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Estimation of gene co-expression from RNA-Seq
count data

Alicia T. Specht and Jun Li
∗

Gene coexpression networks are widely used in under-
standing gene regulations, inferring gene functions, etc. The
most straightforward way of constructing a coexpression
network is to connect gene pairs whose expressions are
highly correlated under different experimental conditions.
Usually, this correlation is measured by the Pearson’s cor-
relation coefficient, which, however, does not directly apply
to data generated from RNA-Seq technique. RNA-Seq data
are non-negative integers which cannot be properly modeled
by a Gaussian distribution, and moreover, these counts have
mean values that are proportional to the sequencing depths,
and thus there are no identically distributed “replicates.”
Directly normalizing counts by the corresponding sequenc-
ing depths and then using Pearson’s correlation coefficient
can be of low efficiency. We propose a generalization of the
Pearson’s correlation coefficient called iCC that can be di-
rectly applied to RNA-Seq data. On simulation data, iCC
shows higher efficiency in distinguishing coexpressed gene
pairs from unrelated gene pairs. In a real dataset, iCC gen-
erates a coexpression network that appears to more closely
agree with experimentally validated networks than other
methods. More generally, iCC can be used for calculating
the correlation coefficient for any two series of random vari-
ables.

Keywords and phrases: Pearson’s correlation coefficient,
RNA-Seq, Coexpression network, Count data, Robust esti-
mate.

1. INTRODUCTION

Coexpression is the simultaneous expression/silence, or
simultaneously high/low expression, of two or more genes.
The “guilt-by-association” heuristic has led to the use of
Gene Coexpression Networks (GCNs), where genes that co-
express are believed to be associated with a common cellular
function ([42]). Well-constructed GCNs are used to help un-
derstand molecular mechanisms underlying biological pro-
cesses and to predict gene functions that are not previously
known.

In GCNs, nodes represent genes and an edge between
two nodes represents coexpression between a pair of genes.

∗Corresponding author.

Computational inference of GCNs is based on a set of ex-
periments each measuring the expression of a large set
of genes by high-throughput techniques like microarrays.
These experiments use samples from different tissues or
different conditions, so genes that are coexpressed tend
to have high/low expressions in the same experiment si-
multaneously. Many methods have been proposed for con-
structing GCNs based on microarray data (e.g. [39, 38, 24,
33, 9]). According to [5], these methods can be classified
into four categories: correlation-based methods, probabilis-
tic network-based approaches (mainly Bayesian networks),
partial-correlation-based methods, and information-theory-
based methods. Correlation-based methods remain the most
straightforward among any of these methods. They calculate
the (Pearson’s or Spearman’s rank) correlation coefficient
between each pair of genes, and assign them as coexpressed
if the coefficient is high enough.

In recent years, RNA-Seq (ultra high-throughput se-
quencing of transcriptomes) is taking the place of microar-
rays as the first-choice technology for measuring gene ex-
pression in a high-throughput manner. Perceived bene-
fits to using RNA-Seq include efficient discovery of new
genes/isoforms and a much larger dynamic range in measur-
ing expression. RNA-Seq measures gene expression by the
number of short sequences called “reads” that are mapped
to each gene; so this measure is a “count” (nonnegative inte-
ger). Different from microarray data, in which gene expres-
sion is measured by real-valued numbers that are usually
modeled by Gaussian distributions, the count data gener-
ated by RNA-Seq are better modeled by Poisson or neg-
ative binomial distributions. Moreover, different RNA-Seq
experiments generate different total numbers of reads, cor-
responding to different “sequencing depths,” which need to
be used to normalize the counts so that expression measures
from different experiments are comparable.

The key to building a correlation-based network is to
calculate the correlation of expression of a pair of genes.
The “count” nature and difference in sequencing depths
place difficulties in the calculation of a correlation coef-
ficient based on RNA-Seq data. Current attempts ([20,
22]) re-use methods developed for continuous data. These
methods transform/normalize count data and then cal-
culate the Pearson’s correlation coefficient of the trans-
formed/normalized data. This will be discussed in detail
in Section 2.2. Recently, there have been efforts to better
use the information contained in RNA-Seq data to capture
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the network structure, although none are correlation-based.
These methods include a log-linear graphical model ([3]), a
local Poisson graphical model ([4]), and a hierarchical Pois-
son log-normal model ([17]). Others attempt to work at the
exon level by implementing canonical correlation analyses
on linear combinations of expression levels at exon positions
([19, 14]). However, when considering the correlation of gene
expression, there is still a need to develop statistical meth-
ods that handle count data with different sequencing depths
more directly so that the information contained in the count
data can be used more efficiently.

In this article, we propose a new definition of the correla-
tion coefficient, which can be viewed as an extension of the
regular Pearson’s correlation coefficient (PCC). It extends
the application of PCC to two series of random numbers
with arbitrary distributions, discrete or continuous. This
definition works on estimation of co-expression of RNA-Seq
data, as well as many other situations. On both simula-
tion data and real data, we have shown that our method of
estimating correlation coefficients distinguishes coexpressed
gene pairs from unrelated gene pairs more efficiently.

