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Single-sample SNP detection by empirical Bayes
method using next generation sequencing data

WELIE DING, QIANG KoU, XUEQIN WANG*, QIUYA XU, AND NA You*

The rapid development of next generation sequencing
technology is changing the way of biological research in
many aspects, which has become the most popular platform
for the genomic structural variation detection. In this pa-
per, we focus on the single-sample next generation sequenc-
ing data analysis, and propose a hierarchical structure to
model the dispersion of minor allele frequency in the genome
scale. The empirical Bayes method is employed to estimate
the hyper-parameters, and the minor allele is identified as
a sequencing error or heterozygous allele according to the
posterior probabilities. We suggest to leave the ambiguous
positions with moderate posterior probabilities ungenotyped
for better genotype-call error control. The performances of
our proposed method are investigated by simulations and a
real dataset.
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1. INTRODUCTION

The development of next-generation sequencing (NGS)
technology provides us an ultimately efficient way to learn
about the genomics at nucleotide level, which nowadays
has been widely used for DNA structural variation detec-
tion ([6, 9, 11]). In order to identify the difference between
the sample genome and a reference genome, the sample is
split into thousands of millions of small pieces for sequenc-
ing, and then the base-called pieces, called as reads, are
aligned to the reference genome to recover their locations
in the original sample genome. The structural variation de-
tection and other well known downstream analysis, such as
the genome-wise association study and gene regulation net-
work reconstruction, are then inferred based on the align-
ment data.

To this date, there has been many statistical methods
proposed for the structural variation identification, in par-
ticular for the single nucleotide polymorphism (SNP) detec-
tion such as SOAPsnp ([4]), SAMtools ([3, 2]) and GATK
([1]), for both of single-sample and multi-sample analysis.
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The Bayes model is widely used among these methods,
which estimates the sequencing error rate based on the base-
calling quality and mapping quality scores and then calls the
genotype according to the posterior probabilities with some
pre-specified prior distribution. For a particular base on the
aligned read, GATK estimates the sequencing error rate by
107%1Q where Q = min{B, M}, and B and M respectively
indicate the base-calling quality and mapping quality scores
of that base. The problem with this implementation is, be-
sides the arbitrary integration formula @), the sequencing
error rate determined by the quality scores may be not pre-
cise. It’s known that not only the chemical synthesis and
removal during sequencing, but also the NGS data analysis
pipeline are complex processes. Many factors during these
processes may contribute to the sequencing errors but not
be well considered and reflected by the quality scores, e.g.,
base-calling estimation bias, repetitive regions and sample
preparation errors ([13]). Besides, GATK sets the prior dis-
tribution to be fixed for all applications, which also limits
the flexibility and accuracy of GATK genotype-calls.

In order to better estimate the sequencing error rate,
many articles, e.g., [5, 12, 8, 7, 14], proposed to use the bi-
nomial model to account for the variations in the observed
alleles. However, almost all of such methods were proposed
and programmed for the multi-sample data analysis, where
the alleles on different positions were assumed to be inde-
pendent, and the empirical Bayes method was employed to
borrow information across different samples while estimat-
ing the sequencing error rate for each position. There are
only a few work ([8]) modelling the sequencing error rates
across different positions on the same genome. Although
theoretically it can be adapted in the single-sample case,
their program exactly sets the minimum number of samples
as 2.

In many situations, the single-sample genotyping and
SNP calling are of great interest, for instance in cancer
genome analysis or rare variants analysis. In this paper,
we focus on the single-sample genotyping and SNP call-
ing, and propose a hierarchical model to describe the dis-
persion of minor allele frequency in the genome scale. An
empirical Bayes method is employed to combine informa-
tion across different positions while estimating the hyper-
parameters. The genotype at each position is assigned ac-
cording to the posterior probabilities and SNPs are identi-
fied consequently. For the ambiguous positions with moder-
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ate posterior probabilities, we suggest to leave them ungeno-
typed rather than make any decisions. The proposed method
is implemented as R functions and wrapped in an R package
ebSNP, which is publicly available at http://cran.r-project.
org/web/packages/ebSNP /index.html.

