability at a lower level. A sensible suggestion, in this context,
is to adopt a suitable doubly adaptive biased coin design [28]
for reducing variability and achieve the desired target allo-
cation proportion in the limit. However, in the current work,
we continue the development with sequentially estimated re-
sponse adaptive designs.

2.3 Limiting proportion of allocation

For an assessment of allocation procedure prior to imple-
mentation, we need to examine the procedure in the limit.
For the derivation of the asymptotic properties, we impose
the following regularity conditions on the response distribu-
tion for every k =1,2,..,t.

A1l. There exists an open subset w of the parameter space
O containing the true parameter.

For almost all z, fi(x, 8)) admits all third order deriva-
83]('1‘-,(:6,0)@)
0011001, 00}
[ fi(z, 0;)dz is twice differentiable with respect to each

element of 8 under the integral sign and the first par-
tials have finite moments of order 2 + 7 for some n > 0.
There exists functions My;,s such that for almost all «

3log fr(x,0k)
001100101

A2.

tives for all 85 € w. Moreover, the integral

A3.

< Myirs (x)

for all 8 € w, where
Eg {Mpirs(Xp1)} < o0

for all I,r, s.

A4, 7,(01,09,...,0;) is a continuous function.

If Ny, = 2?21 0k,; denotes the observed number of allo-
cations to treatment %k out of n assignments following the
proposed response adaptive methodology, then we have the
following result.
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Result 1: Asn — oo,
Nin — 00,

almost surely for k =1,2,..,t

Proof: We start with the fact that Ny, = E?Zl Ok, 1s
nondecreasing in n for each k, and hence converges almost
surely to sup,, Nikn, which is either finite or +o00. But as
Ny, + Noy + ... + Ny = n, Ny can not be finite for all &
and hence N,, — oo for some k. Let us define

G= {k:sukan :+oo,k:1,2,..,t},

which by construction is non empty.

Since for every k € G, Ng, — oo almost surely, we have,
under A1-A3, as n — 00, Oy, — O almost surely [29] for
each k € G. But for every k ¢ G, sup,, Nk, < 0o almost
surely and hence Okn, k ¢ G becomes fixed almost surely af-
ter finite n. Therefore, for any k € {1, 2, ..,t}, B}y, converges
almost surely to some finite quantity and hence, in view of
condition A4, 7 (01n,..,0:) converges almost surely to a
finite quantity 7 € (0,1),k = 1,2,..,t. Finally the repre-
sentation

= - Z {5ku

together with the martingale convergence theorem [30], gives

Nkn

T 6k,]|]:] 1 }+ Zﬂ-k 01]7"'7§tj)7

] 1

Nkn

*
7Tk,

and hence, as n — oo, Ni, — oo almost surely for
each k. O

As a consequence of the above result and the fact that
for each k, the allocation function (61,02, ...,0;) is con-
tinuous, we get the following result.

Result 2: Asn — oo,

Nkn

— 7Tk(01,02, ...,0t>

almost surely, k =1,2,..,t

Note: The above result ensures the assignment according
to the degree of superiority of the treatments at least in the
limit.

Result 3: For any k =1,2,..,t, as n — oo,

\/ﬁ(alm - 9].3) — Nd(O, [ﬂ'klk(ak)]_l)v

in distribution, where Nq(p,X) represents d-variate normal
distribution with mean vector pu and dispersion matriz X,
T = 7Tk(01, 02, ...,Ot) and

alnfk(Xkl,Hk) 81nfk(Xk1,0k) }
90, 00t

14(6r) = Eg, {
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is the d X d positive definite Fisher information matrixz as-
sociated with the distribution of Xg1.

Proof: Writing L, (0y) = H?Zl{fk(ij,Ok)}‘sw, we ob-

serve that

8logL - Olog fr.(Xkj, O
® =3 g )
and

0%logLn (k) _ zn:(sk ‘82l09fk(ij70k>.

