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Rare variant testing across methods and
thresholds using the multi-kernel sequence kernel

association test (MK-SKAT)
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Analysis of rare genetic variants has focused on region-
based analysis wherein a subset of the variants within a ge-
nomic region is tested for association with a complex trait.
Two important practical challenges have emerged. First, it
is difficult to choose which test to use. Second, it is unclear
which group of variants within a region should be tested.
Both depend on the unknown true state of nature. There-
fore, we develop the Multi-Kernel SKAT (MK-SKAT) which
tests across a range of rare variant tests and groupings.
Specifically, we demonstrate that several popular rare vari-
ant tests are special cases of the sequence kernel association
test which compares pair-wise similarity in trait value to
similarity in the rare variant genotypes between subjects as
measured through a kernel function. Choosing a particular
test is equivalent to choosing a kernel. Similarly, choosing
which group of variants to test also reduces to choosing a
kernel. Thus, MK-SKAT uses perturbation to test across a
range of kernels. Simulations and real data analyses show
that our framework controls type I error while maintaining
high power across settings: MK-SKAT loses power when
compared to the kernel for a particular scenario but has
much greater power than poor choices.

KEYWORDS AND PHRASES: Rare variants, Perturbation, Se-
quence kernel association test, Sequencing association stud-
ies.

1. INTRODUCTION

Identification of genetic variants influencing complex phe-
notypes and disease is a major goal of modern human
genetics research. So far, despite the success of genome
wide association studies (GWAS) [9], newly discovered trait-
associated genetic variants still fail to explain a large pro-
portion of the heritability of complex traits [6]. It is hoped
that with the advent of accessible DNA sequencing technol-
ogy [18, 17, 2], investigators can uncover more of the so-
called missing heritability. Some of the added information
contained in sequencing data includes rare variants, that is
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variants with minor alleles whose population frequency is
low. This contrasts with microarray technology which typi-
cally focuses on common variants that have relatively high
minor allele frequency (MAF). Rare variants associated with
disease have already been reported [4, 25, 22]. However, im-
portant distinctions between the analysis of common vari-
ants and rare variants must be made [3]. Most importantly,
the standard analysis of common variants focuses on anal-
ysis of each individual variant, one-by-one. Yet, power de-
creases with lower MAF such that standard approaches for
common variants are vastly underpowered for analysis of
rare variants. Also, multiple comparison corrections are a
concern since the number of variants is dramatically larger.

To address the limitations of using standard analytical
approaches for variants, investigators have turned to region
based approaches for rare variant association testing. In this
class of approaches, multiple genetic variants within a re-
gion, typically a biologically meaningful unit such as a sin-
gle gene or an exon, are simultaneously considered together.
The cumulative effect of the entire group of variants, or more
often a subgroup of the variants (e.g. those with MAF <1%),
is assessed for association with the phenotype. Grouping the
variants and testing only the cumulative effect allows aggre-
gation of effects across several variants. It also addresses the
multiple comparison correction concern by substantially de-
creasing the number of tests performed. A wide range of
methods have beeen developed with varying characteristics
and underlying principles [19, 13, 20, 16, 21, 27].

Despite the sucess of current approaches for rare vari-
ant testing [4, 25, 22], a number of practical concerns have
arisen. In particular, given the wide range of testing ap-
proaches which are optimized toward different scenarios,
it is unclear which method to use for any particular data
set. Furthermore, it is unclear which strategy to use for
grouping variants, e.g. grouping variants with MAF <3%
vs <1%, within a region. Unfortunately, the answer to both
questions depends on the underlying true state of nature
which is unknown prior to analysis. Knowledge on this
would preclude need for analysis. Selecting the “best” (of-
ten most significant) result after conducting analyses using
multiple methods or multiple group strategies would lead to
severely inflated type I error and increased false positives.
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Although some recent work has been done on omnibus test-
ing across different grouping strategies [23, 14] or across dif-
ferent testing approaches [12], few methods consider both
the testing approach and the grouping strategy simultane-
ously.

To address this problem, we propose the multi-kernel se-
quence kernel association test (MK-SKAT). In this article,
we show that many commonly used testing approaches are
equivalent to particular cases of the sequence kernel asso-
ciation test (SKAT). SKAT is a similiarity based analysis
approach for rare variant testing wherein pair-wise similar-
ity between individuals based on their rare variant profiles is
measured via a kernel function and then compared to pair-
wise similarity in phenotype. Specifically, the currently used
methods are equivalent to versions of SKAT using different
kernel functions. We further show that different choices of
grouping strategies are also equivalent to using the SKAT
with different kernel functions. Consequently, the question
of selecting a test to use as well as selecting a grouping
strategy reduces to the problem of selecting an appropriate
kernel function. This equivalence then leads us to exploit
perturbation based procedures for omnibus testing across
multiple kernels (and accordingly multiple grouping and
rare variant testing approaches) [26]. We conduct simula-
tions and a real data applicaton to validate our approach
and show that our proposed method loses a small amount
of power when compared to the optimal grouping and test-
ing approach, but offers considerably more power over poor
choices.