This article is arranged as follows. In Section 2, we discuss
the limitation of PCC, propose our extended definition, and
show how to apply it to RNA-Seq data. In Section 3, we
apply our method on simulation data and compare it with
two transformation-based methods. In Section 4, we apply
these three methods on a real RNA-Seq datasets from E. coli
and compare their performance. The conclusion is given in
Section 5.

2. METHODS

2.1 Commonly-used negative binomial
model for RNA-Seq data

Suppose we have data from p RNA-Seq experiments,
each measuring the expression levels of n genes. Let xij

be the number of reads mapped to gene i in experiment
j, i = 1, . . . , p, and j = 1, . . . ,m. It is a nonnegative integer
and usually modeled by a negative binomial or Poisson dis-
tribution. As the Poisson distribution is a special case of the
negative binomial distribution, hereby we use the negative
binomial distribution for short. Let dj be the sequencing
depth of experiment j and νi be the expression of gene i,

Xij ∼ NB(djνi, φi),(1)

where NB means negative binomial, djνi is its mean, and
φi is the dispersion parameter so that var(Xij) = djνi +
φi(djνi)

2. This model has been widely used for RNA-Seq
data. Poisson distribution corresponds to φi = 0.

In model 1, dj is usually estimated beforehand using all
data (See e.g. [35, 6, 26]) and assumed known. These depths
can differ in several or tens of folds from experiment to
experiment, even in the same dataset. So it is important
to somehow “normalize” the effect of sequencing depths so

that the counts are comparable. The unknown parameters
in model 1 are νi and φi. Recently, many state-of-the-art
methods have been developed to estimate φi more accu-
rately than simply maximizing the likelihood of each indi-
vidual gene (e.g. edgeR, DESeq, baySeq, NBPSeq).

2.2 Pearson’s correlation coefficient and its
limitation

Pearson’s correlation coefficient (PCC) is perhaps the
most widely used definition of the correlation coefficient.
For two random variables X1 and X2 with means μ1 and μ2

and standard deviations σ1 and σ2, it is defined as

ρ =
E[(X1 − μ1)(X2 − μ2)]

σ1σ2
.(2)

When this definition is applied on samples, one has m obser-
vations of X1, denoted as x11, . . . , x1m, and m observations
of X2, denoted as x21, . . . , x2m, then

(3) ρ̂ =
1
m

∑m
j=1(x1j − x̄1)(x2j − x̄2)

Sx1 · Sx2

,

where Sx1 =
√

1
m−1

∑m
j=1(x1j − x̄1)2, Sx2 =√

1
m−1

∑m
j=1(x2j − x̄2)2, x̄1 = 1

m

∑m
j=1 x1j , and

x̄2 = 1
m

∑m
j=1 x2j .

Unfortunately, this definition does not apply to RNA-Seq
data. In model 1, although xi1, . . . , xim are “replicates,” in
the sense that they all measure the expression of gene i,
they are scaled by the sequencing depths and not directly
comparable, and thus x̄i =

1
m

∑m
j=1 xij does not make sense

and formula (3) does not work.
A simple remedy will be “normalizing” xij by dj

then using the normalized data, say x′
ij , for formula (3).

We call these methods “normalization-based methods” or
“transformation-based methods.” The normalization is of-
ten done by the following two methods ([18]): (1) x′

ij ←
xij/dj , and (2) x′

ij ← √
xij/

√
dj . For the first method, x′

ij

have the same mean but quite different variances. The sec-
ond method tries to take care of the variance by taking the
square root first, which is the “variance stabilization trans-
formation”(VST) of the Poisson distribution (not the VST
for the negative binomial distribution, though) and gives
var(

√
xij) ≈ 1/4 when xij follows a Poisson distribution

regardless of the mean. However, after dividing by
√

dj to
stabilize the mean, x′

ij still have different variance. One may
propose other ways to normalize the data, such as using the
VST of negative binomial distributions, but it is generally
impossible to normalize both mean and variance simultane-
ously as stabilizing one will impact the other.

2.3 A new definition of the correlation
coefficient

We want to generalize the definition of PCC so that it
works on count data with different means. Being a bit more
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ambitious, we want the new definition to work for the fol-
lowing more general case: two sequences of random vari-
ables x11, . . . , x1m and x21, . . . , x2m, where each xij follows
a different distribution (it can be an arbitrary distribution,
continuous or discrete, but assumed known).

We start from the intuitive meaning of correlation: a pos-
itive/negative correlation means that x2j should be on the
bigger/smaller side (of its own distribution) when x1j is
on the bigger side (of its own distribution). For example,
suppose x11 is Poisson-distributed with mean 10 and x21

is exponentially distributed with mean 100. If x11 and x21

are highly positively correlated, and we observe x11 = 2
(much smaller than its mean 10), then x21 is likely to be
much smaller than its mean 100. Based on this idea, we
let

(4) pij = Pr(Xij < xij)

if Xij is continuous at xij ,
and

(5) pij = Pr(Xij < xij) +
1

2
Pr(Xij = xij)

if Xij is discrete at xij .
When Xij follows a continuous distribution (Gaussian

or not), pij follows Uniform(0, 1) distribution exactly. Oth-
erwise, pij follows Uniform(0, 1) approximately. Note that
we use “mid-p-value” ([2]) in this case so that the approx-
imation is better. As a result, positive/negative correlation
means that p2j is likely to be larger/smaller than 0.5 when
p1j is larger than 0.5. Taken one step further, since pij ’s have
the same distribution for different i’s and j’s, we can view
them as xij ’s and plug them into Equation (3) to calculate
the correlation coefficient.

