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sample using NGS reads

Camilo Valdes, Meghan Brennan,

Bertrand Clarke
∗
, and Jennifer Clarke

We use a nucleotide flipping technique on whole genome
next generation sequencing (NGS) data to test for the pres-
ence of various bacterial strains in a single metagenomic
sample. Our technique is novel in that we induce artificial
point mutations at the nucleotide level to define a test statis-
tic for each genome on a given reference list. After finding
a suitable nucleotide flipping rate, we use a variant of the
Westfall-Young procedure to correct for multiple compar-
isons. When we align reads to reference genomes we permit
fractional reads i.e., we weight the contribution of each read
by one over the number of genomes to which it aligns. In
a large scale simulation we characterize our method’s per-
formance on ‘clean’ data with respect to accuracy, genome
lengths and genome abundances. Then, we apply our tech-
nique to real data from the Human Microbiome Project
(HMP). We compare our results based on adjusted p-values
with the HMP findings based on abundance, as assessed
by coverage. The results from the two methods have sub-
stantial overlap; discrepancies can be explained by the in-
herent variability of the respective processing pipelines and
data.

AMS 2000 subject classifications: Primary 62G10,
62P10; secondary 62-07.
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1. PROBLEM STATEMENT

We present a technique for detecting the presence of
strains of bacteria in metagenomic samples generated us-
ing whole metagenome high-throughput DNA sequencing,
or Next-Generation Sequencing (NGS). That is, we assume
that genomic reads have been generated from a single phys-
ical sample and the goal is to do J frequentist hypothesis
tests

(1)
H0,j : Cj is not in the population

vs. H1,j : Cj is in the population,

∗Corresponding author.

where the Cj ’s for j = 1, . . . , J represent a collection of ref-
erence genomes for bacterial strains. The collection of ref-
erences includes consensus nucleotide sequences of different
bacterial DNA (chromosomes, plasmids, and other contigs)
that comprise the strain level. The efficacy of the testing will
depend on J , the richness of the reference genome database
across bacterial taxa, as well as the quality of the NGS
data. Typically, J will be on the order of thousands, the
number of chromosomes/plasmids/contigs will be on the or-
der of hundreds of thousands, while the number of reads
will be in the hundreds of thousands to millions. To accom-
plish the tests in (1) we use the data to test at the chromo-
some/plasmid/contig level, and then aggregate these results
to the strain level. There may be genomes in the sample that
are not among the Cj ’s and may not even be bacterial; if
reads from such genomes are in the sample they usually end
up not being used in the alignment to the references and
this is not a problem for our technique. Indeed, regardless
of what non-bacterial genomes may be present in a physi-
cal sample, there is interest in determining which bacterial
strains are in the sample. For instance, accurately identify-
ing which bacterial taxa (strains, species, etc.) are present
in a single set of reads is important in food safety, iatrogenic
diseases, and bioterrorism.

Several methods for assessing the composition of metage-
nomic samples using NGS data have been presented in the
literature. For instance, [28] used 40 universal marker genes
to define bacterial species genome references and considered
a species to be present in a sample if ≥40% of the reference
genome was covered by reads. Also, [10, 11] have reported
on various approaches for metagenomic profiling. In exam-
ining the healthy human microbiome, they used taxonomic
profiling with MetaPhlan ([29, 30]) to estimate species-level
abundances in each sample. Separately, [24] developed a
metagenome reference gene set (similar to MetaHIT ([23]))
to identify genes present in metagenomic samples and infer
the presence of bacterial species from these genes. In gen-
eral these approaches use information at the gene level to
infer which species or taxa are present in a sample and are
not primarily statistical. By contrast, the methodology we
present here is primarily statistical and designed to detect
bacteria at the strain level using nucleotide information. It
does not require extra biological information such as marker
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genes that might not be available for genomes present in
metagenomic samples of unknown provenance.

There are three senses in which our work is novel. First,
we use NGS data at the nucleotide level, in particular for
the artificial point mutations defining the test statistics,
rather than initially aggregating. Second, the ‘flipping and
re-aligning’ approach that we take to find both raw p-values
and a correction for multiple comparisons seems to be dif-
ferent from any standard testing procedure that has been
proposed, at least in the present context. Third, we weight
the contribution of each read by one over the number of
reference genomes to which it aligns. That is, in the test
statistics, the reads in the sample are weighted by their abili-
ties to discriminate among bacterial strains. Thus, sequences
that align to many strains contribute relatively little to each
strain. Abstractly, this means we have a technique for de-
tecting reference strings using data that is of the form of a
large but finite collection of substrings drawn from an alpha-
bet of four letters and this technique can be used whenever
tests can be phrased in terms of properties of the collection
of reference strings.

First, while we have used our technique on the nucleotide
sequence from a specific version of the NGS technology,
there are many variations; a convenient summary can be
found in [18] and an overview from a statistical perspective
can be found in [5]. Thus, we only use the read data from
an NGS data set and we only use alignment to a set of ref-
erence genomes (with a tolerance for a few mismatched nu-
cleotides). While there are a variety of more-or-less standard
analyses for NGS data, e.g., condense NGS data and ap-
ply contingency table analyses or analysis of variance tech-
niques to detect differences between groups, see [1], or detect
whether multiple copies of a region are present in a piece
of DNA, see [32] and [14], one common feature of these and
other statistical approaches is that they summarize the NGS
data before analyzing it. By contrast, our method of anal-
ysis focuses on the level of nucleotides. This has been done
for metagenomic variation analysis; see [28]. However, we
are using whole genome nucleotide information for micro-
bial detection whereas [28] took a marker gene approach to
detection.

The second point, that our testing procedure is novel,
rests on an innovative construction for the null popula-
tion. Essentially, we use point alterations or ‘flipping’ of nu-
cleotides, to construct a null population at the nucleotide
level, i.e., a collection of artificial samples that are as sim-
ilar to the real data as possible and can be assumed not
to contain any of the Cj ’s. The construction uses a fixed
probability q ∈ [0, 1] so as to flip 100q% of the nucleotides.
When we flip a nucleotide there are three choices and we
assume all three are equally likely. Doing this repeatedly for
the reads and re-aligning to the reference genomes gives us a
collection of plausible read counts from the null population
to serve as a baseline. We can therefore compare the number
of reads aligning for each strain in the data to the number

of reads aligning from the sample from the null population
(for the chosen q).

This requires some explication to justify. Biologically, we
want the null population and the samples we generate from
it to look like a metagenomic sample but not contain any
of the Cj ’s. If q were chosen to be too small, the artificial
samples generated from the reads would be very close to the
reads themselves and it would be difficult to reject the null
even when it’s false; the actual data would not differ mean-
ingfully from any reasonable threshold obtained from the
artificially generated reads. So, we want to put in enough
noise, i.e., choose a big enough q, that it is plausible the
references are not in the null population. Loosely, if the null
is too biologically plausible it won’t represent a null popu-
lation. At the same time, we do not want to put in so much
noise i.e., make q too big, that comparing the alignments
of the flipped reads essentially always leads us to reject the
null because the null has lost all genomic plausibility.

In statistical terms, this can be phrased in terms of a
tradeoff between false rejections and false acceptances of
the null. Constraining the null population by insisting the
nucleotide flipping results in strings that are representative
of a viable bacterium, or keeping q too small, weakens the
test by making it too hard to reject the null. On the other
hand, making q too large moves the null so far away from
any viable bacterium that it becomes irrelevant. That is,
the null population is shifted too far toward collections of
nucleotide strings that do not represent viable bacteria and
hence will be rejected too often.

In either case, we take artificial samples (given q) as repre-
sentative of the statistical null population and re-align them
to the reference genomes so that the number of reads that
align to Cj in the observed sample can be compared with
the distribution of the number of mutated reads that align
to Cj . This can be used to generate a p-value for the test
in (1). That is, it is only at the end of our procedure that
we aggregate over the artificial, altered samples. (In fact,
in our procedure, we do not use the p-values directly; we
use the ranks of the raw counts which are equivalent to the
p-values.)