Broadly speaking, the main contribution of this work is
to address a practical problem faced by applied statistical
researchers interested in analyzing sequencing association
studies. In addition, we explicitly draw the connections be-
tween SKAT and several other rare variant tests and group-
ing strategies which then enables utility of our previously
developed perturbation testing framework [26]. Although
the perturbation framework underlies the statistical mecha-
nisms for generating a p-value, we emphasize that the cur-
rent project differs significantly from our previous work in
terms of the overall objective and the application to rare
variants. Furthermore, to accommodate features specific to
rare variant sequencing studies, i.e. larger number of ker-
nels (corresponding to different tests and grouping strate-
gies) as well as the larger number of variants which are not
highly correlated, we also make some technical modifica-
tions to the perturbation procedure to improve computa-
tion.

The remainder of this paper is organized as follows. In
the next section, we first review the generic SKAT method
and describe how different testing approaches and different
groupings all correspond to SKAT under different kernels.
We then present the proposed MK-SKAT approach for test-
ing across different tests and groupings. We show results
from some representative simulation studies and from real
data to illustrate our approach. We conclude with a brief
discussion.
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2. METHODS

Within this article, we describe our methodology within
the context of analyzing a single gene region. However,
the approach can be applied to multiple regions separately,
with appropriate control for multiple comparisons. We let
y; denote the phenotype for the i*" individual in the study
(i=1,...,n), and X; be a vector of environmental or de-
mographic variables for which we would like to adjust. For
dichotomous phenotypes we let y; = 0 or 1 for controls and
cases, respectively. For each given region, we let Z; be the
vector of genetic variants within the region coded under the
additive model. The objective is to test for an association
between y and all the variants in Z or a subset of the vari-
ants in Z while adjusting for X. We let G denote the indices
of the variants within Z that we would like to test. For in-
stance G may be the indices of the variants with MAF < 1%
or the nonsynonymous variants. In doing so, one may select
a subset of the variants in the region to test or one may test
all of the variants within the region. Clearly, restricting at-
tention to the truly causal variants would result in the higest
power; however, which variants are causal is unknown. At
the same time, there are a range of tests to choose from.
Determining which group of variants to test and which test
to use poses a grand challenge for geneticists.

In this section, we first review the SKAT method and
draw connections between SKAT and several other impor-
tant tests. We describe how the questions of which test to
use and which variants to test can be recast as a question of
kernel choice. We then develop the MK-SKAT to construct
an omnibus test that simultaneously considers multiple tests
and grouping strategies.

2.1 Connections between SKAT and other
methods

2.1.1 SKAT

SKAT is a similarity based test that operates by com-
paring pair-wise genotypic similarity between individuals to
pair-wise phenotypic similarity, with correlation suggestive
of association. Mathematically, SKAT uses the linear model
for quantitative traits

yi = o + Xia+ h(Zg,) +&;
and the logistic model for case/control studies
logitP(y; = 1) = ag + Xja + h(Zg,)

where «q is an intercept term, « is the vector of regres-
sion coefficients for the covariates, and ¢; has mean zero
and variance o2. The variants of interest Zg, for the i-
th individual are related to the outcome only through the
function h(-) which is a general function lying in a func-
tional space generated by a positive definite kernel func-
tion K (-, -). Intuitively, K(Zg, , Zg, ) measures similarity be-
tween 4-th and '-th individuals in the study based on Zg,



the variants of interest. This function fully specifies the re-
lationship between the variants and the outcome. If one sets
K(Zg,,Zg, ) = Zg, Zg,, , which is the linear kernel, then this
implies that the function h(Zg,) = >_ ;.5 BjZij, i-e. () is
linear and the outcome depends on the variants in a linear
manner. By specifying a different kernel, one may specify
an alternative model. Under the default SKAT parameters,
K(Zg,,Zg,) = 3 jcgwjZijZirj where w; is equal to the
beta probability density function with parameters 1 and 25
evaluated at the MAF for the j-th variant. Also by default,
G is set to be the entire group of both common and rare vari-
ants within a region. This corresponds to a linear model but
with additional up-weighting for the effect of rarer variants.

To test the effect of the rare variants under SKAT corre-
sponds to testing Hy : h(Zg) = 0. Defining the kernel ma-
trix, K, to be the n-by-n matrix with 4,¢'-th term equal to
K(Zg,,Zg,, ), for quantitative traits, we construct the vari-
ance component score statistic

(y — ?)’AK(.V -y)

Q=

where y = ag + Xa with &y, a, and ¢ estimated under
Hy. For dichotomous traits, we can construct a similar score
statistic

Q=Y -¥)Kly-V)

where § = logit™!(@y + Xa) and ap, & are again estimated
under Hy. To obtain a p-value for significance, asymptot-
ically, @ ~ > A;x? is a mixture of chi-squared distribu-
tions, with weights A; equal to the eigenvalues of P(lJ/ZKP(lJ/2
where Py = D — DX(X'DX)~'X’'D with D = I for quanti-
tative traits and D = diag{y;(1—7y;)} for dichotomous traits.
This null distribution can be approximated using moment
matching approaches [15] or exact methods [5].