The above definition works for virtually any random vari-
able Xij , although it does not give the same estimate as the
regular PCC even when all Xij are Gaussian. This defect
can be solved by letting

(6) x′
ij = Φ−1(pij)

where Φ is the cumulative density function of the standard
Gaussian distribution, and view x′

ij ’s as xij ’s and plug them
into formula (3) to get ρ. Now our definition will agree ex-
actly with the traditional PCC for Gaussian data.

On the above, we assume the distribution ofXij is known.
In real applications, like in RNA-Seq data, parameters in the
distribution are unknown beforehand and need to be esti-
mated from the data. So our new definition of correlation
coefficients will be calculated following four steps: (1) esti-
mate the distributional parameters of Xij , (2) calculate pij
according to Equation 4 or Equation 5, (3) convert pij to
x′
ij using Equation 6, and (4) view x′

ij as xij and plug into
Equation 3 to calculate ρ̂. We call our method Distribution-
inversed and Gaussian-transformed Correlation Coefficient,
or iCC for short.

iCC is always applicable no matter how Xij is dis-
tributed, even when the distribution of Xij varies for dif-
ferent i and different j. It is worth noting that although
our x′

ij is also “transformed” from xij , it is intrinsically
different from the transformation-based methods we dis-
cussed in Section 2.2. Firstly, we make use of the distri-
bution of xij , including mean and other parameters of the
distribution, while transformation-based methods use only
the distribution family but not the parameters. For exam-
ple, when xij ∼ Poisson(μij), our transformation needs
μij , which is usually estimated by using xi1, . . . , xij com-
bined, while transformation-based methods use the same
square root transformation regardless of the value of μij .
Secondly, no matter how Xij is distributed, our x′

ij follows
the same standard Gaussian distribution, while x′

ij given
by transformation-based methods follow transformation-
dependent and often hard-to-describe distributions.

2.4 Robust estimation of parameters in
RNA-Seq data

In this section, we focus on using iCC for calculating the
correlation coefficient based on RNA-Seq data. The calcula-
tion is done by following the four steps described in Section
2.3. Steps 2 to 4 are straightforward, and the only task re-
maining is to estimate νi and φi in model 1. For simplicity,
we use MLE (maximum likelihood estimate) based on counts
for each individual gene.

It is now well known that RNA-Seq data usually con-
tain outliers (e.g. [25, 1]), which can lead to failure of
MLE and many other estimates. Outliers need to be iden-
tified and excluded from the calculation of correlation. To
this end, we first calculate MLE using all samples and ob-
tain pij accordingly. A pij that is too close to 0 or 1 is
likely to be an outlier, so we identify xij as an outlier if
si = min(pij , 1 − pij , 1 ≤ j ≤ m) < C, where C is a con-
stant. To determine C, we notice that if there is no outlier,
we have Pr(si < C) = 1 − (1 − 2C)m. Thus, for α ∈ (0, 1),

if we let C = 1
2 [1− (1−α)

1
m ], we will have Pr(si < C) = α,

which means that the false positive rate is controlled at level
α. We use α = 0.05 and remove all xij ’s whose pij < C, and
then recalculate the MLE. This procedure is iterated until
no more outliers are identified.

3. SIMULATION STUDY

3.1 Simulating correlated data

To simulate correlated data from arbitrary distributions,
a simple and effective method is the NORTA Algorithm
([13, 31, 32]). Using NORTA, we are able to simulate pairs
of genes whose expression are correlated. We simulate pairs
of genes (that is, i = 1, 2) across 20 experimental condi-
tions (m = 20) with different sequencing depths. We as-
sume the count Xij follows a negative binomial distribution
as in Equation 1. Sequencing depths d1, ..., d20 for different
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Table 1. AUC of different methods for NORTA, simulation without outliers

method ρ = .3 ρ = .5 ρ = .7 ρ = −.3 ρ = −.5 ρ = −.7

φ = 0 ν = 5 iCC .6960 (.0015) .8906 (.0012) .9840 (.0004) .6949 (.0017) .8870 (.0012) .9838 (.0004)
DIV .6072 (.0023) .7573 (.0028) .9043 (.0024) .6024 (.0024) .7490 (.0032) .8939 (.0030)
VST .6031 (.0024) .7334 (.0031) .8678 (.0031) .5571 (.0027) .6667 (.0040) .8019 (.0048)

ν = 20 iCC .7056 (.0017) .9034 (.0011) .9880 (.0003) .7087 (.0018) .9020 (.0011) .9879 (.0002)
DIV .6197 (.0021) .7893 (.0028) .9313 (.0020) .6228 (.0023) .7877 (.0027) .9301 (.0020)
VST .6162 (.0020) .7811 (.0028) .9251 (.0005) .6125 (.0022) .7721 (.0029) .9181 (.0023)