The paper is structured as following. In section 2, an em-
pirical Bayes method for genotyping and SNP calling is in-
troduced. Its performances are investigated via simulations
and a real dataset in section 3. A short discussion is given
in section 4.

2. METHODS

For a diploid genome, at each position, the genotype is
either homozygous or heterozygous. If it is homozygous,
then only one of four nucleotides could be observed among
the alleles if there is no sequencing errors, and two if it is
heterozygous. But due to the sequencing errors, other nu-
cleotides also may appear at each position. Let n;a denote
the number of alleles with nucleotide A covering position ¢,
i=1,2,...,n, A € {A,C,G, T}, and G; = 0 or 1 indicate
the genotype at position ¢ is homozygous or heterozygous
respectively.

At each position, we only consider the first two most fre-
quent alleles, e.g., the major allele and the minor allele, and
discard the rest. The reason for this is, if G; = 0, only
the major allele is related to the genotype and the oth-
ers come out as sequencing errors, while if G; = 1, then
both of the major and minor alleles are genotype-related
and the rest are sequencing errors. Note that the sequenc-
ing error rate is supposed to be far smaller than 1/2, while
the heterozygous genotype is expected to show two alleles
with equal probabilities, so for the purpose of genotyping
and SNP calling, we only need to focus on the first two
most frequent alleles and identify whether the minor allele
comes out due to the sequencing error or heterozygous geno-
type.

We sort n;a, nic, nig, Ny in the descent order and
denote the first two by n;; and n;y respectively, where
N1 > ng. Let A;; indicate the nucleotide corresponding
to the allele frequency n;;, j = 1 and 2. The coverage
at position 7 is adjusted to be N; = n;; + n;2. Note that
n;y > N;/2. Given G; = 0, n;; is genotype-related, there-
fore we assume

n;1 ~ Binom(N;, 1 — p;),

where p; is the probability of observing a sequencing error
at position 7. While given G; = 1, n;; is the order statistic
max (X, N; — X), where X ~ Binom(N;,1/2).

Furthermore, we assume p; follows a Beta(a, ) distribu-
tion across the genome positions, where o and S are un-
known parameters and will be estimated by the empirical
Bayes method. Denoted by my = P(G; = 0), the probability
of a particular position bearing a homozygous genotype, the
model can be summarized as,
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G; ~ Binom(1,1 — mp),
Ni) B(N; —ni1 + o, ng + B)

P(Tli1|N¢,GZ‘ = 0) = <

ni1 B(a, B) 7
Ni 1\ Ni
P(’I’Li1|Ni,Gi = 1) = Q(n”) <§> 5

where B(a,b) is the Beta function with parameter a and
b. Taking G; as missing values, an EM algorithm is imple-
mented to get the estimates for unknown parameters. The
complete log-likelihood

I = Xn: {I(Gi - 0)(log P(nii|Ni,Gi = 0) + 1og7ro)
=1
+I(G; = 1)(log P(na|N;, Gs = 1) + log(1 — m))) }

where I(-) is the indicator function. Given the parameter

estimates from the kth iteration a®), %) and w(()k), the
(k 4+ 1)th E-step calculates
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P(ni1|Ni7 G’L = 07 a(k)7 6(k))7rl()k)

P(nia|N;, G = 0,a®), B0) 7l 4 o(Ney(LyNi(1 — )’

and the (k + 1)th M-step updates parameters as
n k+1
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Given initial values a(®), 8 and 77(()0), the above E-step
and M-step iterate until convergence, and then we get the
estimates for parameters, &, 8 and 7g.

Whether the genotype at position ¢ is homozygous or
heterozygous is determined by

gi=1- E(I(G,» — 0)|V;, nan, &, B,ﬁo).