In both the biological sense and the statistical sense, q
controls the tradeoff between two unacceptable extremes.
So, to implement our procedure we present two ways to
choose q as a suitable tradeoff, i.e., as ‘knees in curves’. In
an example, we see that these give similar values for q and
hence comparable results. It is well-known that the knee in
a curve represents the point of smallest radius of curvature
and corresponds to a maximal second derivative condition.

The third sense in which our work is novel is that we use
fractional reads. That is, if a read aligns to, say, g reference
genomes, each of the alignments is counted as 1/g. That is,
our procedure represents an averaging over the uniquenesses
of the reads. Obviously, the more uniquely a read aligns the
more weight it gets. For some reads that might uniquely
specify a strain this may fail to make use of all the infor-
mation that could be available (but usually is not). On the
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other hand, our method provides an average alignment for
the vast majority of reads that do not seem to identify a
strain uniquely by themselves. That is, we are weighting the
alignments for each read by their uniqueness and doing this
for many reads. This seems to provide a good summary of
the overall information in an NGS data set relative to the
reference list.

The rest of this paper is as follows. In the three subsec-
tions of Sec. 2 we describe our nucleotide flipping approach,
our usage of the Westfall-Young multiple comparisons cor-
rection, and the way we choose the null distribution for (1),
i.e., q. In Sec. 4 we use our technique on a simple HMP data
set, examine the selection of q, and compare our results to
those from the HMP. In Sec. 5 we conclude by discussing
some of the issues raised by our method. Some computa-
tional details are provided in an Appendix.

2. METHOD

The primary difficulty in doing the tests (1) is identifying
appropriate null distributions for them. This is the case for
(i) finding raw p-values for the individual tests and (ii) find-
ing a multiple comparisons correction for the raw p-values.
We solve (i) by using a flipping rate q on the nucleotides in
the reads in the NGS data. For (ii) we use a variation on the
Westfall-Young method (WYM). Standard WYM requires
permutations, but here we use the same artificial point flips
as in (i) in an analogous procedure. Both of these necessitate
choosing q since it affects the number of Cj ’s detected.

2.1 A test using nucleotide flipping

The basic idea behind our nucleotide flipping test for the
H0,j ’s is to create many new data sets so that values of
the test statistic under the null hypothesis can be found.
These values are then used to form a histogram estimate
of the sampling distribution of the statistic under a null
hypothesis, and the p-value is taken to be the area to one
side (for a one sided test) of the actual value of the test
statistic. The null population is all values of the statistic
that one might have got via flipping the nucleotides in the
reads and conceptually the null distribution is the limit of
the histogram as the sample size increases.

More formally, we use artificial point mutations or flip-
ping of the nucleotides in the reads in the NGS data from
which the test statistic, defined below, is calculated. This
effectively creates a new data set, one that we might have
observed if the null hypothesis were true. By repeating this
process we can generate many such datasets, so that many
values of the test statistic can be found. To do this, fix a
value q ∈ (0, 1) and let rk, k = 1, . . . ,K, denote the sam-
ple reads, each of length lk. To get a q ∗ 100% nucleotide
flipping rate, we choose qlk nucleotides in rk to flip to an-
other nucleotide. We do this by drawing one number from
a Unif [0, 1] for each nucleotide. If the number drawn for
a given nucleotide is less than q we change it at random

to one of the other three nucleotides, otherwise we leave it
unchanged. Once we have done this to all K reads we have
a collection of K flipped reads which we can align to the
reference genomes Cj .

When we do this alignment of the artificial data to the
reference list, we continue to use fractional reads. That is,
some reads will align to a single reference, discriminate that
reference from all others, and get weight 1/g = 1. However,
many reads will align to multiple, say g, references, provide
less discriminative information, and be weighted 1/g, g > 1.

Now, for each j let Yj be the number of the flipped reads

that align to Cj for a given q. Then Yj =
∑K

k (1/gk)1rk,j
where gk is the number of references to which read rk
aligns and 1rk,j equals 1 if read rk aligns to reference
Cj and zero otherwise. Thus we generate a column vec-
tor V = (y1, . . . , yJ)

T of non-negative values which may
or may not be integer values depending on the uniqueness
of the reads aligning to each reference. The entries yj are
the outcomes of the Yj ’s. We can write V = V1 and repeat
the procedure (M − 1) more times to generate V2, . . . , VM .
These form a J × M matrix V = (V1, . . . , VM ) in which
each row contains M values that are exchangeable – in fact,
independent.

There are two comments on this procedure that are im-
portant at this time. First, the number of aligned reads show
little variation from Vi to Vj for i �= j for each fixed q. We
do not have a good explanation for this; we merely observed
it phenomenologically in the data sets we examined. We
suggest it may be related to the tolerance of the aligner;
for a given read and reference the aligner is sensitive to
the number of mismatches but not where they occur. That
is, since the rate of the flips is the same for given q, it is
only the locations of the flips that can vary and within
a given read/reference pair an aligner will be insensitive
to this. Second, generating M artificial data sets and re-
aligning them gives a nominal resolution of approximately
1/M for p-values. While sufficiently powerful computing re-
sources would let us reduce this effectively to zero, it would
be meaningless compared to the other sources of error and
variability in the experiment. The sizes of p-values, at best,
only indicate that the null is reasonable or not – at the reso-
lution of information permitted by the sample and the other
sources of error in the experiment. At this time, it does not
seem anyone has assessed the various errors involved in NGS
experiments in enough detail to permit a well-defended se-
lection of a level for testing. Indeed, research in the general
direction of examining sources of error tends to focus on
quality control for data more than evaluating the relative
contribution of different sources of error, see [31] and [20].

Using the flipped data as a sample from the null popu-
lation is a non-standard approach to defining a hypothesis
test. So, it is worthwhile examining what the construction
means. First, it is important to realize that the probabil-
ity of flipping a collection of reads in an NGS data set so
it looks like it came from Cj when it didn’t is vanishingly
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small. This is so because the number of possible flipped data
sets is exponential in the number of base pairs, i.e., the lo-
cations of the bases to be flipped are random and uniform
over the possibilities, and the number of locations at which
a flip may occur is large, namely,

∑K
k=1 lk where the lk’s

are in the hundreds and K is several hundred thousand. At
the same time, the set of genomes corresponding to viable
organisms is likely sparse in the set of all strings of 4 letters
of length O(108). Therefore it is safe to assume that essen-
tially none of the collections of flipped reads will look like
they came from Cj unless they actually did, i.e., they are
valid alternatives.

Recall that Yj is the number of the flipped reads that
align to Cj for a given q. Let Xj be the random variable
representing the number of reads from Cj in a sample of
size K for a given j. We have found through computing
various examples that typically Yj decreases with q and in
particular for any q, Yj ≤ Xj holds approximately. In fact,
under H0,j , Yj ≈ Xj for any q. This makes sense because,
as noted above, it is very unlikely to flip the nucleotides in a
string so they match part of a Cj , especially as q increases.
Given this, consider the J rows of V . They can be used to
form histograms hj each approximating the sampling dis-
tribution of Yj under H0,j . Now, one minus the quantile of
Xj under hj serves as an estimate of the p-value. To do this
properly, however, requires we specify a rule to break ties
in the case that xj happens to equal one or more of the y’s
from the M mutated data sets. Our rule is that we always
assign xj its largest rank among the yj ’s, making the test
slightly conservative. Thus, if we test a single hypothesis
(hence ignoring multiple comparisons problems), we would
reject H0,j if Xj = xj is too high, in particular above the
95th percentile of hj because each test of the form (1) is
one-sided when Xj (or Yj) is used as the test statistic. Since
this can be done for each Cj we have J distribution-free raw
p-values.

2.2 Westfall-Young correction for multiple
comparisons

We resolve the multiple comparisons problems with the J
hypothesis tests by adjusting the p-values using the WYM,
see [34]. In fact, there are several methods, the two most
common being the WYM and false discovery rate (FDR).
We prefer to mimic the WYM because it has optimality
properties in terms of power, see [17] which do not seem
to have been shown (and may not hold) for the FDR.
The WYM also takes dependence of the tests into account
whereas any virtues of FDR do not seem to hold outside
a few specific dependence settings whose assumptions can-
not be easily verified. Specifically, we use the ‘minP ’ form
of the WYM rather than its ‘maxT ’ form. The reason is
that even though appropriate statistics Tj can be defined
here, one cannot assume any identicality or specific form of
dependence for them. In these cases, the minP and maxT
methods do not in general agree and the minP methods are

preferred, see [6]. The reason is that the minP method is
less sensitive to the lack of identicality and independence
across tests than the maxT method.