ν = 100 iCC .7113 (.0016) .9057 (.0010) .9895 (.0003) .7110 (.0015) .9054 (.0010) .9893 (.0003)
DIV .6238 (.0024) .7915 (.0029) .9368 (.0019) .6236 (.0022) .7921 (.0027) .9361 (.0022)
VST .6234 (.0024) .7909 (.0029) .9362 (.0004) .6220 (.0023) .7898 (.0027) .9346 (.0022)

φ = .25 ν = 5 iCC .6885 (.0019) .8800 (.0015) .9781 (.0006) .6857 (.0021) .8733 (.0016) .9767 (.0007)
DIV .6454 (.0019) .8229 (.0023) .9559 (.0011) .6425 (.0022) .8177 (.0024) .9479 (.0015)
VST .6451 (.0020) .8086 (.0023) .9372 (.0015) .5916 (.0031) .7400 (.0042) .8841 (.0039)

ν = 20 iCC .7055 (.0019) .9010 (.0013) .9857 (.0004) .7058 (.0021) .8986 (.0012) .9855 (.0003)
DIV .6845 (.0017) .8823 (.0012) .9822 (.0004) .6929 (.0018) .8832 (.0011) .9824 (.0003)
VST .6920 (.0018) .8864 (.0014) .9827 (.0004) .6882 (.0021) .8800 (.0015) .9815 (.0004)

ν = 100 iCC .7106 (.0017) .9049 (.0011) .9883 (.0003) .7101 (.0018) .9042 (.0011) .9874 (.0003)
DIV .6951 (.0017) .8917 (.0010) .9865 (.0003) .7009 (.0016) .8953 (.0010) .9863 (.0003)
VST .7098 (.0016) .9051 (.0010) .9896 (.0003) .7099 (.0016) .9049 (.0011) .9892 (.0003)

φ = .5 ν = 5 iCC .6888 (.0021) .8819 (.0015) .9793 (.0005) .6825 (.0021) .8720 (.0016) .9769 (.0007)
DIV .6496 (.0017) .8343 (.0018) .9634 (.0009) .6506 (.0019) .8311 (.0020) .9536 (.0012)
VST .6666 (.0018) .8406 (.0019) .9586 (.0010) .6102 (.0027) .7779 (.0035) .9163 (.0027)

ν = 20 iCC .7059 (.0023) .9014 (.0014) .9864 (.0004) .7071 (.0021) .8991 (.0014) .9862 (.0003)
DIV .6764 (.0017) .8753 (.0012) .9803 (.0004) .6900 (.0017) .8776 (.0011) .9793 (.0004)
VST .6995 (.0017) .8943 (.0012) .9857 (.0003) .6952 (.0019) .8887 (.0012) .9844 (.0003)

ν = 100 iCC .7099 (.0019) .9045 (.0011) .9881 (.0003) .7108 (.0019) .9038 (.0012) .9874 (.0003)
DIV .6808 (.0017) .8780 (.0010) .9827 (.0003) .6913 (.0017) .8835 (.0010) .9815 (.0004)
VST .7089 (.0016) .9042 (.0009) .9894 (.0003) .7101 (.0016) .9047 (.0010) .9891 (.0003)

conditions were generated by taking 20 independent values
u1, ..., u20 ∼ uniform(−3, 3) and then raising 2 to those val-
ues: i.e. di = 2ui . Gene expression (νi) are simulated to be 5,
20, or 100 to represent low, medium, and high expression, re-
spectively. Three different levels of dispersion were used for
the distribution of the counts, φ = 0, φ = 0.25, and φ = 0.5,
representing data that is not overdispersed (Poisson), mod-
erately overdispersed, and heavily overdispersed. For cor-
relation coefficient (ρ), we simulate seven different values:
0 (no correlation), ±0.3 (low correlation), ±0.5 (moderate
correlation), and ±0.7 (high correlation).

We also simulate data with outliers by randomly selecting
one of the 20 count values for each gene to be an outlier and
setting its expression to be 10νi, comparing with νi for other
counts.

3.2 Performance of different methods

For both data without outliers and with outliers, the
correlation was estimated using our iCC method, as well
as the two normalization based methods described in Sec-
tion 2.2: divide by the depth (denoted by “DIV” for short),
and take the square root and then divide by the square
root of the depth (denoted by “VST” for short). The two
normalization-based methods are expected to work poorly
for data with outliers as both of them do not handle out-
liers properly. To make them more competitive, we use the

function cov.rob() from the R ([34]) package MASS ([40])
to estimate the correlation after the transformation. This R
function computes a robust estimate of PCC with a high
breakdown point.