2.1.2 Existing methods and grouping strategies as special
cases of the SKAT

A wide range of region-based analysis approaches of
rare variants have been proposed. Generally, however, they
tend to fall within two classes: burden-based approaches
and similarity-based approaches. Burden-based tests gener-
ally operate by collapsing the rare variants within a region
into a single value using (possibly weighted) averaging and
then testing for association by regressing the phenotype on
the collapsed variable or applying appropriate permutation-
based approaches. Letting G denote the indices of the rare
variants over which we would like to collapse, then the co-
hort allelic sum test (CAST) and combined multivariate col-
lapsing (CMC) collapses the genetic variants within a region
to a single binary variable

C;=1 ZZij>O

j€g

which is an indicator for whether the i** individual has any
rare variants within the region. In a slight variation, the
count-based collapsing method computes the collapsed vari-

able as
Ci=Y_ Z;
JjEG
which is the total number of rare variants within the region.
To place a higher weight on variants which are rarer, the
weighted count collapsing method collapses the variants in

g into
Ci = Z w Zij
JjEG

where w; is a weight for the j* variant which is inversely
related to the MAF for the j** variant. To test whether the
rare variants are related to the phenotype, the outcome is
regressed on the collapsed variable and possible covariates
using the models

yi = ap + X+ BcC; + €5

or
logitP(y; = 1) = ap + X, + BcC;

for quantitative and dichotomous traits, respectively. Test-
ing for the rare variant effect then corresponds to testing
Hj : Bc = 0 which can be done using a standard 1-df test.
The burden-based rare variant association tests are similar
in that they sum over all of the rare variant genetic infor-
mation. Thus, they are most powerful when the effects of
the variants are truly associated with the outcome and with
common direction of effect, that is, all variants are deleteri-
ous or all variants are protective. Power is lost when effects
are opposite in directions or non-causal variants are included
in G.

Similarity-based tests were proposed to address the power
loss due to variants with opposing effects. This class includes
SKAT, and compares pair-wise similarity between individu-
als in terms of their genotype values to pair-wise similarity in
phenotype, with correlation suggestive of association. Also
included within this class is the C-alpha test which tests
for an over-dispersion of the variance resulting from a rare
variant effect rather than a change in the mean effect. By
testing variance rather than net effect, the test is powerful
to detect genetic association when the effects of the variants
are not all in the same direction.

It has been previously noted that individual tests are
equivalent to SKAT under particular kernel functions [27,
12]. For example, the C-alpha test is equivalent to SKAT
using the kernel function K (Zg,,Zg,) = >_ ;¢ ZijZi;. Fur-
ther, each of the burden based methods operate by using a
univariable summary of the rare variants in G such that the
outcome is a simple linear function of the collapsed variable
C;. Therefore, each of the CAST/CMC, count-based col-
lapsing, and weighted count-based collapsing can be viewed
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as SKAT with a linear kernel constructed based on the col-
lapsed variable. Thus we have the following tests and corre-
sponding kernels:

(Default) SKAT: K(Zg,,Zg,) = 3cq

C—alpha: K(Zgi, Zgi,) = Zjeg ZijZi/j
e CAST (Binary Collapsing): K(Zg,,Zg, ) =

1(Zeq % > 0) I (g Zos > 0)
e Count-Based Collapsing: K(Zg,,Zg,) =

{Zjeg Zij} {Zjeg Zi’j}
Weighted Count-Based Collapsing: K(Zg,,Zg, )
{Zjeg w;Zi } {Zjeg wiZi’j}
Given that many individual tests reduce to SKAT under
different kernel, then the problem of choosing a particular
test reduces to the problem of choosing a particular kernel.
We have, thus far, focused on testing the variants in a par-
ticular group, G. In practice however, one must also choose,
a priori, a group of variants to test. For example, one may
apply each of the tests to all of the variants in the region or
one could restrict the variants of interest to just the variants
with <3% MAF, < 1% MAF, or <0.5% MAF, depending
on how one wishes to define “rare”. Additionally the investi-
gator may want to restrict to a set of only non-synonymous
variants or those that are predicted to be “harmful” by
Polyphen-2 [1] or other software for predicting function. Use
of different choices of variants can easily be translated into a
problem of kernel choice by simply restricting G to be differ-
ent sets of variants. For example, we can define G3% to be the
variants with MAF < 3% and G%-%% to be the variants with
MAF < 0.5%. Then if we are interested in the C-alpha test,
we can apply it to the variants with MAF < 3% or < 0.5% by
constructing the kernels K(Zgas, Zgg,/%) =3 jegen ZijZij
and K(Zg?,s%, ng/,s%) = Zjego.s% ZijZi’j7 respectively and

ijijZi’j

test using the usual SKAT procedure. Therefore, it follows
that the problem of choosing which group of variants to test
also reduces to the problem of choosing a particular kernel.

