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A penalized likelihood approach for robust
estimation of isoform expression
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Ultra high-throughput sequencing of transcriptomes
(RNA-Seq) has enabled the accurate estimation of gene ex-
pression at individual isoform level. However, systematic bi-
ases introduced during the sequencing and mapping pro-
cesses as well as incompleteness of the transcript annotation
databases may cause the estimates of isoform abundances
to be unreliable, and in some cases, highly inaccurate. This
paper introduces a penalized likelihood approach to detect
and correct for such biases in a robust manner. Our model
extends those previously proposed by introducing bias pa-
rameters for reads. An L1 penalty is used for the selection
of non-zero bias parameters. We introduce an efficient algo-
rithm for model fitting and analyze the statistical properties
of the proposed model. Our experimental studies on both
simulated and real datasets suggest that the model has the
potential to improve isoform-specific gene expression esti-
mates and identify incompletely annotated gene models.

Keywords and phrases: Penalized likelihood, Robust es-
timation, RNA-Seq, Isoform expression.

1. INTRODUCTION

In eukaryotes, a single gene can often produce more
than one distinct transcript isoforms, through an important
cell mechanism called alternative splicing. Alternative splic-
ing can greatly enrich the diversity of eukaryote transcrip-
tomes (Wang et al., 2008), especially in developmental and
differentiation programs, and can contribute to disease when
it is dysregulated (López-Bigas et al., 2005). Study gene ex-
pression at specific transcript isoform level is therefore of
great importance and interest to biologists.

Ultra high-throughput sequencing of transcriptomes
(RNA-Seq) has enabled the accurate estimation of gene ex-
pression at individual isoform level (Wang et al., 2008). As
of today, modern ultra high-throughput sequencing plat-
forms can generate tens of millions of short sequencing
reads from prepared RNA samples in less than a day.
For these reasons, RNA-Seq has become the method of
choice for assays of gene expression. To analyze increasing
amounts of data generated from biological experiments, a
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number of statistical models and software tools have been
developed (Jiang and Wong, 2009; Trapnell et al., 2010;
Li and Dewey, 2011). For a review of the methods for tran-
script quantification using RNA-Seq, see Pachter (2011).

Although these methods have achieved great suc-
cess in quantifying isoforms accurately, there are still
many remaining challenging issues which may hinder
their wider adoption and successful application by biol-
ogists. Systematic biases introduced during the sequenc-
ing and mapping processes (Li, Jiang and Wong, 2010;
Hansen, Brenner and Dudoit, 2010; Roberts et al., 2011)
can cause the estimates of isoform abundances to be un-
reliable. Furthermore, recently there have been periods
of time where hundreds of new transcripts are discov-
ered every month (Pruitt et al., 2009; Harrow et al., 2012;
Karolchik et al., 2014), including occasional examples of
thousands of new isoforms being identified in a single
study (Salzman et al., 2012, 2013). These incomplete anno-
tations can also lead to unreliable estimates of isoform abun-
dances (Black Pyrkosz, Cheng and Titus Brown, 2013).

This paper introduces a penalized likelihood approach to
detect and correct for such biases in a robust manner. Bias
parameters are introduced for read abundance, and an L1
penalty is used for the selection of non-zero bias parameters.
We introduce an efficient algorithm for fitting this model and
analyze its statistical properties. Our experimental studies
on both simulated and real datasets show that transcript
estimates can be highly sensitive to including or omitting
parameters modeling read bias. Together, our results sug-
gest that this method has the potential to improve isoform-
specific gene expression estimates and improve annotation
of existing gene models.