If it’s homozygous, then the genotype at position 7 is A;1 A1,
and if it’s heterozygous, the genotype is A;; Ajo. In general,
as long as g; < 0.5, G; could be recognized as 0, and 1 other-
wise. But as known, if g; is nearby 0.5, for example, 0.45, al-
though it still could be taken as a homozygote, there also has
non-negligible probability to be called as a heterozygote. In-
ferring either genotype is dangerous. Therefore, in such sit-
uations, we suggest the researcher set the reasonable thresh-
olds to guard the accuracy, e.g., when g; < T1, G; is set to
be 0 and g; > T5, is set to be 1, while T7 < g; < Tb, is left
ungenotyped without any conclusion being made, marked
as NA for instance.



Table 1. Parameter settings and estimates in 6 simulated experiments. Standard deviation in parenthesis

N

Exp. o o B o & B 1 T
1 20 0.80 1 10 0.79(0.0049) 1.14(0.04) 12.25(0.5) 1.27 1.74
2 20 0.95 2 100 0.95(0.0021) 2.04(0.27) 102.32(13.79) 2.99 3.73
3 40 0.80 1 10 0.8(0.0045) 1.04(0.02) 10.74(0.31) 1.56 1.98
4 40 0.95 2 100 0.95(0.0021) 2.03(0.15) 101.83(7.59) 4.41 4.77
5 80 0.80 1 10 0.8(0.0044) 1.02(0.02) 10.37(0.23) 1.85 2.18
6 80 0.95 100 4000 0.95(0.002) 93.69(31.58) 3748.86(1269.14) Inf Inf

3. ANALYSIS RESULTS

3.1 Simulations

A series of simulations are done to investigate the per-
formances of our proposed method. By setting n = 10,000,
we vary N;, mo, @ and S in different simulation experiments.
For simplicity, within each experiment, we set the coverage
at each position NV; as a constant N and make 100 repli-
cates to get the means and standard deviations of parameter
estimates. In order to evaluate the genotype-call accuracy,
we define GFE as the proportion of positions that are ho-
mozygous but identified as heterozygotes, GE5 as the pro-
portion of positions that are heterozygous but recognized
as homozygotes, and GE as the proportion of total mis-
genotyped positions.

Firstly, the parameter estimation and genotype-call ac-
curacy of our proposed method are investigated, where
there are 6 experiments generated as listed in Table 1.
Since we only identify the homozygosity or heterozygos-
ity of the genotype in our proposed method, we present
r = —log,,(GE1 + GE,) with different thresholds Ty and T
in Table 1 to evaluate the actual genotype-call error, where
r1 was calculated when T} = T5 = 0.5 and 7y was obtained
when T} = 1 —T5 = 0.1. As seen in Table 1, 7 is well
estimated in each of those 6 experiments, and as the cov-
erage goes up, the estimation biases of & and 8 decrease
and their standard deviations become smaller. Meanwhile,
the loose threshold can help avoid mis-genotyping at the
ambiguous positions and improve the genotyping accuracy,
demonstrated by larger ro than r; as shown in Table 1. We
include experiment 6 with extremely large o and /3 values in
this simulation, to reflect the quite small sequencing error
rate which may occur in real applications, but possibly have
some arithmetic underflow problem in running our EM al-
gorithm. It happens due to the large value underflow in the
Beta function, but doesn’t have the significant effect on the
computation of g;, since as a or 8 goes to be larger, the
Beta(a, 8) density becomes more skewed, and after some
extent, the skewness will not change dramatically as o or j3
changing. The seemingly large estimation bias of & or f is
still acceptable. As seen from experiment 6, although a and
[ were not estimated precisely, they still performed perfectly
for genotyping.