2.2 Multi-kernel sequence kernel association
test

The questions facing researchers interested in rare vari-
ant analysis are first, which is the most powerful test to use
for a given data set, and second, which is the best group of
variants to test within a particular region? As noted earlier,
these questions can be reduced to a question of kernel choice:
which kernel, from among a group of candidates, will yield
highest power? Despite transforming the problem, the an-
swer to this question requires prior knowledge of which vari-
ants are causal and what is their effect size and direction,
knowledge which is rarely available (since this would pre-
clude the need for analysis). As a solution, one may choose
to test under all candidate kernels and report the best p-
value, but this clearly leads to inflated type I error. How-
ever, by exploiting the connections between SKAT and other

498 FE. Urrutia et al.

tests, we can utilize a perturbation strategy, related to the
approach of Wu et al. [26], to incorporate many tests and
groupings while conserving type I error.

Our proposed unifying method, the multi-kernel SKAT
(MK-SKAT), simultaneously considers several test and vari-
ant grouping choices at once and constructs an omnibus test.
The idea behind the approach is that it constructs kernels
based on each candidate test and grouping approach. For
example, one may test using CAST, count-based collaps-
ing, C-alpha, and the default SKAT with 3 grouping strate-
gies per test (MAF <3%, <1%, or <0.5%) for a total of 12
combinations corresponding then to 12 candidate kernels.
MK-SKAT then conducts an omnibus test using a modified
version of the perturbation approach of Wu et al. [26] to
test across all of the candidate kernels. Operationally, the
strategy applies SKAT with each of the kernels, takes the
minimum p-value, and then uses perturbation based tech-
niques to correct for having taking the minimum p-value.
A single p-value is reported.

The intuition behind the procedure is that asymptotically
o~ Y(y; — ;) will be approximately normal such that we can
replace it with a simulated normal random variable. Using
the same simulated normals for each candidate kernel allows
for capture of the correlation between tests. The full MK-
SKAT procedure is as follows:

1. For each combination of candidate testing procedure
and each candidate grouping procedure, construct a
corresponding kernel matrix, Ky, to obtain a total of
L candidate kernels.

2. Using each candidate kernel, K, obtain a correspond-

ing score statistic as @)y and p-value for significance py.

Find the minimum p-value: pyin = minj</<r, pe

4. For £ € 1,...,L, compute Ay = diag(Ae1,---5Aem,),
and Vg, = [vg1,Veo,...,Vem,] where Aogp >
Aeo > > Xem, are the my positive eigenval-
ues of Pé/ QKKP(I)/ ? with corresponding eigenvectors
Vi1, Ve 2,5 Vem,

5. Generate r* = [r],73,...,7,]" with each r} ~ N(0, 1).

6. For each ¢ € 1,..., L, rotate r* using the eigenvectors
to generate r; = Vjr*.

7. Compute Q) = r}’A,r} for each ¢ and obtain a corre-
sponding p-value, pj, by comparing )} to the distribu-
tion function estimated for ; and obtain the upper tail
probability exceeding Q7. We set p* = mini</<r, p}.

8. Repeat (5)—(7) B times to obtain pzfl),p’(*z)7 ... ,p’(*B) for
some large number B.

9. The final p-value for significance is estimated as

©w

B

pP= B_l Z I(pzkb) < pmzn)
b=1

It is important to note that direct use of the p-value is nec-
essary rather than using the maximum score statistic since
the raw score statistics have different degrees of freedom.



As noted earlier, this procedure is closely related to the
general perturbation procedure previously used for testing
across multiple kernels [26]. However, some technical mod-
ifications have been made to tailor the procedure towards
the current application. In particular, the previous proce-
dure required generation of a large augmented matrix with
dimensionality equal to the sum of the number of nonzero
eigenvalues from all of the kernels under consideration fol-
lowed by eigen decomposition of the augmented matrix. This
can be slow if the rank of the individual kernels is high (i.e.
many variants with low correlation) and if many kernels are
under consideration (i.e. many combinations of groupings
and possible tests); both of these can be true in rare variant
studies. In contrast, the present strategy requires simulation
of more normal random variables but bypasses the need for
working with a large, augmented matrix.

Two key features of our test ensure that type I error
is conserved despite the application of multiple tests and
grouping. First, our test requires uninformed selection of
tests and variant groupings. In contrast, using the data to
select a single optimal test would not conserve type I error.
Second, while it is true that the p-values of the test/grouping
combinations are correlated, as some tests are in fact nested,
our perturbation method properly captures the correlation
and thus retains type I error control.