06,,00% =7 06,00]
Since
zn:{ék .32109fk(ij,9k)_E<5k '82109fk(ij70k)‘]_—4 1)}
=U 06,00) T 00,001 ]‘

is a martingale, it follows from martingale convergence the-
orem [30] together with Result 2, that as n — oo,

_ l aQZOQLn(Bk)

— —wka(Bk)
n o 90,00}

3)

vanishes

almost surely. Now, using the fact that %}L(e’“)

k
at 0y = Oy, Taylor expansion at the true value of 8 yields

L 8l0.g£n (ek)
Jn e,

where B, is given by (3), and C,, is the matrix of elements

(4) + (Bu + Co)v/n(B1n — 01) = 0,

d n

1 ~ 3 fi 0° fi(Xj, Ok)
Clrn = 9 ;(eksn Gks Zak,] 89* 30* 80* )
l,r=1,2,.,d

with {05,,05,., 05} as the elements of 6}, a point on the line
segment joining @, and ékn.

By A3, together with martingale convergence theorem
[30] and Result 2, we get

n n
O fi(Xpj, Or)| _ 1
) ek < =Y ki Ms(Xeg),
‘ Z k.J an% anx apx agzlag* 89* = n; k,j 1kl ( k])
which, as m — oo, converges almost surely to
T E{ Myirs(Xp1) }(< 00). Hence, as 0y, — 0, almost surely,

we have

(5)

in probability. Now by virtue of A2, A3 and the multivari-
ate martingale Central limit Theorem (see, for example, Ap-
pendix A of [31]), we have as n — oo,

Cp — 04

(6) z": Ologfi (X, Ok) _, Na(0, 711 (0)),

00,



in distribution. Finally the required result follows from (4),
using (3), (5) and (6). O

3. ASSESSING THE PERFORMANCE

In the context of clinical trials, normal, exponential and
Cauchy responses are popularly used to model the re-
sponses and hence we assume these response models to ex-
amine the performance of the proposed allocation proce-
dure. Specifically, we assume that the response distribution
corresponding to the k£ th treatment can be expressed as
F(oy'(x — pg)), where F is either normal or exponential or
Cauchy. Then 7 is nothing but a function of the unknown
parameter vectors 0 = (ug, o),k = 1,2,..,t. As earlier,
we use sequentially updated maximum likelihood estimates
of the allocation probabilities for the allocation of incoming
subjects.

Although the results of the previous section ensured de-
sirable behaviour in the limit, the performance in small sam-
ples is yet to be assessed. For the assessment in small sam-
ples, we consider three treatments and calculate the follow-
ing measures:

e The distribution of allocation to different treatments.
e The power of a relevant test of equality of treatment
effects.

We simulate the expected values of %, denoted by
EAP;,s = 1,2,3 together with the standard errors for dif-
ferent responses considering more general situations. In ad-
dition, we carry out the likelihood ratio test to calculate the
power under specific alternatives.

3.1 Normal responses

Suppose the response on treatment & has a normal dis-
tribution with mean pj and variance U,%, k=1,2,3. In such

o mo(s £ kK =1,2,3)

(o) (02407

can be simplified to

case, writing ps; =

Hs — Kk Hs — My’
Vo?+ap \/0;? +o7

ﬂ—S:¢ 7p5 782172737

where ®@s(.,.,p) is the distribution function of a bivariate
normal variable with means zero, variances unity and corre-
lation coefficient p. For the allocation of the current subject,
we use the maximum likelihood estimates based on the avail-
able data in the above expression to determine the corre-
sponding allocation probability. Evaluation of any response
adaptive allocation has two aspects, namely, ethical and in-
ferential. We consider a multi-treatment generalisation [32]
of the allocation design by [27] as a relevant competitor in
terms of ethics. The corresponding allocation function is

Hs — Uk Hs — Uk

1 1

BC

T = 5@ + 5@ ,
‘ 3 <\/a§+o,3> 3 (MUE—FJ%)

s(#k, k") = 1,2,3, where ®(.) is the distribution function
of a standard normal variable and BC' is formed by the
acronym of the authors. Now, if we assume that the re-
sponses from different treatments are equally variable, equal
allocation gives the highest power for the likelihood test pro-
cedure.