Let pj be the raw p-value from the j-th test of the form
(1) found in Sec. 2.1 and let Pj be the raw p-value for Hj as
a random variable. Then the j-th step down minP adjusted
p-value is

P ( min
�=1,...,J

P� ≤ pj | H),(2)

where H is the complete null, H = ∩J
j=1Hj , see [6]. Pro-

cedures based on the minP (or maxT ) adjusted p-values
control the familywise error rate weakly, i.e., under the com-
plete null rather than an exact (correct) or ‘all possibilities’
(strong) null, under all conditions.

To implement the minP method, note that only the raw
p-values, the pj ’s from Sec. 2.1, are known. So, we must
estimate (2) because the distributions of the Pj ’s are un-
known. To do this we use the same flipping technique on
the nucleotides as in Sec. 2.1. That is, our procedure for
estimating the single step minP adjusted p-values fixes a
q and then flips the bases in the K sample reads to gener-
ate, say, 100 flipped samples each containing K short reads.
Note that the traditional double permutation algorithm for
the step-down minP adjusted p-values uses the same type
of permutations on the data to generate the raw p-values as
it does to find the multiple comparisons correction.

Specifically, for each of the M flipped data sets, find the
raw p-values for the H0,j ’s, pj,m,m = 1, . . . ,M and estimate
(2) by

p̂j =
#{m | min�=1,...,J p�,m ≤ pj}

M
.(3)

Clearly, this is just a permutation test on the level of the
p-values rather than on the level of the data (where the ana-
log of the permutations is the flipping of nucleotides rather
than actually permuting the data). So, putting the null hy-
potheses in the same order as the p̂(j)’s, we reject H0,(j)

when p̂(j) ≤ j/J .

2.3 Choice of flip rate q

The value of q influences the number of reads in a flipped
sample that align to a set of Cj ’s. So, as discussed in Sec. 1,
we want to choose q to get a reasonable null population for
comparison purposes in the test. Here, we describe two ways
to do this. These are exemplified in Secs. 3 and 4.

First, consider generatingM flipped samples using a fixed
value of q. Align these samples to the reference genomes us-
ing fractional reads and identify the reads from each sam-
ple which align successfully. Find the number of reference
genomes to which each aligning read in each flipped sam-
ple aligns. If these raw numbers are converted to proportion
aligning and graphed as a function of q the graph typically
starts at a value near 1 for q = .02 for simulated essentially
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‘perfect’ data, around .4 or .5 for q = .02 for clean real
data but may only start at .2 for q = .02 for messy data. In
any case, this proportion aligning graph decreases monoton-
ically to zero, meaning that as q increases it is harder and
harder to get alignment until at some point essentially no
reads align to the references. This can be done on the strain
or chromosome/plasmid/contig level. These graphs usually
have a ‘knee’ that can be used to identify an optimal q as a
tradeoff between specificity and sensitivity.

This tradeoff can often be seen more clearly if one pro-
duces a series of boxplots (one for each q) representing the
average number of genomes to which each read aligns. Es-
sentially, the knee in the curve formed by the medians in
the box plots is the result of the sparsity of viable genomes
in the set of all strings of four letters of length O(108) as
discussed in Subsec 2.1. For small q, the curve decreases
gradually with q because the references to which the strings
are aligned form an increasingly sparse subset within the set
of all strings. Past a certain value q0 of q the curve levels off
because the flipping of bases has made the reads far from
the reads of any viable organism. Hence, from these boxplot
charts we can again estimate q0 by identifying the knee in
the curve as a tradeoff between an excessively conservative
test and an excessively liberal test, respectively.

In a second approach to estimating q, again as a tradeoff,
one can plot a graph of the number of reference sequences
detected as a function of q. As with the earlier two curves,
these detection plots also have a knee whether one looks at
the strain or chromosome/plasmid/contig level, and we can
estimate q0 by identifying the knee in the curve. In this case,
the tradeoff is again between the same extremes: sensitivity
vs. specificity, conservative testing vs. liberal testing, Type I
error vs. Type II error, false positive vs. false negative. When
the estimates of q from the two sorts of graphs are similar,
it is reasonable to infer that the common value represents
an appropriate tradeoff. Note that this a tradeoff between
two competing factors e.g., false positive and false negative
rates, rather than controlling one and ignoring the other. It
will turn out that the tradeoff achieved by our choice of q
tends to limit false positives much more than false negatives
but this is a result of our way to choose q, not a property
built into our methodology a priori.

Taking the knee of the curve as a good choice for q can
be justified in three different ways. First, pragmatically, if it
exists, and it generally does, the knee represents a tradeoff
between q too small and hence a null population that is too
similar to the sample (meaning it will not be rejected often
enough), and q too large and hence a null population that is
so far from the sample that the null will be rejected too fre-
quently. Second, the knee in the curve represents the point of
diminishing returns i.e., where the gains from the increased
null are outweighed by the losses of the increased null. This
interpretation for the knee in the curve is routinely invoked
in some contexts, e.g., in choosing the number of principal
components to use in a principal component regression anal-
ysis (called a scree plot), the number of clusters to use in

a clustering (see [26]), or choosing a classifier (choose the
classifier represented by the point on the ROC curve closest
to (0,1)).

Third, from a more formal standpoint, the knee in the
curve is the point at which the curve has the smallest ra-
dius of curvature i.e., the direction of the curve is changing
most rapidly. While often viewed as a ‘folk theorem’, there
is an extensive literature on using this point as a good way
to choose auxilliary parameters such as q. For instance, [9]
provided a summary of the debate surrounding the use of
the knee in the curve admitting that some regard the knee
in the curve as ill-defined or not meaningful. However, [27]
had already proposed formalizing the concept by using the
curvature function of a curve in the plane and [2] used this
definition to estimate proportions in a metagenomic sam-
ple. In a Bayes version of the present analysis, [4] used the
knee in the curve to identify a tuning parameter for use in
the analysis of NGS data. Most recently, [3] simplified this
definition to a second derivative condition and established
consistency in a genomic context. Although their proof does
not directly apply to the present NGS setting, the overall
import of this work suggests that the knee in the curve, as
used here, is a valid concept.

3. SIMULATION RESULTS

As a first test of the method outlined in Sec. 2, we set
up a study to see how well it would perform on simu-
lated data. We chose the reference genomes to be 600 ran-
domly selected bacterial strains from the National Center
for Biotechnology Information (NCBI) database GenBank.
Specifically, the 600 were drawn at random from the Bac-
teria dataset that only contains complete genomes. In this
context, ‘complete’ genomes are those that have been com-
pleted down to a unique DNA sequence per replicon (chro-
mosomes). This means the reference list is very ‘clean’ –
it has one consensus nucleotide sequence for each strain
including chromosome(s), plasmids, and all other genetic
scaffolds. Moreover, the nucleotide sequence is well anno-
tated (verified from other sources, checked for other er-
rors, etc.) and is in one file for easy use. For more de-
tails, see http://thegenomefactory.blogspot.com/2012/07/
navigating-microbial-genomes-on-ncbi.html.

To generate a synthetic metagenomic NGS sample we
used the MetaSim software, see [25]. It requires three
inputs, namely, the genomes, their abundances, and the
number of short reads to generate. Since our goal was to
form 10 artificial NGS samples, we began by randomly
separating the 600 strains into ten groups of size 60
each. Then, for each group of size 60 we generated 60
abundance values. The abundance values are generated
to be consistent with characteristic ways that species of
organisms are distributed within an ecological community.
One of the classical ways is described as logarithmic,
see [16]. Code to generate logarithmic abundances can
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be found at http://r-sig-ecology.471788.n2.nabble.com/
Fit-log-series-to-species-rank-abundance-td5729089.html#
a5734514. The idea is that a rank abundance curve is formed
by taking all species of organisms in a community and
plotting them from lowest to highest abundance. Taking the
strains as the species in this approach meant that fitting a
log series to the rank abundance curve will give abundances
for the 60 strains in any one of our metagenomic samples.
Finally, we asked MetaSim to generate NGS samples with
150K reads. This gave ten NGS data sets, each from 60
genomes, with a common reference list of 600 genomes.