By capturing the correlation, our approach can accommo-
date a large number of tests and groups as a long as they are
highly correlated. Perfect correlation across tests would be
equivalent to conducting just a single test. Thus, under such
scenarios, the increase in cost is primarily computational. If
the correlation between kernels is low, there is the poten-
tial for larger power loss, though this is counterbalanced by
the fact that one of the competing kernels may have much
higher power. Therefore, we generally recommend inclusion
of a broad range of tests and grouping strategies.

Although this strategy also generates a monte carlo p-
value, there are two advantages in comparison to permu-
tation. First, covariates and variants can be correlated. In
contrast, in order for permutation to be valid, the variants
must be uncorrelated with the covariates. Second, the MK-
SKAT procedure is more computationally efficient since the
computation now relies only on generating and then rotat-
ing » normal random variables while all other parameters
remain the same. In contrast, permutation requires complete
re-estimation of the kernel matrices, Py matrices, eigende-
compositions, and distribution parameters.

2.3 Simulations

We conducted a series of simulations to verify that the
proposed MK-SKAT procedure is valid in terms of control-
ling type I error and has reasonable power compared to the
individual tests across which the MK-SKAT is combining.

2.3.1 Type | error

To demonstrate that the proposed methods are valid
tests, in terms of protecting type I error, we conducted a

series of simulations under null models for both continu-
ous and dichotomous traits. We used a coalescent model to
simulate a region with 100 variants in 10* haplotypes with
LD structure representative of a European population [24].
Eighty-five of the simulated variants had a true MAF less
than 3% and 80 had a MAF less than 1%. We then paired
haplotypes to simulate n = 1,000 or 2,000 diploid individu-
als. For type I error simulations, we simulated quantitative
outcomes for each individual without regard to the genotype
values under the null model:

y; = 0.5X;1 +0.03X;2 + &;

where X;; ~ ber(0.506), X;2 ~ N(29.2,21.1), and &; ~
N(0,1). For dichotomous outcomes, we simulated n/2 cases
and n/2 controls from the null logistic model:

logitP(y; = 1) = —4.2+ 0.5X;1 + 0.03X,2

where X;; ~ ber(0.506) but X;5 ~ N(0,1).

In total, we simulated 10° data sets as described. We
applied the MK-SKAT testing procedure to each data set.
Specifically, we considered four different testing procedures:
CAST, count-based collapsing, the C-alpha, and SKAT
tests. We also considerd three different grouping strategies:
we set the rare variant grouping, G, equal to the variants
with MAF < 0.5%, variants with MAF < 1%, and variants
with MAF < 3%. Under the equivalence with SKAT, this
yielded a total of 12 different candidate kernels. We esti-
mated the type I error rate at the 0.05 level of 1) SKAT
with each individual kernel, 2) MK-SKAT conditional on a
particular testing procedure (i.e. we assumed a fixed test
while considering multiple groupings), 3) MK-SKAT condi-
tional on a particular grouping strategy (i.e. we assumed a
fixed grouping while considering multiple tests), and 4) MK-
SKAT testing across all twelve candidate kernels.

2.3.2 Power

We also assessed the power of the MK-SKAT procedure
under three different simulation settings. For each setting,
we again simulated haplotypes for a region containing 100
variants as in the type I error simulations. These were then
paired to generate n = 1,000 individuals. Then we simu-
lated outcomes under the alternative model for quantitative
traits:

yi = 0.5X;1 4 0.03X ;5 + B'ZS + &,

and for dichotomous traits:
logitP(y; = 1) = —4.2 + 0.5X;1 + 0.03X;2 + B'ZS

Xi1, Xi2 and ¢; were as before, but Z§ were the genotypes
of the causal variants and 3 were the corresponding regres-
sion coeflicients which varied across simulation settings. For
dichotomous outcomes n/2 subjects were sampled as cases
with the remaining n/2 set as controls.
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Table 1. Type | error simulation results for quantitative traits.

Table 2. Type | error simulation results for dichotomous

Each cell in the table corresponds to the type | error of SKAT traits. Each cell in the table corresponds to the type | error of

using a kernel constructed based on the testing procedure at
the top of the table and the grouping strategy at the left of
the table. Rows and columns labeled MK-SKAT correspond
to the omnibus tests across tests (with fixed group) and
across groupings (with fixed test). The cells with both rows
and columns labeled MK-SKAT correspond to the omnibus
test across all test and groupings

SKAT using a kernel constructed based on the testing
procedure at the top of the table and the grouping strategy at
the left of the table. Rows and columns labeled MK-SKAT
correspond to the omnibus tests across tests (with fixed
group) and across groupings (with fixed test). The cells with
both rows and columns labeled MK-SKAT correspond to the
omnibus test across all test and groupings