2. A PENALIZED LIKELIHOOD APPROACH

2.1 The model

We adopt the notation and extend the model
in Salzman, Jiang and Wong (2011), which provides a flex-
ible statistical framework for modeling both single-end and
paired-end RNA-Seq data, including insert length distribu-
tions. To state the model, for a gene g with I annotated
distinct transcript isoforms, suppose that the sequencing
reads from g are sampled from J possible distinct read types.
A read type refers to a group of single-end reads that are
mapped to a specific position in a transcript in single-end
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sequencing, or a group of paired-end reads that are mapped
to a specific fragment in a transcript in paired-end sequenc-
ing (Salzman, Jiang and Wong, 2011). We use θ to denote
the I×1 vector representing isoform abundances in the sam-
ple and A to denote the I × J sampling rate matrix with
its (i, j)-th element aij denoting the rate that read type j is
sampled from isoform i. Given θ and A, we assume that the
J × 1 read count vector n, where nj denotes the number of
reads of type j mapped to any of the I isoforms, follows a
Poisson distribution

nj |θ,A ∼ Poisson

(
I∑

i=1

θiaij

)
.

The log-likelihood function is therefore

(2.1) l(θ;n,A) =

J∑
j=1

{
nj ln

(
I∑

i=1

θiaij

)
−

I∑
i=1

θiaij

}
,

where the term − ln(nj !) was dropped because it does not
contain θ. Model (2.1) is essentially a generalized linear
model with Poisson distribution and identity link function,
as well as constraints that θi ≥ 0 for all i. This model is iden-
tifiable when J ≥ I and A is full rank. It can be shown that
the log-likelihood function is concave in θ (Jiang and Wong,
2009) and the MLE can be estimated using either con-
strained Newton-Raphson or an EM algorithm.

In (Salzman, Jiang and Wong, 2011), the sampling rate
matrix A is a set of parameters, assumed to be a known
function of the sequencing library and the gene of inter-
est. For single-end RNA-Seq data, the simplest model is
to assume uniform sampling and let aij = N where N
is the sequencing depth (proportional to total number of
mapped reads) of the experiment if isoform i can generate
read type j or let aij = 0 otherwise. For paired-end RNA-
Seq data, an insert length model can be assumed such that
aij = q(lij)N if read type j can be mapped to isoform i with
insert length (fragment length) lij , where q(·) is the empir-
ical probability mass based on all the mapped read pairs.
Salzman, Jiang and Wong (2011) discusses these sampling
rate models in more details.

Although these simplified sampling rate models usu-
ally work well in practice, there are systematic bi-
ases introduced during the sequencing and mapping pro-
cesses which may cause biased estimates of the sampling
rates and consequently biased estimates of isoform abun-
dances. Several approaches have been developed to model
and correct for such biases (Li, Jiang and Wong, 2010;
Hansen, Brenner and Dudoit, 2010; Roberts et al., 2011).
However, completely removing sampling biases is almost im-
possible because the technical process of sequencing and
read mapping is often too complex to model. Including
all possible transcript isoforms (de novo identification) also
poses computational challenges and biases. Using all anno-
tated transcripts in the model, many times exceeeding 10 per

gene, can introduce non-identifiability of isoforms. However,
while the vast majority of human genes have multiple anno-
tated (and likely unannotated) transcripts, most cell types,
or single cells, express only a subset of annotated transcripts.

To explore statistical approaches that could improve tran-
script quantification with RNA-Seq, we present a flexible
model to account for all different kinds of biases in esti-
mated sampling rates. We assign a bias parameter βj to
each read type j and reparametrize βj as βj = ebj to con-
strain βj > 0. When βj = 1 (i.e., bj = 0), there is no bias
for read type j. The actual effective sampling rate for read
type j from isoform i now becomes a′ij = aijβj = aije

bj ,
and the log-likelihood function is now
(2.2)

l(θ, b;n,A) =

J∑
j=1

{
nj ln

(
I∑

i=1

θiaije
bj

)
−

I∑
i=1

θiaije
bj

}
.