Given these ten artificial samples we can apply our
method. We show the details for Group 0, but the details
for groups 1–9 are similar. The first step in the method is
to choose q so as to define the null population. In Sec. 2.3,
three different graphs were described; they were the propor-
tion aligning graph, the boxplot chart, and the detection
plot. In each case, the idea is to use the knee in the curve
as a value for q. To generate the proportion aligning graph
and the boxplot chart we used 200 flipped data sets for each
q = 0, .02, .04, . . . , .3; we chose 200 as a reasonable value be-
cause it was large enough to see the variability but small
enough to be computationally inexpensive. The proportion
aligning graph and the boxplot chart for Group 0 are shown
in Fig. 1.

The detection plot for Group 0 is in Fig. 2. Since each
strain has one sequence individual sequences/strains are ei-
ther detected or not. Hence, there is only one meaningful
detection plot on the strain level as opposed to the level of
individual chromosomes, plasmids, or contigs. (A detection
plot could be generated on the species level but there are
different numbers of strains in different species.) In Fig. 2,
a significance threshold of .1 was used for the adjusted p-
values from the multiple comparisons test procedure. This is
an unusual choice necessitated because the adjusted p-values
segregated into four ranges:

1. p-value = 0
2. p-value ∈ (0, .1)
3. p-value ∈ [.1, .99502)
4. p-value = .99502

Note that 200/201 = .99502, the largest adjusted p-value
possible derived from the fact that we generated 200 data
sets by nucleotide flipping with probability q = .16. In fact,
the majority of the adjusted p-values were zero or .9905
because (1) the variance in the number of reads aligning
to the reference genomes from the 200 flipped data sets
was small and (2) we have a conservative procedure to deal
with ties (see Section 2.1). Effectively, the null distributions
for the number of reads mapping to a given genome were
highly concentrated, forcing the WYM corrected p-values
toward either zero or one. Since the region [.1, .99502) had
few adjusted p-values in it, as seen in Fig. 3, we chose .1
as the threshold because it was the effective upper bound
of the cluster of adjusted p-values that were positive but

Figure 1. Top: The proportion aligning graph for Group 0
showing the average proportion of reads in the 200 flipped
data sets from Group 0 that align to the first 60 reference
sequences as a function of q. Bottom: The boxplot chart for
Group 0 showing the median number of reference sequences
to which each read aligns in the same 200 flipped data sets.

less than .99502. While unusual, this p-value structure is
reflected even more starkly in the real data, see Fig. 9. In
the present example there are several possible reasons why
there is so little variation in the number of reads aligning.
First, the simulated data is simple compared to real data,
with fewer reads and fewer references. Second, the tolerance
of the aligner may make alignments robust to small changes
in sequences. And, third, the reference genomes are very
clean and complete leading to less variability because each
reference is one ‘finished’ file that includes plasmids, chro-
mosomes and other contigs. This is unlike the real example
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Figure 2. The number of reference sequences detected as a
function of q at the strain level using a threshold of .1 for the
p-values. Group 0 has 60 genomes but the reference list has
600 genomes of which the 60 from Group zero are a subset.

Figure 3. Graph of the WYM adjust p-values for the 10
groups using simulated NGS data. Note that the vertical axis
uses the base 2 logarithm of the values. This enables the

pattern to be clearly seen.

to be presented in Sec. 4 where alignment of a short read
to a reference genome is determined by its alignment to at
least one of many files that comprise the reference genome.

As a separate issue, we also did not apply the WYM in
its pure form. Rather than taking the minimum of the p-
values i.e., the maximum of the number of reads aligning,
we used the 95-th percentile of the number of reads aligning.
The reason is that there were about 5% of genomes who
had reads aligning that were unaccountably large. This may
arise because some of the genomes are so large or so small
that the identicality assumed by the WYM does not hold
even approximately. Taking a percentile rather than the raw
counts is a simple, robust correction for this. We note that
in the real data analysis we also used this sort of correction
but the 99.5-th percentile worked well. A smaller percentile
was appropriate for the simulated data, perhaps because we
analyzed the simulated data using a reference list of 600

Figure 4. The number of alignments for different mapping
quality values for Group 0.

strains whereas we analyzed the real data with a reference
list of 4,389 strains.

To choose q we proceed as follows. The top panel in Fig. 1
has minimal radius of curvature at approximately .2, but
values between .18 and .22 also appear reasonable. The bot-
tom panel in Fig. 1 has minimal radius of curvature at ap-
proximately .18, but values from .16 to .2 appear reasonable.
Fig. 2 has a minimal radius of curvature at approximately
.14 but values between .12 and .16 appear reasonable. Con-
sidering the proportion aligning graphs and boxplot charts
for Groups 2 to 10 (not shown) yields similar ranges, but
they are mostly shifted slightly lower, say .16 ± .02. Con-
sidering the detection plots for Groups 2 to 10 (not shown)
yields a similar range but increased variability so the range
of reasonable values is larger, say [.12, .2].

Overall, this means if we insist on using the same q for
all ten groups then one of the most reasonable choices is
q ≈ .16. Requiring a common q makes sense because ran-
domization should ensure that the ten groups are very sim-
ilar to each other in aggregate.

An interesting feature of the simulation results is that
there are a lot of upper outliers in the boxplot chart in Fig. 1
compared with, say, the corresponding boxplot chart for a
real data set in the bottom panel Fig. 7. This is likely due to
the range in the number of alignments, with relatively few
overall in the simulated data versus the real data, leading
to a right skew in the simulated results but not in the real
data results.

We observe Fig. 4 which shows the number of align-
ments as a function of mapping quality (phred score). Each
read from the dataset may generate multiple alignments (see
Fig. 1 and Fig. 7), and the MAPQ (mapping quality, similar
in spirit to a phred score) of each alignment is a measure
of how reliably a read maps to its references. In Fig. 4, it
is seen that for group 0, most hits are either 1 or 255. It is
generally accepted that any alignment with a MAPQ > 30
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maps to only one reference. There are roughly 700K align-
ments below the MAPQ = 30 mark, and about 1 million
above it, which includes the MAPQ value of 255.

A MAPQ of 255 is an alignment that maps to a lot of
places, and is probably being generated from a read that is
very common. This usually happens when a read is aligning
to many places or it means that the alignment is unique. A
close examination of the alignments with MAPQ 255 showed
they are valid. So, what is likely is that there are a lot of
very similar sequences, such as plasmids, that yielded very
similar reads, and Bowtie2 flagged these alignments with 255
rather than not report them, or assigning them a low MAPQ
score. One further possibility is that the process of genome
finishing (taking a genome from the draft stage to the com-
plete stage) requires that all the draft config assemblies be
merged/folded into one contiguous DNA sequence. The ge-
nomic assemblers that glue these contigs together sometimes
use a reference sequence of a close relative to “finish the
sequence”. It could be that these complete genomes share
stretches of sequence that were included in the artificial NGS
sample output by MetaSim. While these regions may not be
large, they could generate reads that map to a lot of places.

In terms of the 150k reads generated for Group 0, we gen-
erated 1,795,305 alignments of varying degree of mapping
qualities: from unique to multiple. Of these 1.8 million align-
ments, roughly 114k (6.4%) had unique alignments in the
sense that one read mapped to one reference. However, there
were a substantial number of multiple alignments: 1,681,147
(93.6%). This means that the original sample had about
35,842 reads (24%) that were very similar and mapped to
a lot of places. It is these 36K reads that are causing the
high number of outliers in Fig. 1. Some of these 36K reads
came from plasmids, but others came from other strains that
contained very similar sequences.