C-alpha SKAT CAST Count MK-SKAT C-alpha SKAT CAST Count MK-SKAT
n=1000 n=1000
0.5% 0.048 0.047  0.050  0.049 0.048 0.5% 0.033 0.032  0.051  0.050 0.042
1% 0.048 0.049 0.049 0.050 0.050 1% 0.042 0.040 0.050 0.049 0.045
3% 0.048 0.049 0.051 0.051 0.051 3% 0.046 0.044  0.050  0.050 0.046
MK-SKAT  0.050 0.051  0.051 0.051 0.051 MK-SKAT  0.039 0.037  0.052 0.051 0.044
n=2000 n=2000
0.5% 0.049 0.049  0.050 0.050 0.052 0.5% 0.041 0.041 0.050  0.050 0.047
1% 0.047 0.047  0.050  0.050 0.051 1% 0.046 0.046  0.050  0.050 0.049
3% 0.047 0.047  0.050 0.049 0.051 3% 0.047 0.047  0.050  0.050 0.050
MK-SKAT 0.052 0.051 0.052  0.051 0.050 MK-SKAT 0.047 0.045 0.051 0.051 0.047

Under Setting 1, we considered a quantitative outcome
with 50% of the variants with true population MAF < 1%
randomly selected to be causal. All causal variants were
given the same effect with 8 = 0.5. Since a large propor-
tion of the variants were causal and they all had the same
effect, this scenario favored the burden approaches and par-
ticularly count based collapsing.

Setting 2 again examined quantitative traits and was
identical to Setting 1 except the effects of the causal variants
were equal to -0.5 and 0.5 with equal probability. Since the
causal variants had opposing effects, this scenario favored
the similarity based tests.

Setting 3 differed from Settings 1 and 2 in that it exam-
ined the case where the outcome was dichotomous. Of the
variants with true MAF < 3%, 20% were randomly selected
to be causal. All causal variants were again given equal effect
size of B = 0.5.

We emphasize that these simulations were not intended
to serve as a comprehensive comparison of the methods
across scenarios nor to understand when individual tests and
grouping strategies are optimal (since this depends on the
true state of nature, which is unknown in any real data). In-
stead, these simulations serve to understand how MK-SKAT
behaves relative to the best method and grouping strategy.

3. RESULTS

3.1 Type | error and power

Type I error simulation results for quantitative traits and
dichotomous traits are shown in Table 1 and Table 2, respec-
tively. For quantitative traits, individual methods as well as
MK-SKAT appropriately controlled the type I error at the
a = 0.05 level. However, for dichotomous traits, the C-alpha
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Table 3. Power results for Setting 1. Each cell in the table
corresponds to the power of SKAT using a kernel constructed
based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns

labeled MK-SKAT correspond to the omnibus tests across

tests (with fixed group) and across groupings (with fixed
test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and

groupings
C-alpha SKAT CAST Count MK-SKAT

n=1,000
0.5% 0.43 0.43 0.64 0.66 0.64
1% 0.74 0.76 0.84 0.85 0.86
3% 0.47 0.64 0.63 0.63 0.71
MK-SKAT 0.69 0.72 0.81 0.85 0.84

n=2,000
0.5% 0.70 0.71 0.85 0.87 0.87
1% 0.92 0.93 0.98 0.98 0.98
3% 0.76 0.89 0.88 0.88 0.92
MK-SKAT 0.92 0.93 0.97 0.98 0.97

test and SKAT test tended to be conservative, reflecting pre-
vious results [27]. Thus, MK-SKAT tests were conservative
as well.

Results of the power analysis for the 3 settings are shown
in Tables 3 through 5. In Setting 1 (Table 3), the count
kernel applied to the variants with MAF <1% performed
the best, followed closely by the CAST kernel applied to
the same grouping. This was not surprising considering they
were best adapted to the true model in which all effects have
the same size and direction, and only rare variants with
MAF <1% are sampled to be causative. The MK-SKAT
which tested over all 12 kernels had a power slightly less



Table 4. Power results for Setting 2. Each cell in the table
corresponds to the power of SKAT using a kernel constructed
based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns

labeled MK-SKAT correspond to the omnibus tests across

tests (with fixed group) and across groupings (with fixed
test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and

Table 5. Power results for Setting 3. Each cell in the table
corresponds to the power of SKAT using a kernel constructed
based on the testing procedure at the top of the table and the
grouping strategy at the left of the table. Rows and columns

labeled MK-SKAT correspond to the omnibus tests across

tests (with fixed group) and across groupings (with fixed
test). The cells with both rows and columns labeled
MK-SKAT correspond to the omnibus test across all test and

groupings groupings
C-alpha SKAT CAST Count MK-SKAT C-alpha SKAT CAST Count MK-SKAT

n=1000 n=1000
0.5% 0.37 0.37 0.10 0.12 0.32 0.5% 0.26 0.26 0.31 0.32 0.33
1% 0.63 0.65 0.17 0.23 0.57 1% 0.53 0.55 0.52 0.50 0.59
3% 0.39 0.54 0.13 0.16 0.46 3% 0.73 0.78 0.69 0.69 0.78
MK-SKAT 0.60 0.63 0.16 0.23 0.55 MK-SKAT 0.77 0.79 0.72 0.73 0.80