A commonly used measure of performance of an estima-
tor is the mean square error (that is, the mean of (ρ̂ − ρ)2

across simulations), which, however, is not a fair measure
here for comparing different methods: it is completely ac-
ceptable that other methods give ρ̂ different from ρ, as far
as they give different ρ̂ for different ρ so that they can dif-
ferentiate correlated gene pairs (ρ �= 0) from unrelated gene
pairs (ρ = 0). When constructing gene co-expression net-
works, one often sets a cutoff for the absolute value of the
estimated correlation coefficient; all gene pairs with corre-
lation above the threshold are treated as co-expressed, and
other gene pairs are treated as not co-expressed. The sensi-
tivity and specificity can be obtained accordingly. Using a
series of cutoffs, one can then plot the ROC (Receiving Op-
erating Characteristic) curve. The area under curve (AUC)
serves as a direct measure of performance of different meth-
ods, and it works in our comparison. To this end, we simulate
500 uncorrelated gene pairs and 500 correlated gene pairs,
estimate correlation for each pair, plot the ROC curve and
calculate the AUC. This was repeated 100 times. Table 1
gives the average AUC for different settings of simulation
parameters, including dispersion, gene expression, and cor-
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Table 2. AUC of different methods for NORTA, simulation with outliers

method ρ = .3 ρ = .5 ρ = .7 ρ = −.3 ρ = −.5 ρ = −.7

φ = 0 ν = 5 iCC .6729 (.0019) .8589 (.0013) .9719 (.0006) .6699 (.0018) .8557 (.0013) .9690 (.0008)
DIV .5787 (.0019) .6930 (.0019) .8253 (.0017) .5527 (.0022) .6576 (.0026) .7887 (.0031)
VST .5748 (.0019) .6922 (.0020) .8351 (.0015) .5713 (.0019) .6865 (.0019) .8263 (.0020)

ν = 20 iCC .6847 (.0017) .8763 (.0012) .9812 (.0004) .6820 (.0018) .8754 (.0011) .9813 (.0003)
DIV .5712 (.0017) .6837 (.0020) .8197 (.0018) .5672 (.0020) .6792 (.0017) .8175 (.0021)
VST .5760 (.0018) .6932 (.0019) .8344 (.0016) .5748 (.0019) .6923 (.0017) .8331 (.0017)

ν = 100 iCC .6846 (.0017) .8799 (.0010) .9821 (.0004) .6858 (.0017) .8796 (.0011) .9824 (.0003)
DIV .5728 (.0019) .6870 (.0020) .8242 (.0023) .5724 (.0021) .6852 (.0023) .8251 (.0022)
VST .5738 (.0018) .6939 (.0018) .8344 (.0016) .5738 (.0019) .6961 (.0021) .8366 (.0015)

φ = .25 ν = 5 iCC .6230 (.0020) .7786 (.0021) .9120 (.0016) .6212 (.0021) .7732 (.0022) .9061 (.0018)
DIV .5919 (.0016) .7131 (.0016) .8512 (.0014) .5599 (.0019) .6729 (.0023) .8203 (.0021)
VST .5830 (.0018) .7083 (.0021) .8485 (.0018) .5715 (.0024) .6872 (.0025) .8275 (.0030)

ν = 20 iCC .6386 (.0021) .8013 (.0016) .9223 (.0012) .6358 (.0018) .8005 (.0016) .9196 (.0013)
DIV .5836 (.0019) .7189 (.0015) .8637 (.0011) .5802 (.0018) .7085 (.0017) .8525 (.0013)
VST .5839 (.0020) .7176 (.0017) .8616 (.0012) .5826 (.0019) .7149 (.0017) .8583 (.0015)

ν = 100 iCC .6370 (.0019) .8011 (.0015) .9217 (.0012) .6349 (.0018) .7968 (.0016) .9175 (.0011)
DIV .5861 (.0016) .7160 (.0017) .8650 (.0012) .5849 (.0019) .7145 (.0015) .8598 (.0011)
VST .5900 (.0019) .7211 (.0017) .8654 (.0013) .5865 (.0021) .7233 (.0017) .8637 (.0012)

φ = .5 ν = 5 iCC .6154 (.0023) .7665 (.0021) .9057 (.0016) .6138 (.0022) .7612 (.0022) .8986 (.0017)
DIV .5805 (.0021) .6956 (.0019) .8364 (.0016) .5495 (.0024) .6512 (.0028) .7983 (.0027)
VST .5785 (.0017) .6965 (.0017) .8308 (.0018) .5635 (.0021) .6695 (.0026) .8082 (.0029)

ν = 20 iCC .6290 (.0021) .7887 (.0016) .9198 (.0010) .6263 (.0022) .7873 (.0018) .9167 (.0012)
DIV .5720 (.0021) .6987 (.0018) .8496 (.0015) .5710 (.0025) .6899 (.0020) .8383 (.0014)
VST .5776 (.0018) .7061 (.0016) .8481 (.0012) .5760 (.0019) .7026 (.0017) .8465 (.0013)

ν = 100 iCC .6271 (.0024) .7864 (.0020) .9162 (.0012) .6238 (.0022) .7824 (.0016) .9122 (.0010)
DIV .5756 (.0018) .6979 (.0019) .8525 (.0014) .5770 (.0021) .6992 (.0020) .8463 (.0016)
VST .5833 (.0017) .7092 (.0016) .8541 (.0013) .5814 (.0019) .7106 (.0016) .8545 (.0012)

relation for the 500 correlated pairs (the correlation is always
0 for the 500 uncorrelated pairs). There are no outliers in
these simulations. For each setting, the largest AUC, which
corresponds to the best performance, is bolded. The stan-
dard error of each AUC is given in parenthesis.