Since the number of observations is J , which is smaller
than the number of variables I + J in model (2.2),
model (2.2) is not identifiable. To solve this problem, we
introduce a penalty p(b) on the bias parameters b and for-
mulate an L1-penalized log-likelihood

f(θ, b) = l(θ, b;n,A)− p(b)(2.3)

=

J∑
j=1

{
nj ln

(
I∑

i=1

θiaije
bj

)
−

I∑
i=1

θiaije
bj

}

− λ

J∑
j=1

|bj |

where λ > 0 is a tuning parameter. By choosing a large
enough λ, all bj ’s will be zero and model (2.3) will reduce to
model (2.1). By allowing some bj ’s to be non-zero, we will
still have an identifiable model and in the meanwhile allow
robust estimation of θ.

Introducing the L1 penalty shrinks b towards 0, conse-
quently inflates θ compared to fitting a model with sparse
but unbiased estimates of b. One way to reduce such bias in
the estimation of θ is to use a two-step approach for model
fitting: first fit the model with the L1 penalty, then fit the
model without the L1 penalty while retaining only non-zero
bj ’s as model parameters. Clearly, to avoid nonidentifiable
issues, the number of non-zero bj ’s must be smaller than or
equal to J−I, which can be achieved by increasing the tun-
ing parameter λ. The statistical properties of the two-step
approach is discussed in Section 2.3.

2.2 Optimization

In this section we develop an efficient algorithm for fitting
model (2.3), i.e., maximizing the L1-penalized log-likelihood
function f(θ, b).

Proposition 2.1. The L1-penalized log-likelihood function
f(θ, b) in model (2.3) is biconcave.
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Because f(θ, b) is biconcave, we use Alternative Concave
Search (ACS) to estimate θ and b, by alternatively fixing
one of them and optimizing for the other. The sequence of
function values generated by the ACS algorithm is monoton-
ically increasing and f(θ, b) is bounded from above (because
it is a penalized log-likelihood function), which guarantees
convergence of the ACS algorithm.

Algorithm 2.2. With b fixed, θ can be estimated with the
following EM algorithm

E-step: n̂
(k+1)
ij := E

(
nij |n,A, b, θ̂(k)

)
=

nj θ̂
(k)
i aij∑I

i=1 θ̂
(k)
i aij

M-step: θ̂
(k+1)
i =

∑J
j=1 n̂

(k+1)
ij∑J

j=1 aije
bj

Alternatively, θ can be estimated using the more efficient
Newton-Raphson algorithm. In our implementation, we only
execute one round of the EM iteration each time we optimize
θ with b fixed.

Proposition 2.3. With θ fixed, bj can be estimated using
the following closed-form formula

(2.4) b̂j = ln

(
1 +

Sλ(nj −
∑I

i=1 θiaij)∑I
i=1 θiaij

)

where Sλ(x) = sign(x)(|x| − λ)+ is the soft thresholding op-
erator, where (x)+ = max(x, 0).

For more efficient convergence, we use an analytical prop-
erty of values of θ̂ and b̂ which maximize f(θ, b):

Proposition 2.4. There is at least one set of θ̂ and b̂ which
maximize f(θ, b) such that median(b̂1, . . . , b̂J) = 0. Further-

more, under the assumption that b̂j ≥ 0 for all 1 ≤ j ≤ J ,

there must exist at least one j such that b̂j = 0.

Accordingly, after each iteration which solves (2.4), we

include a step which centers the b̂j ’s around their median,

i.e., b̂′j = b̂j −median(b̂1, . . . , b̂J).

2.3 Statistical properties

Several statistical properties of the two-step approach in-
troduced in Section 2.1 are provided in this section. First,
we state an intuitive interpretation of the procedure:

Proposition 2.5. Fitting model (2.3) using the two-step
approach introduced in Section 2.1 is equivalent to fitting
model (2.1) after removing all the observed nj ’s whose corre-

sponding b̂j’s are non-zero. In another word, the two model-
fitting steps essentially perform outlier detection and re-
moval, respectively.