n=2000 n=2000
0.5% 0.68 0.69 0.15 0.17 0.61 0.5% 0.52 0.53 0.47 0.48 0.57
1% 0.87 0.88 0.26 0.36 0.84 1% 0.75 0.77 0.70 0.69 0.78
3% 0.63 0.80 0.17 0.23 0.72 3% 0.84 0.88 0.82 0.80 0.88
MK-SKAT 0.87 0.89 0.27 0.36 0.83 MK-SKAT 0.90 0.91 0.85 0.86 0.91

than the most powerful single kernel. The results of the MK-
SKAT testing across all 4 tests at the 1% MAF threshold
group showed power would be nearly equivalent to the most
powerful single kernel as well. Also, if one tested the count
kernel over the 3 groupings, power would be conserved.

In Setting 2, power was dramatically decreased for the
count and CAST kernels compared to Setting 1 (Table 4).
This was due to the true model having bidirectional genetic
effect on the outcome. Some rare variants increased the out-
come, while some decreased the outcome. Compared to Set-
ting 1, power was reduced for C-alpha and linear weighted
kernels, but not to the same extent as count and CAST.
C-alpha and linear weighted kernels applied to the variants
with MAF <1% performed the best in Setting 2. MK-SKAT
testing over all 12 kernels displayed power somewhat less
than the most powerful single kernel, but much greater than
any of the CAST or count kernels. If one applied MK-SKAT
over the three groupings of the linear weighted kernel, power
would be nearly equivalent to the most powerful single ker-
nel. This setting clearly showed the adaptability of the MK-
SKAT method under variation in the genotype/phenotype
structure.

Setting 3 compared power between methods for a di-
chotomous outcome (Table 5). The linear weighted kernel
applied to the variants with MAF <3% performed the best.
They were best adapted to the true model where only 20%
of the variants were truly causal, and rare variants with
MAF <3% were sampled as causative. MK-SKAT testing
over all 12 kernels had power slightly greater than the most
powerful single kernel, though this is likely to be within
the range of monte carlo error. If one applied MK-SKAT
to the three groupings using either the linear weighted or
C-alpha kernel, power would nearly equivalent to the most

powerful single kernel.

Overall, results show that while protecting type I error,
the MK-SKAT can achieve power close to using the optimal
test and grouping strategy. While there is generally some
modest loss in power relative to the best choice, the pro-
posed omnibus tests offer considerably better power than
poor choices and represent a reasonable compromise. If one
is able to restrict attention to a particular group of variants
based on prior information or to a particular testing pro-
cedure based on hypotheses of the underlying model, then
power can be further increased by restricting the MK-SKAT
to fewer tests or fewer groupings.

3.2 Data analysis

We examined the performance of our proposed method
on a high-depth sequence data set with 2,000 subjects from
the CoLaus population-based collection [7]. Briefly, we ex-
amined a single candidate gene containing 86 variants of
which the majority had allele frequency less than 3%. Eight
variants were non-synomymous and two were predicted to
be harmful. This gene is a drug target which has been shown
to be associated with obesity and cardiovascular related out-
comes. In addition to genotype information, we had 42 sepa-
rate traits, most of which are related to obesity and cardio-
vascular measures, and additional demographic covariates
including age, gender and the top five eigenvalues of genetic
variability derived from the GWAS data. We illustrate the
MEK-SKAT procedure by applying it to identify which of
the 42 outcome traits are associated with the rare variants
within this candidate gene.

We specifically considered testing using CAST, count
based collapsing, weighted count based collapsing, the
C-alpha, and the default SKAT. For groupings, we consid-
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Figure 1. Real data analysis results. Each column of circles
corresponds to the p-values from analyzing a different trait
while each circle represents the p-value from a different kernel.
The triangle indicates the p-value from applying MK-SKAT
to all of the kernels. p-values have been truncated at 1076,
The dashed line indicates the bonferroni significance level.

ered using all of the variants in the region, the variants
with MAF <3%, variants with MAF <1%, variants with
MAF <0.5%, nonsynonymous variants, and variants pre-
dicted to be harmful. In total we considered 27 different ker-
nels based on combinations of the test choice and grouping
choice — the CAST, count based collapsing, and weighted
count based collapsing were not applied to all of the variants.
In addition to applying SKAT with each of the candidate
kernels, we also applied the MK-SKAT testing across all 27
kernels.