Naturally, equal allocation must be included in the list of
competitors when the intention is also to assess the possible
inferential gain of the proposed allocation. In particular, we
have determined the sample size required under equal allo-
cation to reach 80% power using the likelihood ratio test for
a specified shift from the null value with a common scale
value ¢ = 1 and evaluate the performance at this sample
size. Sample sizes for specified departure from the equiv-
alence and the relevant performance measures, both exact
and asymptotic, are reported in Table 1.

Remarks: The numerical figures of Table 1 are obtained by
a simulation study with 10,000 iterations. The relevant fig-
ures depict that the proposed allocation assigns subjects ac-
cording to the order of treatment effectiveness. That is, the
highest allocation to the most promising treatment (i.e. the
treatment with the highest mean response in this case), and
the lowest allocation to the least promising treatment (i.e.
the treatment with the lowest mean response in this case).
We also find that the allocation proportion for the proposed
allocation is always higher than the competitor and these
values are close to the corresponding limiting values.The
proposed allocation is an improvement over the equal allo-
cation and the competitor in terms of allocation proportion,
but a loss in power is observed in general. Actually, skew-
ing the allocation towards the most promising treatment for
further allocation causes, in general, a loss in power. For
the proposed allocation, higher(lower) fraction of subjects
is assigned to the most(least) promising treatment and con-
sequently a loss in power is observed. However, such an in-
ferential loss (i.e. loss in power) can be compromised if we
look at the significant gain in ethical norms (i.e. higher ob-
served allocation proportions). Thus, apart from assigning
a larger fraction of subjects to the promising treatments,
the proposed allocation also detects a departure from the
equivalence with high probability even under more general
situations.

3.2 Exponential responses and censoring

Exponential distribution plays an important role in mod-
elling the survival related outcomes. In the current context,
if the response to treatment k£ has an exponential distribu-
tion with mean o,k = 1,2,3 then a routine algebra ex-
presses Ty as

022010 + 050k + T5Okr)
(05 + ok)(0s + op ) (OpoR + 050 + 050%)

g =

s # (kK.

The performance investigation of the resulting allocation de-
sign is a routine follow up and hence we skip the details.
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Table 1. Performance at 80% power with o0 =1 and Hy : i1 = o = pg = 1.0
Alternative Allocation Design Expected Allocation Proportion Power

(N1>M27N3) n EAP:[(SD) EAPQ(SD) EAPg(SD)

(1.5,1.0,1.0) 179 Proposed 1483(.08) 256(.07) 256(.07) 821
482 .259 .259

Biswas & Coad .426(.06) .287(.06) .287(.06) .824
426 287 287

(1.5,1.5,1.0) 176 Proposed .399(.09) .396(.08) .204(.11) .659
.397 .397 .206

Biswas & Coad .379(.09) .377(.06) .243(.09) .665
379 379 .242

(1.7,1.0,1.0) 95 Proposed .550(.09) .225(.09) .225(.09) .807
.544 .228 .228

Biswas & Coad .460(.08) .270(.08) .270(.08) .819
.460 270 .270

(1.7,1.7,1.0) 94 Proposed .416(.09) .418(.09) .166(.09) .587
417 417 .166

Biswas & Coad .396(.07) .396(.07) .208(.07) .642
.396 .396 .208

(1.7,1.5,1.0) 117 Proposed .460(.10) .357(.10) .183(.07) .667
457 .359 .184

Biswas & Coad .416(.07) .360(.07) .222(.07) 711
415 .360 .225

(2.0,1.5,1.0) 63 Proposed .543(.11) .298(.09) .159(.10) .667
.548 .300 .152

Biswas & Coad .460(.09) .334(.09) .206(.08) 713
.466 .330 .204

(2.0,1.5,1.5) 179 Proposed 488(.09) 256(.08) 256(.08) 829
482 .259 .259

Biswas & Coad .426(.07) .287(.06) .287(.06) .831
425 287 .288

Boldface values indicate the corresponding limiting values.

EAP values for the equal allocation are always 0.333 with SD around .05.