It is easy to see that iCC outperforms both
transformation-based methods in most simulation scenar-
ios. This difference is usually large when the expression is
low (ν = 5). It is worth noting that performance for low-
expression genes are very important as people have found
that a large proportion of counts in RNA-Seq experiments
are small, and also low-expression genes are hard to explore
using other experimental techniques. The AUC of all meth-
ods increases as the expression of genes increases, and the
difference between different methods becomes smaller. In
several cases, iCC has smaller AUC than VST, but the dif-
ference is small and often statistically insignificant.

Table 2 gives the results when outliers are added in the
simulation. It is clear that in all combinations of parameters,
iCC has much higher AUC than the transformation-based
methods. Again, the difference is largest for low-expression
genes.

The significantly better performance of iCC on data with-
out outliers shows that our definition of the correlation co-
efficient is more suitable to this type of data, and the out-
performance of iCC on data with outliers further shows that

our way of dealing with outliers is efficient. Note that this
does not necessarily mean that the cov.rob() function in
MASS package is not good at giving a robust estimate of
correlation, as such an estimate often assumes identically
distributed (Gaussian) data, which is surely not the case for
the transformed data.

In the above computation, we assume that the dispersion
parameter is unknown and we estimate it gene by gene sim-
ply by using MLE. It is expected that iCC performs even
better if we can estimate the dispersion more accurately, say
using advanced methods developed in recent years. The per-
formance of transformation-based methods will not change
as they do not use the estimated dispersion anyway.

3.3 Sensitivity to distributional assumptions

In order to apply iCC, one must make an assumption
about the distribution of the data. For RNA-Seq data, we
assume that counts follow a negative binomial distribution,
which may not be the case for real data. To determine how
heavily our method is affected by this distributional assump-
tion for overdispersed data, we also simulated data by using
a Poisson log-normal model [12], while still assuming a neg-
ative binomial distribution when applying iCC.

Again, we simulate pairs of genes (i = 1, 2) across 20
experimental conditions. First, vectors were independently
sampled from normal distributions z1j ∼ N(μ1, σ

2) and
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Table 3. AUC of different methods for Poisson log-normal, simulation without outliers

method ρ = .4 ρ = .6 ρ = .8 ρ = −.4 ρ = −.6 ρ = −.8

σ = .1 ν = 5 iCC .7624 (.0026) .9175 (.0015) .9869 (.0005) .7657 (.0025) .9220 (.0014) .9873 (.0005)
DIV .5741 (.0023) .6704 (.0024) .7826 (.0027) .6078 (.0017) .7123 (.0019) .8178 (.0017)
VST .5796 (.0023) .6831 (.0026) .8098 (.0024) .6158 (.0021) .7294 (.0025) .8465 (.0018)

ν = 10 iCC .7456 (.0027) .8992 (.0020) .9784 (.0009) .7447 (.0025) .9004 (.0022) .9782 (.0008)
DIV .5773 (.0020) .6618 (.0019) .7736 (.0019) .5869 (.0019) .6797 (.0019) .7909 (.0018)
VST .5813 (.0020) .6683 (.0018) .7817 (.0018) .5831 (.0017) .6784 (.0018) .7937 (.0018)

ν = 50 iCC .6373 (.0036) .7598 (.0044) .8609 (.0040) .6363 (.0037) .7578 (.0044) .8598 (.0043)
DIV .5440 (.0020) .5960 (.0027) .6715 (.0034) .5448 (.0020) .5986 (.0024) .6757 (.0034)
VST .5441 (.0020) .5955 (.0025) .6706 (.0033) .5439 (.0018) .5966 (.0024) .6723 (.0033)

σ = .2 ν = 5 iCC .6858 (.0032) .8272 (.0031) .9326 (.0023) .6854 (.0031) .8323 (.0030) .9356 (.0023)
DIV .5517 (.0020) .6224 (.0022) .7136 (.0027) .5810 (.0019) .6609 (.0024) .7529 (.0024)
VST .5532 (.0021) .6271 (.0023) .7267 (.0027) .5838 (.0019) .6677 (.0027) .7713 (.0029)

ν = 10 iCC .6457 (.0033) .7685 (.0040) .8740 (.0036) .6462 (.0032) .7682 (.0044) .8732 (.0038)
DIV .5435 (.0020) .5981 (.0025) .6763 (.0029) .5538 (.0022) .6136 (.0025) .6926 (.0033)
VST .5468 (.0021) .6022 (.0025) .6814 (.0032) .5491 (.0021) .6079 (.0025) .6907 (.0033)

ν = 50 iCC .5588 (.0032) .6220 (.0042) .6891 (.0042) .5582 (.0028) .6200 (.0040) .6907 (.0046)
DIV .5151 (.0019) .5340 (.0022) .5683 (.0023) .5144 (.0019) .5382 (.0021) .5707 (.0028)
VST .5155 (.0019) .5340 (.0021) .5668 (.0025) .5148 (.0019) .5360 (.0022) .5666 (.0029)