This observation can be extended to prove that in the
case of I = 1, with an appropriately chosen λ, the two-
step procedure yields a consistent estimate of θ under the

assumption that bj ≥ 0 for all j. While I = 1 may ap-
pear to be a trivial case, in fact, this approach is equiv-
alent to considering a subset of the full model introduced
in Salzman, Jiang and Wong (2011) where each read is con-
sidered if and only if it can be generated by exactly one
isoform. Reasonable statistical power can be achieved with
this approach, and it is of relatively wide use by biologists.

For convenience, the proposition and proof of Proposi-
tion 2.6 are stated for the case where a1j = N , but this
assumption can be relaxed to allow a1j to be arbitrary.
Also, from the proof, it is clear that choosing λ larger than
(maxj nj)

1/2 also results in consistent estimates, but per-
haps unnecessarily sparse models.

Proposition 2.6. Under the assumptions that I = 1, λ =
(maxj nj)

1/2, a1j = N and bj ≥ 0 for all j, the two-step
approach yields a consistent estimate of θ.

3. EXPERIMENTS

3.1 Simulations

In this section, we use simulation to study our model in
various gene structures, relative isoform abundances, bias
patterns and sequencing depths. For each simulation repli-
cate, we estimate θ and b using three approaches as follows
and compare their estimation accuracies:

1. The conventional approach (Jiang and Wong, 2009;
Salzman, Jiang and Wong, 2011) with no bias correc-
tion (i.e., fix b = 0).

2. Our proposed one-step approach with bias correction
(i.e., without doing the second step of estimation θ in-
troduced in Section 2.1).

3. Our proposed two-step approach with bias correction.

Throughout the simulations, we choose λ = (maxj nj)
1/2

because of the consistency result (Proposition 2.6) we obtain
with this choice.

Example 3.1. We simulate the case that a gene has a single
annotated isoform (i.e., I = 1), 5 read types after collaps-
ing (i.e., J = 5, e.g., the gene has 5 exons). Suppose that
the sampling rate matrix A = NC, where C = (1, 1, 1, 1, 1)
are the relative sampling rates for the five exons (e.g., each
exon has the same length of 1,000 bp), and N is the rela-
tive sequencing depth (e.g., N = 10 in Table 1 means that
there are a total of 10M single-end reads sequenced from the
RNA-Seq experiment. We assume that the true parameters
are θ = 1 and b = (2, 0, 0, 0, 0)T .

For Example 3.1 we simulate 100 replicates where read
counts for each read type j (j = 1, . . . , 5) are simulated as
i.i.d Poisson r.v. with parameter θNCje

bj where bj is the
bias parameter for read type j, and report the average (and
standard deviation) of the estimation errors of θ in L2 dis-
tance in Table 1. We also report the average (and standard
deviation) of the number of bj ’s that are misidentified as zero
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Table 1. Estimation accuracy of Example 3.1. Average of 100 replicates, standard deviation reported in parentheses

Sequencing Depth No Bias Correction Bias Correction (1-step) Bias Correction (2-step) #Misidentified

10 1.32 (0.2) 0.24 (0.14) 0.13 (0.1) 0.03 (0.17)
100 1.26 (0.06) 0.07 (0.04) 0.04 (0.04) 0.09 (0.29)
1000 1.28 (0.02) 0.02 (0.01) 0.01 (0.01) 0.05 (0.22)

Table 2. Estimation accuracy of Example 3.2. Average of 100 replicates, standard deviation reported in parentheses

Sequencing Depth No Bias Correction Bias Correction (1-step) Bias Correction (2-step) #Misientified

10 3.78 (0.23) 3.41 (1.85) 3.02 (1.71) 0.13 (0.34)
100 3.76 (0.08) 1.82 (1.28) 1.4 (0.9) 0.01 (0.1)
1000 3.77 (0.03) 0.45 (0.32) 0.36 (0.26) 0 (0)