The second simulation is conducted to compare the per-
formances of our proposed method to that of GATK, where

8 experiments with different parameter settings are gener-
ated, as shown in Figure 1. In the GATK default setting, the
nucleotides with mapping quality less than 10 or base-calling
quality less than 17 are excluded for analysis, resulting in the
sequencing error rate ranging from 10~! to 10~%. In order to
apply GATK, we assume @ is a constant across all of the po-
sitions and equals 10, 20, 30 or 40 respectively in each exper-
iment. Note that the original GATK assigns the prior proba-
bility for the reference homozygote to be 1—3e/2 and each of
the other nine possible genotypes to be €/6, where e = 0.001.
Since we only consider the two most frequent alleles here,
we modify the prior as P(reference homozygote) = 1 —3¢/2,
P(non-reference homozygote) = €/2 and P(heterozygote) =
€. In Figure 1, besides the GATK and our proposed method,
the Bayes classifier ([5]) with the true sequencing error
rates and prior distribution that is the same as GATK but
€ = 1 — my are also included for comparison.

Our proposed method outperforms GATK with less
genotype-call errors being caused. As shown in Figure 1,
with 77 = T, = 0.5, our method achieves the compa-
rable or even much higher —log;y GE than GATK with
four different @@ values. While the thresholds are set to be
Th =1-T5, = 0.1, —log,y GE increases and is consis-
tently higher than that of GATK with different @ values
across 8 experiments. The distance between the sequenc-
ing error rate which is estimated by @ and the truth de-
termines the genotype-call precision of GATK. As @ be-
comes larger, the sequencing error rate that GATK can
tolerate becomes smaller, which makes it more likely to
call the homozygote to be heterozygous. It’s shown in Fig-
ure 1, —log;y GE; decreases as () increasing from 10 to 40.
On the other hand, if GATK assigns a smaller () compar-
ing to the true sequencing error rate, it may call the het-
erozygote to be homozygous, as seen that —log,; GE5 in-
creases as () increasing. Unfortunately, as mentioned pre-
viously, the @ formula and quality scores may not be able
to well reflect the true sequencing error rate, resulting in
genotype-call errors using GATK. Different from GATK,
our method estimates the sequencing error rates and mg
from the alignment data, showing less dependence on @
formula and quality scores. Across 8 experiments in Fig-
ure 1, —log;y GE from our method is much closer to that of
Bayes classifier with true parameters than —log,; GE from
GATK.
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—~log1o(GE)

—logio(GE;)

—logio(GE>)

N | 40 80| 40| 80| 40| 80| 40| 80
o 0.8 0.95 0.8 0.95
(a,B) (1,10) (2,100)
Legend

Il Proposed method with T1=T,=0.5
Il Proposed method with Ty=1-T»=0.1
Il GATK with Q=10
Il GATK with Q=20
I GATK with Q=30
[ GATK with Q=40

Bayes classifier with true parameters

Figure 1. Observed genotype-call error rates in the second
simulation, which are presented in each experiment in the
order of our proposed method with threshold Ty = T» = 0.5,
proposed method with threshold Ty =1 — T = 0.1, GATK
with @ = 10, 20, 30 and 40, and Bayes classifier with true
parameters, as shown in the legend.

3.2 A real dataset

The genome of subject NA12878 ([10]) is well studied
in the 1000 Genome Project, whose alignment data could
be publicly downloaded from ftp://ftp-trace.ncbi.nih.gov/
1000genomes/ftp/technical /pilot2_high_cov_GRCh37_bams/
data/NA12878/alignment/NA12878.chrom20.JILLUMINA.
bwa.CEU.high_coverage.20100311.bam. For illustration, we
only retrieved the data on the first 3,000,000 positions of
chromosome 20 for genotyping and SNP calling.
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N unique: xy = 4414; x = 3998; y = 3965

Figure 2. Overlap of SNPs identified by our method and
recorded in the VCF file.