Having chosen a common q for the ten artificial data sets
and understood how it arose, it is instructive to examine
the resulting analyses. Recall that the goal of this detection
problem is to minimize the number of false negatives (FN)
while not forcing the number of true positives (TP) and
true negatives (TN) to be too small. The effect of this is to
control false positives (FP) as well, but less stringently. Since
each of the ten artificial data sets has a set of 60 genomes
known to be present and 540 known not to be present we
can record the effect of the testing for each group in a 2× 2
table. Representative examples of these are for Groups 0, 6,
and 7.(
TN FN
FP TP

)
=

(
443 26
97 34

)
,

(
454 26
86 34

)
,

(
473 25
67 35

)
.

The sum down the first column is always 540; the sum down
the second column is always 60.

It is desirable to aggregate over the ten analyses of the
artificial data sets. Even though the analyses are testing for
the presence of strains with different strains present in each
case, the fact that the ten detection problems are the result

of randomization means they should be comparable. Indeed,
all 600 of the strains enter the problem in the same way. So,
although hard to interpret outside the setting of the context
of 600 strains with the specified abundances, the averages
are meaningful within the limits of the problem. With these
caveats, if the ten 2×2 matrices are averaged and expressed
as percentages the results are

(
457.5 24.8
82.5 35.2

)
and

(
76.3% 4.1%
13.8% 5.9%

)
.

If we condition on the strain being absent, i.e., look at the
first column only, then the conditional probabilities of a TN
and FP are, on average, (84.7%, 15.3%). If we condition on
the strain being present, i.e., look at the second column only,
then the conditional probabilities of a TP and FN are, on
average, (56.7%, 43.3%). So, it is seen that while the pro-
cedure discriminates relatively well, 85% vs 15%, when the
strain is absent, it discriminates poorly when the strain is
present, doing about 10% better than tossing a fair coin.
Moreover, these averaged results are broadly representative
of the results in the ten individual cases.

The above calculations can be carried out at the species
level as well. The average of the ten 2 × 2 matrices and its
percentage form are

(
309.9 21.5
37.9 32.6

)
and

(
76.9% 5.3%
9.4% 8.1%

)
.

If we condition on the species being absent i.e., look at the
first column only, then the conditional probabilities of a TN
and FP are, on average, (89%, 11%). If we condition on the
species being present, i.e., look at the second column only,
then the conditional probabilities of a TP and FN are, on av-
erage, (59.7%, 39.2%). Under both conditioning events, this
is a slight improvement over the strain level. However, the
discrimination when a species is absent remains much better
than when a species is present.

In addition we examined the relationships between ac-
curacy of our method and the lengths or abundances of
the strains present; see Figures 5 and 6. The length and
abundance classes were chosen so each class contains the
same number of genomes, i.e., 150 strains each, and an ad-
equate number of genomes to assess both true positive and
true negative rates. The corresponding ranges of lengths
and abundances for each of the four classes are provided
in the legends of Figures 5 and 6. By length, we get the
best tradeoff between true positive and true negatives with
the longer genomes, with true positive rates generally rising
with length. It is clear from Figure 5 that there is a tradeoff
between true positives and negatives, since there is no class
for which both rates are at their highest. For the longest
genomes our median true positive and true negative rates
are 69.7% and 78.9%, respectively. By abundance, we see
very different patterns of dependence, with true negative
rates relatively insensitive to abundance (constant across
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Figure 5. Boxplots by length. Length classes (in base pairs
(bp)) are [1,815 – 1,660,425], [1,667,163 – 2,695,903],
[2,698,137 – 4,432,590], and [4,482,059 – 10,080,619].
TPR = true positive rate, TNR = true negative rate.

Figure 6. Boxplots by abundance. Abundance classes (in
coverage) are [0 – 6], [7 – 90], [91 – 1,223], and [1,236 –

54,666]. TPR = true positive rate, TNR = true negative rate.

abundance classes) but true positive rates rising in direct
relation to abundance. In fact, for the two classes of highest
abundance (Class 3 and Class 4) we achieve the highest rates
of true positives and true negatives, so we do not observe a
tradeoff as we did for length classes. For the most abundant
strains, our median true positive and true negative rates are
100.00% and 85.8%, respectively. It is not clear why for both
length and abundance true negative rates initially drop, and

then rise monotonically. One possible explanation is more
diversity among the smallest and least abundant genomes
relative to the immediately adjacent class, making detection
easier at least in a relative sense.

4. ANALYSIS OF AN HMP DATA SET

In the section we apply the methodology discussed in
Sec. 2 to determine which bacterial strains are in a metage-
nomic sample. Since our goal is to demonstrate our method-
ology we chose a relatively simple data set available from
the NIH Human Microbiome Project (HMP), namely, data
set SRS015072 (‘mid-vaginal’) available from http://www.
hmpdacc.org/HMASM/. General descriptions of the collec-
tion and processing of the physical samples to generate the
data are elaborate and are described at http://hmpdacc.
org/micro analysis/microbiome analyses.php.

All reads aligning to the human genome have been re-
moved; however, the remaining reads may be from a variety
of biological sources including bacterial, viral, and/or ar-
chaeal. The important feature for this section is the scale of
the analysis required. First, there are 495,256 ‘paired-end’
reads in the fastq file. Paired-end means that for each frag-
ment of DNA in the sample the two ends are sequenced
leaving a gap of known distance between them that is not
sequenced. Since NGS techniques can only sequence rela-
tively short lengths; leaving a gap means one has about
twice as many bp’s from the fragment and they are of known
distance apart. This gives more information per fragment
than having one single end read from the fragment. For
the SRS015072 dataset, the sample consists of paired end
reads, 100 bp reads with an average mate distance of 81
base pairs (bp). To make the computations faster and the
results more reliable, we preprocessed the data by filtering
out low quality reads defined as having phred scores less
than ten.

This data set includes abundance of DNA fragments be-
cause it is metagenomic, i.e., the physical sample from which
it came includes many distinct genomes and possibly many
copies of each of them. For instance, the genus Lactobacillus
is believed to be in the sample, but the number of the differ-
ent strains/species or the number from each strain/species
present is not known. Also, the reads are not independent:
If a read is present from one species of bacterium, it is more
probable that there are other reads from that bacterium as
opposed to reads from another bacterium. All software is
open source and available online (see Appendix) or upon
request from the authors.

4.1 Details of analysis: choosing q

To proceed with the analysis, we first used the data
to generate M = 350 mutated data sets for 15 values of
q = .02, .04, . . . , .3. Second, we constructed the reference
genome list by downloading 456,865 reference sequences
from the IMG database v4.0 [15]. These sequences include
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DNA in the form of chromosomes, plasmids, and other ge-
netic scaffolds, representing 4,389 different bacterial strains
from 2,286 bacterial species. In particular, when we pool
reference sequences (i.e., chromosomes, plasmids, and other
genetic scaffolds) to the strain level we say that a strain
is present if any of its reference sequences is present and
when we pool strains to the species level we say a species is
present if any of its strains is present. Since the p-values are
found at the reference sequence level, this part of the testing
procedure is as sensitive as possible for detection. Third, we
used a short read aligner called Bowtie2, [12], to align the
reads in the HMP dataset to the reference genomes and to
align the flipped data sets to the same reference genomes.
Bowtie2 in local alignment mode is more sensitive and more
efficient than BLAST for aligning NGS data. In our work
we used seeds of length 20; the Appendix gives further com-
putational details.

Fourth, given the Bowtie2 alignment of the flipped data
to the references, we turned to finding a value for q. We gen-
erated the graph of the average of the proportion of reads
from each of the 350 mutated data sets aligning to the ref-
erence list at the sequence level as a function of q. This
gave us the proportion aligning graph in the top panel in
Fig. 7. Note that in contrast to Fig. 1 in which the curve
starts from 100%, the curve for the alignment of this real
data starts from around 47%. It is seen that the knee in the
curve occurs around q ≈ .16, though any number in [.14,
.18] could be argued as reasonable. This inference is seen
from a different perspective in the bottom panel of Fig. 7.
Here we show a boxplot chart of the average number of ref-
erence files to which each flipped read aligns as a function
of q. The boxplots confirm the choice of q as the knee in the
curve formed by the medians of the boxplots, which occurs
around q ≈ .16.