However, we investigate the performance in a more general
situation when few of the responses are censored. To be spe-
cific, let T}, and C} be, respectively, the survival time and
the censoring time corresponding to subjects assigned to
treatment k. Then for every such subject, we only observe
(Xk, It), where X = min(Ty,Cy) and Iy = 1 or 0 accord-
ing as Ty, < Cy or T}, > C}. If a higher response is favourable
then an analogue to 7, under the presence of censoring can
be defined as

€= P(Xs>Xp k=12 .tk+s)

where c¢ indicates the presence of censoring. Although a
number of censoring schemes are available in the litera-
ture, we continue with a particular type of random censor-
ing, namely, the Koziol-Green model of random censorship
[33]. If F), and G}, denote respectively the distribution func-
tions of the lifetime and censoring variables corresponding
to treatment k, then under the assumption of Koziol-Green
model

(a) Ty and Cjy are independent.
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(b) 1—Gr(t) = {1 - Fpo()}*, k=1,2,.,t, v > 0.

Under the above assumptions, the censoring indicator Iy
does not contain Fisher information about the parameters
of the lifetime distribution and moreover, permits conve-
nient inferential operations. However, we continue with the
earlier assumption of exponential response together with the
assumption that v, = ~ for every k. Then it is interesting to
observe that the expression of 7§ is identical with 7, just
mentioned above. For the evaluation of the performance, we
start with the calculation of sample size required for equal
allocation to reach 90% power using the likelihood ratio test
for a specified shift from the null value with a fixed v =1
and explore the performance at this sample size. Sample
sizes for specified departure from the equivalence and the
relevant performance measures are reported in Table 2.

Remarks: The performance measures of Table 2 are ob-
tained from a simulation study with 10,000 replications. As
expected, the observed fraction of subjects assigned to each
treatment are in accordance with the effectiveness of treat-
ments. That is, the highest observed fraction to the most
promising treatment (i.e. the treatment with the highest



Table 2. Performance at 90% power under censoring with v =1 and Hy : 01 = 09 = 03

Alternative Expected Allocation Proportion Power

(01,02,03) n EAP,(SD) EAP,(SD) EAP;(SD)
(2,1,1)¢ 120 0.531 (0.1) 0.233 ( 0.09 ) 0.236 ( 0.09 ) 0.852
(2,2,1)¢ 127 0.415 ( 0.11) 0.414 (0.1) 0.171 ( 0.08 ) 0.573
(2.5,1,1)® 73 0.576 ( 0.12) 0.214 (0.1) 0.211 (0.1) 0.853
(4,2,2)° 123 0.534 ( 0.11) 0.233 ( 0.09 ) 0.233 ( 0.09 ) 0.864
(4,3,2)° 160 0.472 ( 0.09 ) 0.335 ( 0.09 ) 0.193 ( 0.08 ) 0.751
(4,4,2)° 125 0.413 ( 0.10) 0.415 (0.1) 0.171 ( 0.08 ) 0.584
(5,4,2)° 72 0.58 (10.11) 0.211 ( 0.10) 0.209 ( 0.10) 0.866
(5,3,2)° 95 0.527 ( 0.11) 0.296 ( 0.11) 0.177 ( 0.09 ) 0.776
(5,3,3)° 225 0.484 ( 0.08 ) 0.258 ( 0.08 ) 0.257 ( 0.08 ) 0.884

For a(b) the common value under the null hypothesis is 1(2).

EAP values for the equal allocation are always 0.333 with SD around .05.

mean response in this case) and the lowest fraction to the
least promising treatment (i.e. the treatment with the lowest
mean response in this case). But such unbalanced allocation
resulted in a loss of power as compared to that of equal allo-
cation. However, such a loss can be compensated at the cost
of ability of assigning a higher fraction of subjects to the ef-
fective treatments. The conclusion remains valid even if we
vary the configuration under the null hypothesis. Now it is
interesting to note that neither the allocation probability for
any incoming subject nor the likelihood ratio test statistic
depends on the estimated . Therefore, without any loss of
generality, v can be chosen as unity. However, inclusion of
~ keeps the essence of censoring.