Table 3. Estimation accuracy of Example 3.3. Average of 100 replicates, standard deviation reported in parentheses

Sequencing Depth No Bias Correction Bias Correction (1-step) Bias Correction (2-step) #Misientified

10 76.8 (471.72) 1.22 (1.42) 0.93 (0.69) 2.17 (1.53)
100 7792.35 (75161.75) 2.56 (17.7) 0.41 (0.41) 2.2 (1.57)
1000 406.35 (1934.52) 0.42 (1) 0.18 (0.41) 2 (1.68)

vs. non-zero. Table 1 shows empirical results confirming our
theory: if some bj > 0, without bias correction, θ will not be
estimated consistently. While both one-step and two-step
approaches achieve consistent estimates of θ, the two-step
approach is more efficient. On average, we misidentify less
than one nonzero b’s.

Example 3.2. We simulate the case with I = 2, J = 6
and C = (1, 2, 1, 2, 3, 2; 1, 2, 0, 2, 3, 2), e.g., a gene with six
exons and two isoforms differ by the inclusion/exclusion of
the third exon. We assume that the true parameters are θ =
(6, 3)T and b = (−5, 0, 0, 0, 0, 0)T .

For Example 3.2 we simulate 100 replicates where read
counts for each read type j (j = 1, . . . , 6) are simulated as

i.i.d Poisson r.v. with parameter
∑2

i=1 θiNCije
bj where bj

is the bias parameter for read type j. The simulation and
estimation results for Example 3.2 are shown in Table 2.
The performance of the three approaches is similar to that
in Example 3.1.

Example 3.3. We now consider a case with I = 5, J = 20.
For each replicate of the simulation, we randomly generate
each element of C as cij = Iu1<0.10+Iu1>=0.1Uniform(0, 1),
where u1 ∼ Uniform(0, 1). We also randomly generate
each element of the true parameters θ and b as θi ∼
Exponential(1) and bj = Iu2<0.90 + Iu2>=0.9N(0, 3) where
u2 ∼ Uniform(0,1).

For Example 3.3 we simulate 100 replicates where read
counts for each read type j (j = 1, . . . , 20) are simulated as

i.i.d Poisson r.v. with parameter
∑5

i=1 θiNCije
bj where θi,

Cij and bj are a randomly generated expression level, sam-
pling rate and bias parameter as described above. The sim-
ulation and estimation results for Example 3.3 are shown in
Table 3. The performance of the three approaches is similar

to that in Examples 3.1 and 3.2. In particular, the approach
without bias correction introduces a huge estimation error
in some of the cases (e.g., when bj is large and aij is small).

3.2 Real data analysis

We evaluated our model using real RNA-Seq data
from the Gm12878 cell line generated by the ENCODE
project (ENCODE Project Consortium et al., 2012). A to-
tal of 415,630 single-end reads of 75 bp mapped to human
chromosome 22 are used in the analysis. We use RefSeq hu-
man annotation database (Pruitt et al., 2009) for our anal-
ysis. We ran both the conventional approach (without bias
correction) and our proposed one-step approach (with bias
correction) on this data set. 579 genes have estimated ex-
pression level ≥ 1 using the RPKM unit (Mortazavi et al.,
2008), and 65 of the 579 genes have at least 2-fold change
in their gene expression estimates between the approaches
with and without bias correction.

MED15 is an example of a gene with greater than 2-
fold change in the total expression of two isoforms with and
without bias correction, shown in Figure 1. The center part
of the gene has a much greater read density than the 5’
or 3’ ends. Without bias correction, MED15’s expression is
estimated as 1487.11 RPKM (with the two isoforms esti-
mated as 54.89 RPKM and 1432.22 RPKM, respectively).
Our bias correction approach identifies this bias and down-
weights the contribution of reads from the center part of
the gene. Consequently, it estimates the gene expression as
702.52 RPKM (with the two isoforms estimated as 53.65
RPKM and 648.87 RPKM, respectively). Another example
(IGLL5) is also shown in Figure 1. Many other genes also
show a similar pattern of biases.