As a separate computation, we also chose q by gener-
ating the detection plots in which the number of reference
sequences and strains detected are shown. In both cases,
reference sequences and strains, we used the same 350 mu-
tated data sets as in the proportion aligning method. Fig. 8
shows the curves for p-value thresholds 0.05 and 0.01. The
two curves very nearly overlap meaning that there are few
strains that get assigned p-values between .01 and .05 (see
Fig. 9); this suggests that the method is giving relatively
decisive answers. Again, we infer q ≈ .16, with a reasonable
range of [.14, .18], consistent with Figure 7. Thus, overall, it
seems reasonable to set qopt = .16.

Before proceeding to the inferences from the WYM-
adjusted p-values, we present a graph of them parallel to
Fig. 3. Specifically, Fig. 9 shows how the WYM adjusted
p-values concentrate even more strongly at zero and one for
this real data set than for the simulated data sets used in
Sec. 3. Again, this can be attributed to reasons discussed
previously; see Sec. 3. In this example, the even stronger
concentration at zero and one of the WYM adjusted p-values
may be attributed in part to the relatively large list of ref-

Figure 7. Top: The proportion aligning graph showing the
average proportion of reads in the 350 flipped data sets that
align to the reference sequences on the sequence level as a

function of q. Bottom: The boxplot chart showing the median
number of reference sequences to which each read aligns in

the same 350 flipped data sets.

erence genomes and the relatively large number of files each
of them is permitted to have. As with the simulated data,
the robustness of the aligned to small changes will also tend
to push WYM adjusted p-values to zero or one. Finally, the
concentration at zero and one may also be the result of the
fact that we took the minimum p-value over all the refer-
ence files for each strain. Since a strain is detected if any of
its files is detected and not detected if none of its files are
detected, there is a tendency to decisiveness.

For completeness we examine the distribution of align-
ments over mapping quality values; this is seen in Fig. 10.
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Figure 8. Detection plots showing the number of reference
sequences detected as a function of q at the strain (top) and
sequence level (bottom) using thresholds .05 (green) and .01

(red) for the p-values. (Color figure online)

Note that in contrast to Fig. 4 the distribution has mass
over the region between one and the maximum value of 44,
even though there is still a large number of poor alignments
as indicated by the spike at one. This means that there
are many weak, medium, and strong alignments so that the
selection of significance threshold for the p-values behaves
more typically as seen in Fig. 8. Also, possibly due to the
size of the reference list, the quantile used instead of the
minimum over p-values in the WYM (or here, the maximal
number of reads per genome) is .995, i.e., just less than the
minimum (or maximum number of reads aligning). The ex-
tra trimming required in the simulated data example is not
necessary.

Figure 9. Graph of the WYM adjust p-values for the HMP
data. Note that the vertical axis uses the base 2 logarithm of

the values. This enables the pattern to be clearly seen.
Although the two middle bars appear to be zero, in fact they
are small positive numbers that are not visible within the

resolution of the figure.

4.2 Details of analysis: running time

The method begins by mapping the NGS dataset to the
IMG bacterial reference set using the Bowtie2 [12] aligner.
At the time of analysis the Bowtie2 reference sequence in-
dexer (bowtie2-build) did not have support for large genome
lists, in particular those created from reference databases
that contained more than 4 billion characters because its im-
plementation did not support 64-bit integer numbers. The
IMG 4.0 reference at the time contained about 16 billion
nucleotide characters so using a large monolithic index was
not possible. It should be noted that the latest version of
Bowtie2 does support large indices but this would have no
impact on the results presented here.

We resolved this limitation of Bowtie2 by splitting the
reference database into 6 shards, each consisting of about 3
billion characters. For performance and scaling matters we
left a little bit of room and did not set each index shard
to be the full 4 billion characters. For each permutation,
Bowtie2 was run against each index shard independently
and its results merged and processed using SamTools [13].

At low q values (0.0, 0.02, 0.04, etc.), Bowtie2 had vary-
ing running times in each permutation depending on the
complexity (length of references, amount of repeats, flip-
ping rate) of the permutation: it took as little as 3 min-
utes for low complexity shards, and as high as 14 minutes
for high complexity shards. For larger q values (0.10, 0.12,
0.14, etc.), Bowtie2 took slightly less at the low complex-
ity shards (about 2 minutes) and about half the time for
high complexity shards (8 minutes). At q = 0.20, Bowtie2
was taking about 2 minutes for low complexity shards, and
about 3 minutes for high complexity shards. At q = 0.30,
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Figure 10. The number of alignments for different mapping
quality values for the HMP data.

Bowtie2 took about 1.5 minutes in low complexity shards,
and about 2 minutes for high complexity ones.

The overall run time depends on several input parameters
such as the size of the reference database, the size of the sam-
ple data, the number of candidate flip rates, the number of
compute cores available, and the number of flipped datasets.
In our example, with a very large reference database and
many flipped datasets, overall running time for 350 flipped
data sets at each flip rate q (15 different values) was about
6 days using the Pegasus 2 compute cluster at the Univer-
sity of Miami. Pegasus 2 is an IBM iDataPlex cluster with
Intel SandyBridge processors that support 16 cores and 32
GB of memory per compute node. The data footprint after
alignment and post-processing is about 3.8 terabytes (TB).
Clearly this run time can be modified by changing the input
parameters, making the method more or less feasible with
fixed resources.

4.3 Details of analysis: results

The p-values assigned by our method to various strains
that might be represented in the data set SRS015072 using
q = .16 are shown in Tables 1 and 2. We contrast our findings
with what the HMP identified as bacterial strains present
based on genome coverage. The HMP only reports strains
with at least 0.01×depth across 1% of the strain’s reference
genome. There is no information provided regarding signifi-
cance of detection or uncertainty. Despite this, their results
can be taken as baseline for comparison.

The first three columns in Table 1 show the strains re-
ported by the HMP for the SRS015072 data set with their
depth and breadth of coverage. Following HMP, the strains
are ordered by decreasing depth. This means that, in prin-
ciple, the strains at the top of the table should be easier to
find than the strains at the bottom. The fourth column in
Table 1 shows the adjusted p-values our method assigns to
these strains. Strains in red text are considered ‘significant’

Table 1. HMP results and WYM-adjusted p-values. Depth
and breadth statistics were provided by the HMP. (See

http://downloads.hmpdacc.org/data/HMSCP/
SRS015072/SRS015072 abundance table.tsv.bz2). Strains are
ordered by decreasing Depth. Strains in red have p-values

< 0.01

at p< 0.01. It is seen in Table 1 that our method assigns ‘sig-
nificant’ p-values to some, but not all, of the HMP findings.
They detected 29 strains of which 8 are assigned adjusted
p-values < 0.01, meaning they would be detected by our
method at this alpha level. We note at lower coverage (less
depth and breadth) we find fewer strains significant, but
that our p-values do not increase monotonically as coverage
drops.

Table 2 shows the 39 strains detected by our method;
strains in red text are also included in the HMP results.
If a species is listed (not a strain) then this species has
no strains that have been sequenced, i.e., the species level
is effectively the strain level. We see that our method de-
tects strains/species that the HMP does not, but that
there are overlaps in the results (8/29 strains; 4/16 spe-
cies).

We verified that these results are independent of small
changes (±.02) in the value of q.
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Table 2. Significant strains using WYM-adjusted p-values <
0.01. Strains in red are also on the HMP list

Note that in Table 1 the best agreement between our
method and the HMP method is when both depth and
breadth are high (low p-value), and the worst agreement
are when both depth and breadth are low (high p-values).
That is, the confidence implicitly expressed by coverage in
the HMP findings is broadly consistent with our findings.
The discrepancies that remain have several plausible expla-
nations. For example, there are differences in the data pro-
cessing pipelines, e.g., the HMP filtered out low complexity
reads and used a different alignment algorithm (see the Pro-
tocols at http://www.hmpdacc.org/HMASM/ for complete
details [11]). The reference genome database used by the
HMP for read mapping comprised of all archaeal, bacterial,

lower eukaryote and viral organisms available in GenBank
as of 11/2009. They further processed their bacterial ref-
erences, removing highly redundant, non HMP-sequenced
reference genomes. In contrast we used the entire IMG 4.0
bacterial database. As a result their reference database was
broader than ours – by including non-bacterial genomes –
but also more restricted than ours – by post-processing and
limiting the bacterial reference genomes. We chose not to use
the HMP reference set, or further replicate their results, be-
cause our focus is on strain detection using the most recent
reference bacterial genome catalog. Nevertheless, a compar-
ison of our results with theirs is interesting because it sug-
gests that their true positive rate (i.e., the proportion of
strains they consider ‘present’ which are actually present)
will be high – but at the cost of a higher false negative rate.
By contrast our method likely has a lower true positive rate,
but a lower false negative rate. That is, if the HMP says a
strain is present it is likely to be present whereas if we say
a strain is not present it is likely not to be present.