3.3 Cauchy responses

As indicated earlier, Cauchy response is relevant in the
context of clinical trials though it is of limited use. How-
ever, the proposed allocation can also be adopted even for
Cauchy responses. Therefore, in addition, we provide the
performance measures when the response to treatment k& has
a Cauchy distribution with median response pj and scale
parameter o. It can be observed that

m z/ P(X5 <z, X3 < x)fi(z, p1,01)dx

o [ 1 1 T — g dx
;/_ H {§+;arctan( )}

 k=2,3 a o+ (x = pm)*

But further simplification was not possible and hence we
relied on numerical methods to calculate the allocation prob-
abilities 7y, s = 1,2, 3 for specific parameter values. As be-
fore, we sequentially update the maximum likelihood esti-
mates to determine the allocation probability for the next
entering subject. But no closed form solution is obtainable
from the likelihood equations and hence requires iterative
procedures to obtain the estimates. Since we did not find
any existing multi-treatment allocation design with Cauchy
responses, the traditional equal allocation is considered as

a reasonable competitor to determine the degree to which
the proposed allocation is an improvement. We, therefore,
provide the EAP values, corresponding limiting proportions
and statistical power in Table 3 for specific choices of the
parameters.

Remarks: A simulation study with 10,000 iterations gener-
ated the numerical figures of Table 3. As expected, the pro-
posed allocation randomizes the highest fraction of subjects
to the most promising treatment (i.e. the treatment with the
highest median in this case), and the lowest fraction to the
least promising treatment (i.e. the treatment with the lowest
median in this case). Although, skewed allocation causes, in
general, a loss in power, but such a loss is not uniform and
some exceptions are also possible. For example, a close ex-
amination of the figures of Table 3 reveals few instances, in
which equal allocation is underpowered than the response
adaptive design. Such a behaviour is also noted in the con-
text of a nonparametric response adaptive allocation design
[10]. But heavy tails of the Cauchy responses made the con-
vergence of the simulated allocation proportions to the lim-
iting values slower, and hence higher allocation proportion
is expected in large clinical trials. Such an encouraging per-
formance of the proposed procedure is always desired from
a practitioner’s point of view.

3.4 Other responses

The purpose of the proposed allocation function is two-
fold, namely, to provide an ethical allocation when the mo-
ments of the response distribution is not finite and to keep
the allocation function unchanged even when monotonic
transformations of the original response variables are used
to model the response. In real clinical trials, we often come
across such a situation. For example, in clinical trials on
“hypertension”, the response variable is the blood pressure
of the entering individual, and the response distribution is
assumed log normal [34], in general. Then it is interesting to
note that if we have the expression of 7, for normal treat-
ment responses, the same 7w, will serve as the allocation
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Table 3. Performance evaluation for n = 120 with Hy : pu1 = ps = ps

Alternative Expected Allocation Proportion Power
(/Jl, M2, 13, 0') EAP1 (SD) EAPQ(SD) EAP3(SD)
(1.8,1,1,1.0) 0.4 (0.06) 0.298 (1 0.052 ) 0.302 (0.052 ) 0.185
0.465 0.267 0.267 158
(2.2,1,1,1.0) 0.449 ( 0.055 ) 0.276 ( 0.048 ) 0.275 (0.047 ) 0.648
0.527 0.236 0.236 .536
(2.6,1,1,1.0) 0.498 ( 0.057 ) 0.249 (0.046 ) 0.252 (0.046 ) 0.969
0.582 0.209 0.209 .898
(1.4,1,1,0.5) 0.398 ( 0.057 ) 0.301 ( 0.052) 0.301 ( 0.052 ) 0.193
0.465 0.267 0.267 159
(1.6,1,1,0.5) 0.448 ( 0.058 ) 0.275 ( 0.049 ) 0.277 ( 0.049 ) 0.662
0.527 0.236 0.236 .538
(2.2,1,.7,0.5) 0.475 ( 0.078 ) 0.274 ( 0.061 ) 0.241 ( 0.054 ) 0.939
0.692 0.178 0.130 .953
(2.8,2,2,1.0) 0.414 ( 0.055 ) 0.293 ( 0.047 ) 0.293 ( 0.05 ) 0.225
0.465 0.267 0.267 142
(3.0,2,2,1.0) 0.442 ( 0.055 ) 0.278 (0.047 ) 0.28 (0.048 ) 0.541
0.497 0.251 0.251 .357
(2.6,2,2,0.5) 0.447 (0.057 ) 0.275 (0.048 ) 0.278 (0.049 ) 0.674
0.527 0.236 0.236 .569
(2.2,1.2,.8,0.5) 0.483 (0.077 ) 0.269 (0.059 ) 0.248 (0.054 ) 0.951
0.663 0.204 0.133 967

The minimum value of (1, 2, t3) in the first column gives the common value under the null hypothesis.