Table 4. AUC of different methods for Poisson log-normal, simulation with outliers

method ρ = .4 ρ = .6 ρ = .8 ρ = −.4 ρ = −.6 ρ = −.8

σ = .1 ν = 5 iCC .6964 (.0042) .8523 (.0049) .9494 (.0034) .6909 (.0054) .8451 (.0054) .9431 (.0041)
DIV .6122 (.0017) .7232 (.0018) .8318 (.0019) .5834 (.0019) .6907 (.0024) .8047 (.0026)
VST .6187 (.0021) .7361 (.0021) .8545 (.0018) .5845 (.0023) .6957 (.0028) .8219 (.0028)

ν = 10 iCC .6901 (.0054) .8499 (.0037) .9518 (.0026) .6852 (.0051) .8412 (.0046) .9482 (.0028)
DIV .5955 (.0020) .7001 (.0020) .8140 (.0021) .5845 (.0020) .6847 (.0024) .8011 (.0023)
VST .5899 (.0018) .6946 (.0021) .8148 (.0020) .5857 (.0017) .6881 (.0022) .8077 (.0023)

ν = 50 iCC .6241 (.0074) .7392 (.0087) .8553 (.0094) .6054 (.0078) .7297 (.0092) .8467 (.0089)
DIV .5546 (.0021) .6201 (.0027) .7063 (.0035) .5526 (.0023) .6174 (.0030) .7064 (.0038)
VST .5535 (.0020) .6174 (.0026) .7051 (.0035) .5533 (.0022) .6176 (.0030) .7054 (.0037)

σ = .2 ν = 5 iCC .6489 (.0050) .7837 (.0052) .8960 (.0046) .6406 (.0059) .7742 (.0066) .8856 (.0057)
DIV .5877 (.0020) .6759 (.0024) .7765 (.0024) .5601 (.0019) .6441 (.0022) .7447 (.0030)
VST .5858 (.0020) .6792 (.0022) .7850 (.0023) .5611 (.0019) .6454 (.0025) .7486 (.0028)

ν = 10 iCC .6279 (.0059) .7585 (.0065) .8669 (.0056) .6250 (.0056) .7501 (.0067) .8633 (.0059)
DIV .5632 (.0021) .6343 (.0027) .7233 (.0033) .5530 (.0019) .6171 (.0027) .7096 (.0033)
VST .5565 (.0022) .6275 (.0028) .7195 (.0034) .5556 (.0019) .6207 (.0026) .7117 (.0035)

ν = 50 iCC .5465 (.0057) .5955 (.0081) .6679 (.0114) .5421 (.0064) .5971 (.0082) .6649 (.0112)
DIV .5241 (.0017) .5500 (.0024) .5929 (.0030) .5222 (.0019) .5464 (.0025) .5896 (.0030)
VST .5232 (.0018) .5466 (.0023) .5874 (.0030) .5221 (.0019) .5469 (.0024) .5883 (.0029)

z2j ∼ N(μ2, σ
2), where values of μi = log(5), log(10), and

log(50) were used to represent low, medium, and high ex-
pression, respectively, and σ = 0.1 or 0.2 to represent mod-
erate or heavy dispersion at levels similar to those of the neg-
ative binomial based simulations. Then correlated pairs of
p-values p1j and p2j were generated by sampling from a mul-
tivariate normal distribution with μ = ( 00 ) and Σ =

(
1 ρ
ρ 1

)
,

and then finding their respective p-values with the cumula-
tive density function of the standard Gaussian distribution.
Finally, the expression data was generated by applying to
each pij the inverse cumulative density function for the Pois-
son distribution, with λij = dj exp(zij). Sequencing depths
were generated and outliers were added in the same manner
as described in Section 3.1.

Table 3 and Table 4 display the results for Poisson log-
normal generated data, without and with outliers, respec-
tively. Due to the additional randomness in the first step in
this data generation method (z1j and z2j are independent),
the correlation actually displayed in the simulated data will
be less than ρ. For this reason we report the results for
slightly higher ρ values (ρ = ±0.4,±0.6,±0.8).

We observe that iCC outperforms DIV and VST in all
comparisons. While the AUCs of all methods are lower than
what were observed for the negative binomial based simula-
tions, DIV and VST are more heavily affected. When out-
liers are not included, the performance of DIV and VST
is much worse than that of iCC. When outliers are in-
cluded, the difference becomes less pronounced, with DIV
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Figure 1. ROC curves of three different methods on the E. coli data. a) The complete ROC curves. Results of different
methods are shown by different line types. The black dash line is the y = x line. We see that the red curve is consistently the
highest. b) The starting part of the ROC curves. This is usually the part of interest to biologists. We see that the red curve is

much higher than the other two curves.

and VST’s performance improving and iCC’s performance
declining slightly. However, iCC still significantly outper-
forms both. Hence, while the distribution assumption does
impact the performance of iCC, it still performs significantly
better overall.

4. APPLICATION TO A REAL DATASET

To test the performance of iCC on real data, we use
real RNA-Seq data for the organism Escherichia coli from
a K-12 strain. We collected data from nine different stud-
ies ([28, 27, 36, 30, 16, 11, 29, 10, 15]), which includes 50
experiments. The raw reads are downloaded from NCBI’s
Sequence Read Archive ([41]), mapped to the Ensembl E.
coli K-12 genome using TopHat ([21], version 2.0.8), and
the number of uniquely mapped reads mapped to each
gene are counted by using HTSeq ([7]). Fifteen experi-
ments have less than one million of uniquely mapped reads
and are removed from further analysis. The 35 experiments
remaining in our study contain 1,271,699 to 53,486,413
uniquely mapped reads. Sequencing depths for each exper-
iment were approximated by using total counts from each
experiment.