5. DISCUSSION

We have developed a detection technique for bacteria on
the strain level using metagenomic NGS data. Our method
rests on using artificial point mutations or nucleotide flip-
ping to generate a reasonable null population. This requires
choosing an appropriate flipping rate as a tuning parame-
ter; we have suggested several ways to do this. We performed
a detailed simulation study examining the accuracy of our
method in terms of both true positive and true negative
rates of strain detection. Our approach leans toward con-
trolling the rate of false positives over controlling the rate
of false negatives. We have applied this method to data from
the Human Microbiome Project and compared our results
to theirs. The HMP findings were based on read coverage
(depth and breadth) whereas ours were based on p-values,
giving an assessment of significance and uncertainty as well
as detection. As noted previously [24] and [28] have done re-
lated work using marker genes for species identification. By
contrast our approach is purely statistical; it uses the whole
genome nucleotide information for bacterial detection at the
strain level. As a generality, marker genes at the strain level
are not available so the [28] approach, for instance, cannot
yet be applied.

The results from the two approaches (ours and HMP)
have some overlap, particularly for strains with higher se-
quencing depth, although overall our findings are meaning-
fully different from those of HMP – strains they identify as
present we do not. We explain this mainly by differences
in the databases and tools used by the two approaches as
well as the intrinsic variability in the data. The major dif-
ferences in our pipeline versus the HMP pipeline include our
use of a different reference set, different aligner, and differ-
ent pre- and post-processing of reads. As a consequence, for
instance, if there is considerable genomic similarity among
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strains of the same species, different pipelines can detect
different strains.

To investigate the general performance of our method
under idealized circumstances we did a relatively extensive
simulation study. In this simulation the reference genomes
were ‘clean’ and the NGS data generated by Metasim was
‘clean’. This is seen for instance in the fact that the propor-
tion aligning in Fig. 1 was 100% for small q while it was only
47% for the real data in Fig. 7. Also, the reference genomes
for the simulation were single ‘finished’ files rather than col-
lections of files. The simulation study revealed that, roughly,
if our method says a reference genome is not present, then
very likely it is not present, i.e., the probability of a false
positive is low. On the other hand, the method seems to
sacrifice discrimination when a reference genome is present.
That is, the probability of a false negative is unfortunately
high. We attribute this to the tradeoff between false nega-
tives and false positives implicit in the selection of q. While
the selection of q implicitly takes false positives and false
negatives into account, it was not clear a priori how the two
sorts of errors would be weighted. That the probability of
true negatives is generally the largest of the four probabil-
ities merely means that our method is emphasizing speci-
ficity: Statements from our method of the form that a given
genome is not present are more reliable than statement to
the form that a given genome is present.

An interesting feature of the simulations that mimics the
real data analysis is the similarity in the distributions of the
adjusted p-values. This appears to be the result of the high
level of stability of the number of reads aligning (for given
q) over the flipped data sets. The implication of this is that
the distribution of adjusted p-values tends to concentrate at
either zero or one as seen in Fig. 3 and Fig. 9. The two solid
bars in Fig. 9 are more pronounced than the concentration
seen at the endpoints in Fig. 3 because a shorter, cleaner
reference list was used with the simulated data.

Another way to look at the WYM adjusted p-values is to
recall that, aside from the WYM adjustment, they are found
relative to the null constructed by choosing q and using the
flipping procedure. Hence, in a fundamental sense, all the
downstream inferences depend crucially on the construction
of the null. The consequence is that the probability of Type
II error is inflated, i.e., the probability of failing to reject
the null hypothesis that Cj is not in the population when
it is false seems to be generally larger than one would want
it to be. On the other hand, the probability of rejecting the
null when it’s true seems relatively low. This is reasonable
because when searching for pathogens initially we mostly
want to rule out possibilities that we are sure should be
ruled out, i.e., we want high probability of true negatives.
These two criteria – high true negative rate and high true
positive rate – conflict in our set up because doing better
with one means doing worse with the other. It is unclear how
to improve on this tradeoff in a generic procedure although
using more strain-specific biological information could im-
prove performance for known strains.

There are obvious ways to refine our approach. First,
we could remove strains that are not compatible with hu-
man samples and strains that have not been adequately se-
quenced, and add non-bacterial genomes such as viruses.
Second, we have not used some information on the read and
genome level. Some reads and genomic locations will be rel-
atively unique to a given reference and very informative (see
[29]), while other reads will map to many strains and species
and other locations will be similar among strains and hence
not be very informative. These reads and locations should
be weighted differently. Our use of fractional reads is a crude
way to deal with the non-uniqueness but undoubtedly bet-
ter techniques will become available as read uniqueness is
understood. Third, there may be higher level dependencies
that exist between bacterial strains and phages. The pres-
ence of phages, like plasmids (which we include), are impor-
tant in terms of biology and may aid in strain identifica-
tion. Fourth, if the alignments were perturbed rather than
the nucleotides or, more precisely, the perturbation of the
nucleotides could be done in such a way as to have a larger
effect on the variability of the number of reads aligning to
each genome, then the concentration of WYM adjusted p-
values at zero and one might be mitigated thereby giving
better performance. Finally, we emphasize that our method
applies to a single sample but the general approach could
extend to multiple samples or groups of samples.

APPENDIX

5.1 Bacterial reference sequences

456,865 genomic bacterial reference sequences, in FASTA
format, were procured from the Integrated Microbial
Genomes and Metagenomes (IMG, version 4.0) database
([15]). The 456,865 reference sequences accounted for
5,168 bacterial genomes (at strain level) which included
sequences from bacterial genomes and bacterial plas-
mids. The 5,168 genomic references were isolated by
relying on bacterial taxon names and identifiers obtained
from the Genome Browser at the IMG website (http://
img.jgi.doe.gov/cgi-bin/w/main.cgi?section=TaxonList&
page=taxonListAlpha&domain=Bacteria).

5.2 Metagenomic sample

A human metagenomic sample was obtained from the Hu-
man Microbiome Project ([7]). Human metagenome sample
SRS015072, obtained from a female participant of the HMP
Core Microbiome Sampling Protocol A (HMP-A) dbGaP
study, was downloaded from the HMP FTP site. The sam-
ple consisted of 495,256 paired-end, 100 bp reads (with an
average mate-distance of 81 bp) in illumina FASTQ format
(Fig. 11).

5.3 Reference sequence alignment

The HMP dataset (SRS015072) was aligned to the
456,865 bacterial references using the Bowtie2 ([12]) aligner.
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Figure 11. Paired-end reads depiction for the HMP
SRS015072 sample. Each mate in the fragment is 100 bp
long. There is an average or 81 bases from the end of the
left-mate to the start of the right-mate. On average, the

length of a fragment in the dataset was 281 bp.

Bowtie2 requires that the reference sequences be indexed so
that the reads can be efficiently aligned.

The bacterial genomic references were prepared for align-
ment using the bowtie2-build indexer program. The indexer
program was run with default values along with the -f flag
(fasta sequences). The Bowtie2 indexer program uses 32-bit
pointers to create the index that is used by the Bowtie2
alignment program. The 32-bit limitation creates a cap on
the number of characters (A,T,G,C) in a given index (about
232-1 characters are possible), but in practice the indices
created by Bowtie2 are smaller.

The bacterial references needed to be split into indices
that contained less that 4 billion characters each because of
the relatively large size of the single bacterial index (over
16 GB on disk). A custom PERL script was employed to
recursively split the index in half until the required index
size was achieved (Fig. 12). In the end, the 456,865 bacterial
references were split into 6 sub-indices, each in Bowtie .bt2
format.