The observed biases in these genes could be due to map-
ping artifacts, or preferential amplification of portions of the

440 H. Jiang and J. Salzman



Figure 1. Visualization of RNA-Seq reads mapped to the genes MED15 and IGLL5 on human chromosome 22 in CisGenome
Browser (Jiang et al., 2010). From top to bottom for each gene: genomic coordinates, gene structure where exons are

magnified for better visualization, coverage of mapped reads. Reads are 75 bp single-end.

gene during RNA-Seq library preparation. Further investi-
gation, including experimental testing may be required to
determine if either of these explanations for increased read
density are explanatory. Another explanation could be that
the gene model used for our experiment, which includes just
two isoforms, is incomplete. For example, the observed in-
creased read density could be due to expression of other
isoforms of MED15 that include these regions.

4. DISCUSSION

In this paper we choose λ = (maxj nj)
1/2, which seems

to work reasonably well with both simulated and real data
and which we have shown to produce consistent estimates of
θ under reasonable assumptions. We believe that more re-
search on statistical properties of different choices of λ may
lead to improvement of our model in applied settings. For
example, we plan to evaluate a standard approach of choos-
ing λ by cross-validation, although it comes at the cost of
more intensive computation. Also, as our proof of consis-
tency shows, choosing values of λ larger than (maxj nj)

1/2

will also yield consistent estimators of θ under the regime
analyzed in Proposition 2.6.

To implement our proposed model, because J (the num-
ber of distinct read types) is usually very large, especially
for paired-end RNA-Seq data, we adopt the collapsing tech-
nique introduced in Salzman, Jiang and Wong (2011) and
merge read types of proportional sampling rate vectors into
read categories (which are minimal sufficient statistics of the
model). For instance, in our simulations we group read types
from the same exon as read categories. This does not change
the model (2.3) except that j now represents a read cate-
gory rather than a read type. Therefore, in this paper the
terms read type and read category are used interchangeably.
Salzman, Jiang and Wong (2011) also introduced another
data reduction technique which ignores all the read cate-
gories with zero read counts by introducing an additional
term with the total sampling rates for each isoform wi =∑J

j=1 aij . In this case, the log-likelihood function becomes

(4.1) l(θ;n,A,w) =
∑
nj>0

{
nj ln

(
I∑

i=1

θiaij

)}
−

I∑
i=1

θiwi.
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For simplicity, we do not discuss model (4.1) in this paper
but our approach easily extends to deal with model (4.1).

From (2.4), it is apparent that larger nj ’s are relatively
less affected by the soft thresholding operator than smaller
nj ’s. Intuitively, the proposed approach works better when
the read categories are of similar group sizes. In our real data
experiment, we collapsed reads into exons and junctions to
roughly fulfill this condition, and simulation demonstrates
that our proposed approach is not very sensitive to how
collapsing is performed. An alternative approach is to use
nj as the weight for the corresponding bj , i.e., by letting

p(b) = λ
∑J

j=1 nj |bj |. All the statistical properties and opti-
mization techniques introduced in the paper can be adapted
to this new penalty function with only minor modifications.
In simulations (results not shown here), this new penalty
function does not perform noticeably better than the cur-
rent penalty function. There may be advantages and dis-
advantages to increase penalties for biases corresponding to
larger nj ’s.

Although the two-step approach appears to be slightly
more efficient than the one-step approach in our simula-
tions, it has several critical drawbacks: 1) It requires an
increase in computation up to a factor of two; 2) It may
introduce a non-identifiable issue in the second step of es-
timation when the number of nonzero b’s identified in the
first step of estimation is large; and 3) It makes parameter
estimates sensitive to λ. Therefore, we use the one-step ap-
proach in our real data experiment and we plan to study the
two-step approach in more detail in future work.