Analysis results are presented in Figure 1, with p-values
truncated at 1076, Several p-values would have met the
threshold for significance and will be presented elsewhere.
Given that the candidate gene was selected as a positive
control and that many of the outcome measures are closely
related, these results are in line with what we would antici-
pate. However, for the purposes of illustrating our methodol-
ogy, the individual p-values are not particularly interesting.
The key result is that for many traits, using different meth-
ods and different groupings resulted in very different results
in terms of significance. MK-SKAT did not tend to have the
smallest p-values. In general, MK-SKAT tended to yield re-
sults slightly less significant than those using the best kernel
(choice of test and grouping strategy). However, MK-SKAT
still performed considerably better than poor choices of ker-
nels.
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3.3 Computational run time

We examined the computational efficiency of the MK-
SKAT procedure. Specifically, we considered the run time
associated with running MK-SKAT to analyze a region with
p observed variants in n individuals assuming that we would
like to consider 12 kernels constructed by considering count
based collapsing, weighted count based collapsing, SKAT
and C-alpha tests with grouping thresholds of 1%, 3% and
5%. This differs slightly from the earlier simulations and was
adjusted in order to accommodate the wider range of sam-
ple sizes and observed variants under consideration. How-
ever, the computational results should not change as the
kernels and relative complexity are still the same. Results
are presented in the left panel of Figure 2 and show that
the run time increases with sample size. Although there are
some differences in the computation time for situations with
different numbers of variants, such were small compared to
differences in run time from increased sample size. This is in
part because the kernel machine framework requires working
with nxn kernel matrices, irrespective of the dimensionality.

As noted earlier, the testing procedure developed in this
project is based on our previous work [26]. However, tech-
nical adjustments were made due to improve computation
within the context of rare variant analysis with many possi-
ble kernels. To illustrate the improvement in computation,
we further compared the relative computational expense of
the current MK-SKAT procedure to our previous procedure.
The results are presented in the right panel of Figure 2 with
the relative run times (run time of our current procedure
divided by run time of the previous procedure) as a func-
tion of sample size and number of observed variants. When
the sample size is large and when the number of variants
under consideration increases, our current procedure can be
considerably faster. On the other hand, when the number
of variants is modest, then the previous procedure can be
slightly faster though the difference is small.

4. DISCUSSION

In analysis of genetic rare variants, given the difficulties
associated with selecting a test and selecting a particular
group of variants to test, MK-SKAT allows investigators
to agnostically consider several different, popular, testing
approaches as well as several different ways of thresholding
the variants. Although there is some loss of power compared
to the best single test and best grouping, the power is still
considerably higher than when using a poor choice of test
or a poor choice of grouping strategy while still conserving
type I error.

Restriction of the MK-SKAT to a smaller set of possible
kernels (i.e. smaller set of tests or groupings) can yield higher
power if the considered kernels are closer to the best test
and grouping strategy. If such information is available, such
as through previous studies of common variants within the
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Figure 2. Computational runtime as a function of sample size for the proposed algorithm (left panel) and the relative
computational cost of the current procedure relative to a previous procedure for multi-kernel testing [26] (current/previous) as
a function of the number of variants and sample size (right panel).

region or through bioinformatics knowledge, we strongly en-
courage investigators to directly restrict interest to a smaller
group of candidate kernels. On the other hand, in the ab-
sence of reliable prior knowledge, we recommend consider-
ation of a wide range of kernels. Importantly, if kernels are
very similar to one another, then the perturbation procedure
will accommodate the correlation and will not penalize the
significance as much as if the considered kernels are more
different.

We acknowledge that the computational expense of MK-
SKAT can be high with larger sample size, making it diffi-
cult to analyze large, genome-wide sequencing studies, but
a simple approach to decrease this burden would be to first
screen using each of the candidate kernels individually. If
none of the individual kernels are close to significance, then
MK-SKAT is unlikely to yield a significant result. Since the
majority of genetic regions are not related to outcomes, ap-
plying MK-SKAT to only the promising genetic regions can
considerably reduce the overall computational expense of
analyzing any real experiment. Further computational im-
provements may be possible using powerful, new (i.e., par-
allel or grid) computing technologies and represent an area
of future research.

Interestingly, while several methods are special cases
of SKAT, some other methods are special cases of the MK-
SKAT. The variable threshold test [23] is equivalent to MK-
SKAT when the kernels under consideration are based on a
single testing approach with only the variable grouping be-
ing varied. However, we note that use of perturbation still
offers computational advantage over the threshold test. Sim-
ilarly, the SKAT-O method [12] is equivalent to MK-SKAT
in which the variable grouping is fixed but one is consider-
ing a range of linear combinations of SKAT and collapsing

kernels. Thus, in comparison to SKAT-O, MK-SKAT would
tend to excel when the ideal variable grouping is not chosen
for SKAT-O. MK-SKAT buffers against a broad range of
variable groupings since many can be tested simultaneously.

Further methods may also fall within the MK-SKAT
framework, but although many popular tests can be con-
sidered using MK-SKAT, there are certainly many useful
tests that fall outside. For example, tests that use the out-
come information in order to estimate weights for variants
[11, 10, 8, 14] cannot be applied. While these tests still can
be considered special cases of SKAT, the kernel is now es-
timated using the outcome such that standard asymptotics
for SKAT and the perturbation based techniques for MK-
SKAT cannot be used to obtain p-values. Further statistical
work is needed in order to allow the MK-SKAT procedure
to encompass these methods.
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