Once the 6 indices were created, the Bowtie2 alignment
program was used to independently align the HMP metage-
nomic sample (SRS015072) to each of the 6 indices. Bowtie2,
used in local-alignment mode, was used to align the HMP
data using the following command:

bowtie2 --local -D 20 -R 3 -N 0 -L 20 i S,1,0.50 --time f x S

Samtools (0.1.18) ([13]) was then used to merge (samtools
merge) the results from each of the 6 indices into one results
file in standard .SAM format.

5.4 Flipped runs

Three hundred and fifty (350) flipped data sets were cre-
ated for each value of the flip rate q (.02, .04, .06, . . . , .30).
Each flipped run consisted of the following steps:

1. Flip the reads using a given value of q.
2. Align the flipped reads to the 6 indices using Bowtie2.
3. Post-process the alignment results using Samtools.
4. Convert SAM format to compressed BAM.

Figure 12. The IMG database had to be split into sub-indices
that met the requirements of the bowtie2-build indexer

software. 6 indices were created: 1.A, 1.B.i, 1.B.ii, 2.A, 2.B.i,
2.B.ii.

5. Re-head each BAM file using samtools reheader com-
mand.

6. Merge the resulting BAM files using samtools merge
command.

7. Sort the BAM file using samtools sort command.
8. Index the BAM file using samtools index command.

Flipping the reads is accomplished using a custom PERL
script. The software takes as input one file and one param-
eter: the input file is a set of reads in FASTQ format; the
input parameter is the target permutation rate (q) at which
the sample reads will be mutated/flipped. The software mu-
tates the sample reads by walking along the length of each
mate read, randomly drawing from a uniform distribution,
and comparing the result of the draw to the target flip rate.
If the result is less than the flip rate, then the nucleotide
is mutated. Nucleotides are randomly mutated with other
(non-self) nucleotides by randomly drawing from the re-
maining three nucleotides, and Chargaff’s base-pairing rules
are not observed in the mutation step. Once all the reads
have been flipped, they are outputted to disk in FASTQ for-
mat by the software, and used in the remaining steps of the
flipped run. Independent flipping steps were carried out for
each mate in the paired-end fragment.

After the 350 flipped runs are completed, their results are
collated using a custom PERL reporting script that takes
as input two (2) files and one (1) parameter: the first file
is a list of the references in the indices; the second file is
a FASTA-formatted file containing the reference sequences;
the parameter is the directory path in which the flipped
data sets are stored. The first file is used to vet the align-
ment results and identify which references had reads aligned
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to them; the second file is used to gather the length of the
reference sequences. The reporting scripts summarize the
fractional read count mappings (see below) for each refer-
ence across the flipped data sets. These fractional counts are
used in the p-value calculations.

The mapping count for a given bacterial strain is calcu-
lated by taking into account the number of genomic refer-
ences a read fragment maps to. The contribution of each
read fragment rk to the count of the strain is calculated as
1/gk where gk is the number of references to which read
rk aligns. If a given read fragment maps to 10 reference se-
quences in the reference database, then the contribution of
that read to each of the references it mapped to is 0.1. These
fractional counts are collected for each reference sequence,
and in turn these fractional counts are aggregated into the
total fractional count of the parent strain, the strain that
the reference sequence belong to.

Not all reads that map to a reference sequence are used in
the fractional count calculation. Reads with many mappings
(high counts of reference database hits) are filtered out based
on their mapping quality (MAPQ) values. A custom PERL
script is used to filter out low MAPQ reads (<MAPQ of 10)
and parse the alignment mappings to generate the fractional
counts. These fractional counts are then used to compute the
p-values.

5.5 Metagenomic simulations

Simulated metagenomic datasets were used to gauge the
method. The MetaSim [25] simulator was employed to cre-
ate all simulated metagenomic samples, and all samples
were created using the graphical version of MetaSim, ver-
sion 0.9.1, running on OS X Mavericks, 10.9.5.

Reference DNA sequences for the simulated datasets were
downloaded from NCBI Genbank’s Bacteria genome repos-
itory (ftp://ftp.ncbi.nih.gov//genbank/genomes/Bacteria).
The Bacteria set in GenBank contains high quality com-
plete genomes that could be used in the simulations with-
out the worry of unassembled, incomplete ‘draft-quality’
genomes affecting the simulations. GenBank’s bacterial
genome repository contains 2,772 genome directories, rep-
resenting one strain per directory. All 2,772 genomes were
downloaded, and the whole genome set contained 5,179 se-
quences (chromosomes, plasmids) that were used in creating
the simulated metagenomic datasets. Note that the 2,772
bacterial strains represented 1,484 species, and 665 genera
classes. The total data footprint for the GenBank genomic
sequences was about 9.72 Gigabytes (GB) on disk.

The simulation procedure consisted of four (4) steps:

1. Selection of which strains of bacterial genomes to use
in the simulations.

2. Creation of taxon profiles that specify strain abundance
values.

3. Execution and processing of the synthetic samples.
4. Assessment of results & benchmarking

A conditional population of 600 strains was randomly se-
lected from the 2,772 strains using a Python script that
employed the ‘random.choice()’ function from the ‘ran-
dom’ library from the Python Standard Library. Once these
600 strains had been selected, their sequences (in FASTA
format) were imported into MetaSim’s internal genome
database. The same Python script that selected the 600 ran-
dom strains for the conditional population also split them
into ten groups so each of the 600 strains was placed ran-
domly into one of the 10 groups. The goal in doing this
was to create ten separate metagenomic samples with a
known composition of 60 strains each. As before, the ‘ran-
dom.choice()’ function was used to randomly select the 60
strains for each group, and the conditional population list
was shuffled, using Python’s ‘random.shuffle()’, before each
group of 60 was selected.

MetaSim requires a ‘Taxon Profile’ that specifies the com-
position of the metagenomic sample to be simulated. The
profile defines the source genomes for creating the synthetic
NGS reads, along with their abundance values (number of
genome copies). The profile is text-based and tab-delimited,
with one line per genome, and uses the .mprf file-system
extension. A genome in the profile can be defined by ei-
ther its taxonomic name, or by its GenBank Identifier (GI)
number. In order to mitigate errors when matching FASTA
sequences to taxonomic names in the database, the taxon
profiles for MetaSim contain GI numbers. For each of the
ten groups of 60 strains, one MetaSim taxon profile was
created that contained the strain’s GI number and an abun-
dance value. The abundance values, defined by MetaSim as
the number of genome copies, was defined by an R script
that uses the untb [8] and vegan [22] libraries obtained
from CRAN, and snippets that have been incorporated into
the R package sads [21]. For each of the ten groups, the
‘fisher.ecosystem()’ function from untb was used to create
a Fisherian ecosystem of size 150,000 the desired number of
NGS reads per group. Each of the ten taxon profiles was
then used in MetaSim to create ten synthetic metagenomic
samples from the conditional population now residing in the
MetaSim internal genomic database. Each sample consisted
of 150,000, 100-nucleotide long, paired-end NGS reads in
FASTA format.

The genomic DNA sequences of the 600 strains in the
conditional population were uploaded to the cluster to be
used as the reference database in the alignment step. They
were indexed by Bowtie2 (using the ‘bowtie2-build’ indexer)
and because the combined size of the 600 strain nucleotide
sequences was about 1.83 GB, there was no need to split
the reference database index in shards like with the IMG
database. Each of the ten groups was then processed in the
same way as the HMP dataset, with the exception that in
the simulated runs only 200 permutations were created for
each value of the flipping rate q. The same scripts used in
the flipping and post-processing of the HMP dataset were
employed in processing of the simulated datasets.
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After a value of q had been selected and pvalues cal-
culated for each strain, a confusion matrix was created to
assess true-negative, false-negative, false-positive, and true-
positive rates. An R script was used to get these rates which
utilized the ‘confusion-matrix()’ function from the SDM-
Tools CRAN package [33].

5.6 Software availability

All software can be obtained at the Center for Computa-
tional Science’s Github repository, available at the following
URL: http://camilo-v.github.io/Metagenomics.

Available are all the scripts (python, perl, shell, R) for
the nucleotide flipping, permutations, counts, pvalues, and
visualizations. All source code will be released under the
GPL v.3 license.
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