The frequencies of four alleles A, C, G and T at each
position were generated, and only the first two most frequent
alleles and their frequencies were saved for analysis. The
alleles frequency data were firstly screened to filter out the
positions who only carry one kind of allele, because they
don’t contribute to the sequencing error rate estimation and
it’s no doubt to genotype them as A;;A;1. Then, the data
on the rest of the 946,042 positions were analyzed using our
proposed method, resulting in 7y = 0.9963, & = 122.32 and
B = 3798.49.

Given T7 = Ty = 0.5, among 946,042 positions, 942,087
(99.58%) were genotyped to be homozygous and 3,955
(0.42%) were heterozygous. While given 77 = 0.01 and
T, = 0.99, there were 3,277 positions left ungenotyped.
Among them, 1,342 (40.95%) have coverage lower than 10
and the minor allele frequencies of the rest are between
17.39% and 18.18%, which is seemingly larger than the usual
sequencing error rate and also far lower than 0.5 of heterozy-
gous genotype, so we prefer genotyping them as NA, instead
of either homozygote or heterozygote. With 77 = 0.01 and
T, = 0.99, 3,388 positions which were genotyped as het-
erozygote, and 610 positions which were genotyped as ho-
mozygote but with the major alleles different from the ref-
erence alleles, were identified as SNPs by our procedure.

The SNPs of subject NA12878 found by 1000 genome
project using GATK were summarized in a VCF file,
which could be downloaded from ftp://ftp-trace.ncbi.
nih.gov/giab/ftp/data/NA12878 /variant_calls/NIST /NIST_
IntegratedCalls_12datasets_130517_HetHomVarPASS_VQSR
v2.15.vef.gz. It is shown that, within the region of 1 to
3,000,000 on chromosome 20, there are 5,102 SNPs, among
which 3,965 belong to the 946,042 positions which we
genotyped. Their overlap with SNPs identified by our
methods are shown in Figure 2. Among 416 GATK exclu-
sive SNPs, 352 (84.62%) are recorded as heterozygotes in
the VCF file, while we called 206 (49.51%) as homozygous
reference genotypes and 210 as NA. According to the
simulation results that the overestimated sequencing error
rates in GATK may lead the homozygotes to be called as
heterozygotes, it seems that our proposed method controls
the false heterozygous SNP calls, comparing to GATK. For



SNPs which are exclusively found by our method, although
422(93.98%) were genotyped as heterozygote, except 10
with coverage lower than 10, the minor allele frequencies on
the rest 412 positions varied from 18.67% up to 50%, highly
showing the heterozygous characteristics, especially 3/4 of
412 minor allele frequencies higher than 25.71% and 1/2
higher than 30%. In addition, our 27 exclusive homozygous
SNPs have the non-reference allele frequencies from 80%
up to 97.44%, with coverage from 5 to 77.

4. DISCUSSION

The development of NGS technology makes it possible
to study the genome structure efficiently, but as mentioned
earlier, the data analysis pipeline results in a variety of se-
quencing errors in the alignment data. How to measure the
sequencing error rate to identify true mutations from se-
quencing errors is challenging, especially when there is only
one single-sample data. The multiple-sample methods gave
us a clue to use the empirical Bayes method to combine in-
formation across samples to estimate the sequencing error
rate. Actually, borrowing information is more necessary in
single-sample case, since the data resource is more limited.
In this paper, we proposed an empirical Bayes algorithm to
borrow information across different positions to measure the
sequencing error rate in the genome scale, and then used it
for genotyping and SNP detection.

We chose the Beta distribution to model the sequencing
error rate since its domain is between 0 and 1. Other dis-
tributions, the mixture models as [8], or the heuristic algo-
rithms which could learn the distribution shape from data
may be alternative choices. Besides the parameters in the
Beta distribution, we also estimated the homozygous prob-
ability 7o from data, instead of using some arbitrarily fixed
prior probabilities as previous Bayes models, which is more
flexible and adaptive in real applications.
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