Boldface figures indicate the corresponding limiting values.

EAP values for the equal allocation are always 0.333 with SD around .04.
Second figures in each cell in the power column give those for equal allocation.

function when the response is log-normal. This is because,
normal and log normal variates are related by a monotonic
transformation. In survival related trials, exponential, ex-
treme value and Weibull are the most commonly used distri-
butions for response variable. It is well known that a Weibull
variate can be obtained through a power transformation of
an exponential variate and the logarithm of a Weibull variate
has an extreme value distribution. Therefore, if 7, is avail-
able for exponentially distributed responses, it will continue
to act as the allocation function for equishaped Weibull or
extreme value responses due to the invariance of the allo-
cation function under monotonic transformation. The same
conclusion remains valid even under the Koziol-Green model
of censoring.

4. REDESIGNING A REAL CLINICAL TRIAL:
CONVERGENCE INSUFFICIENCY TRIAL

It was a randomized, multi-center clinical trial [35] in-
volving n = 40 adults with symptomatic convergence insuf-
ficiency (CI). The patients were randomly assigned to re-
ceive either of the three treatments, namely, office-based vi-
sion therapy/orthoptics (Treatment 1), office-based placebo
vision therapy/orthoptics (Treatment 2), or home-based
pencil pushups (Treatment 3). To measure the symptoms
and changes in symptoms, the score on the CI Symptom
Survey-V15 was used as the primary outcome measure. A
treatment is considered beneficial if it causes a significant re-
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duction of the CI Symptom Score. Although patients in all
three treatment arms demonstrated improvement in symp-
toms but only the patients receiving Treatment 1 show sta-
tistically and clinically significant changes. After 12 weeks
of treatment, the means and standard deviations (within
braces) of the CI Symptom Survey-V15 scores were calcu-
lated and reported as 20.7(10.2) for Treatment 1, 25.2(10.3)
for Treatment 2 and 26.5(7.3) for Treatment 3. Treating
these as the true values, we redesign the trial using the pro-
posed allocation procedure assuming normality of responses.
Since a lower response is favourable, we use equation (1)
and perform 10,000 iterations of the allocation procedure
with n = 40 patients. We assume that the responses are
readily available and update the allocation probabilities af-
ter each response is observed. On an average, the simula-
tion results in the assignment of 21, 11 and 8 subjects,
respectively, to Treatment 1, Treatment 2 and Treat-
ment 3 as compared to the actual allocation numbers 12,
13 and 15. That is, on an average, almost 50% of the pa-
tients would receive the best treatment if the proposed al-
location had been used. Although the redesigning results in
encouraging performance, it can not be generalized as the
trial is a smaller one recruiting only 40 patients and the
outcomes are not immediate. However, in case some of the
responses are delayed, we can still apply the proposed al-
location without affecting the asymptotic properties if we
randomize an incoming subject based on the data, available
so far.



5. CONCLUDING REMARKS

The effectiveness of the proposed allocation, in preserv-
ing both the statistical and ethical norms for a broad class
of continuous responses, is investigated in the present work.
However, at this point, it is interesting to note that skewed
allocation, in general, faces a loss in power and maintain-
ing the specified power level requires a larger number of
accruals. But at the same time it reduces the risk of using
a potentially harmful treatment. For the proposed alloca-
tion the loss in power is not significant in most of the cases
but results in higher number of allocations to the promising
treatments. Thus, looking at the gain in ethical benefits, one
can recommend the proposed allocation in real situations.
Though we have used the parametric set up for practical im-
plementation, it would not be a difficult task to execute the
allocation process by estimating the allocation functions us-
ing nonparametric methods. In particular, use of U statistics
to estimate the allocation probability under a homoscedastic
situation is always an appropriate alternative. However, the
participants in a real clinical trial are often heterogeneous
according to few covariates and the corresponding develop-
ment of a sensible allocation function is a scope for future
study.
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