To evaluate the performance of each method, we compare
the computed gene co-expression pairs with the most current
version (8.5) of the transcriptional regulatory network for
E. coli available on RegulonDB ([37]). RegulonDB is the
primary database for transcriptional regulation in E. coli,
manually curated from scientific publications. The network
consists of transcriptional units, which are genes that, due
to their position within the DNA of E. coli, all express at
once. We treat this network as the ground truth, and gene
pairs that are connected in this experiment-based network as

truly correlated, and use it as a comparison for our inferred
correlations from the 35 experiments.

Genes with the highest expression were then chosen from
the set of genes that also appear in the RegulonDB network.
Mean expression was calculated by dividing counts by the
sequencing depth for each experiment, and then finding the
mean for each gene across all experiments. A relative in-
terquartile range (IQR) was calculated by finding the IQR
for each gene across all experiments and dividing by mean
expression. All genes with both a mean expression of 2×10−5

or greater and relative IQR of 0.5 or greater were kept for
analysis, resulting in 881 genes.

VST, DIV and iCC were then applied to each possible
gene pairing, using the robust methods described in Section
2.4. Thresholds were then determined for each method’s ad-
jacency matrix to create GCNs of equal size for comparison
by sorting the estimated correlations.

By comparing with the RegulonDB, we plot the ROC
curve (on the left panel of Figure 1) for different cutoffs of
the absolute values of correlation coefficients. We can see
that iCC has the uniformly highest ROC curve among the
three methods. The AUCs are 0.8524 for iCC, 0.8198 for
VST and 0.8195 for DIV. So overall, iCC performs the best.
In RegulonDB, correlated gene pairs are only a very small
proportion (0.0163%) of all gene pairs, which means that
there are many more true negatives than true positives; so
the starting part of the ROC curve, which corresponds to
high specificity, is often the critical part. From the right
panel of Figure 1, which only plots this part, we see that iCC
is about two times as sensitive as the other two methods,
which is a huge difference. This indicates that iCC is much
more efficient in correctly identifying the correlated gene
pairs.
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5. CONCLUSION AND DISCUSSIONS

The mainstream techniques that measure transcriptome
expression have shifted from microarrays to RNA-Seq. The
count nature of RNA-Seq and the difference in sequencing
depth makes the regular Pearson’s correlation coefficient not
directly applicable. Although one can normalize count data
to make them look like microarray data, this approach can
be inefficient. We propose to use iCC in this case, and we
robustify it so that it works for data with outliers. Our iCC
seems to provide superior estimation of the correlation of
RNA-Seq data, particularly when outliers are present. This
is observed in both simulated data and a real dataset.

We have compared the performance of iCC with two
transformation-based methods, DIV and VST. Two other
frequently used normalizing methods for count data are the
Anscombe transform [8], where x′

ij ← 2
√
xij/dj + 3/8, and

log transform, x′
ij ← log (xij/dj + 1). However, as most

count values for RNA-Seq data are large in comparison to
the 3/8 adjustment by the Anscombe transformation, the
difference in performance between VST and Anscombe will
be minimal in practice. On the other hand, the log trans-
formation generates negatively skewed data, over-correcting
the positive skewness in the Poisson or negative binomial
distribution. These have been confirmed on simulation data
(not shown): we observe that the Anscombe transformation
gives almost identical AUCs to VST in all of our simulation
scenarios, and the log transformation often gives the lowest
AUCs among all methods.

Another way to overcome the limitation of Pearson’s cor-
relation coefficient would be the use of a nonparametric
method to estimate the correlation, such as Spearman’s rank
correlation coefficient or Kendall’s τ . We did perform addi-
tional simulations to compare their performance with iCC
(data not shown). In simulations with no outliers (in both
negative-binomial data and Poisson loglinear data), iCC and
the two nonparametric methods performed very similarly
for simulated high levels of expression; for low levels of ex-
pression, however, iCC outperformed both nonparametric
methods significantly. This suggests that the nonparametric
methods are less efficient in tough situations. When outliers
were included, the performance of iCC and both nonpara-
metric methods were slightly effected, but a similar differ-
ence in performance was still observed, suggesting that iCC
handles outliers as efficiently as the nonparametric methods.

Many algorithms for network construction rely on accu-
rate calculation of the correlation coefficient. For example,
WGCNA ([23]), a widely used package for correlation-based
network analysis, estimates the correlation as the very first
step, and all following steps use this estimated correlation.
Our iCC provides a uniform way for calculating the corre-
lation for different types of data, in a robust manner. Given
a model of the data and the estimated parameters of the
model, iCC can be calculated, using exactly the same steps
regardless of the model of the data. One does not need to
find any ad hoc method for transforming the data, or explore

on identifying the best transformation. iCC also provides a
uniform way of detecting the outliers, as the detection is
on pij , whose distribution is (roughly) independent of the
distribution of the data.
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