The example of MED15 highlights another use of fitting
bias parameters. First, in the presence of unannotated iso-
forms of a gene, correcting for bias in read sampling may be
correcting for real biological confounding. In such scenarios,
simulation suggests that correcting for bias improves model
fit and quantification conditional on the gene models used
for the study. For example, the two transcripts of MED15
in Figure 1 are probably more realistically estimated by
our bias-corrected model. In addition, screening genes with
large estimated bias parameters may be a tool for identify-
ing unannotated transcripts or incomplete models used in
the mapping step.

Finally, the approach introduced in this paper is adapted
and stated for the isoform expression estimation problem,
which is essentially a Poisson regression model with iden-
tity link function. Similar ideas have been proposed re-
cently for linear regression (She and Owen, 2011), logis-
tic regression (Tibshirani and Manning, 2013) and unsuper-
vised learning (Witten, 2013). We believe that it may be pos-
sible to generalize our approach to other models and other
practical applications may exist as well.
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APPENDIX A. APPENDIX SECTION

Proof of Proposition 2.1.

f(θ, b) =
J∑

j=1

{
nj ln

(
I∑

i=1

θiaije
bj

)
−

I∑
i=1

θiaije
bj

}

−λ

J∑
j=1

|bj |

=

J∑
j=1

{
nj ln

(
I∑

i=1

θiaij

)}
+

J∑
j=1

njbj

−
J∑

j=1

I∑
i=1

θiaije
bj −

J∑
j=1

λ|bj |

where njbj and −λ|bj | are concave, nj ln(
∑I

i=1 θiaij) is con-

cave because −
∑I

i=1 θiaij is concave and ln(·) is concave
and non-decreasing, and −θiaije

bj is biconcave because both
θi and ebj are convex.

Proof of Proposition 2.3. Fixing θ, since the L1-penalty is
decomposable, f(b) can be written as the sum of J terms

f(b) =
∑J

j=1 fj(θ, bj), where

fj(bj) = nj ln

(
I∑

i=1

θiaije
bj

)
−

I∑
i=1

θiaije
bj − λ|bj |

= njbj + nj ln

(
I∑

i=1

θiaij

)
− ebj

I∑
i=1

θiaij − λ|bj |

Therefore, bj = argmaxbj fj(θ, bj). Note that the second
term of fj(bj) does not contain bj . Since | · | is non-
differentiable, we take the subdifferential of fj at bj

∂fj(bj) = nj − ebj
I∑

i=1

θiaij − λsj

where sj = sign(bj) if bj �= 0 and sj ∈ [−1, 1] if bj = 0. It
can be verified that (2.4) is the solution to the equation of
∂fj(bj) = 0.

Proof of Proposition 2.4. Suppose θ̂ and b̂ are such that
(θ̂, b̂) = argmax(θ,b) f(θ, b). Let b̂

′
j = b̂j −m and θ̂′i = θ̂ie

m,

where m = median(b̂1, . . . , b̂J), then

f(θ̂′, b̂′) =

J∑
j=1

{
nj ln

(
I∑

i=1

θ̂′iaije
b̂′
j

)
−

I∑
i=1

θ̂′iaije
b̂′
j

}

−λ

J∑
j=1

|b̂′j |
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=
J∑

j=1

{
nj ln

(
I∑

i=1

θ̂ie
maije

b̂j−m

)

−
I∑

i=1

θ̂ie
maije

b̂j−m

}
− λ

J∑
j=1

|b̂j −m|

=

J∑
j=1

{
nj ln

(
I∑

i=1

θ̂iaije
bj

)
−

I∑
i=1

θ̂iaije
b̂j

}

−λ

J∑
j=1

|b̂j −m|

≥
J∑

j=1

{
nj ln

(
I∑

i=1

θ̂iaije
b̂j

)
−

I∑
i=1

θ̂iaije
b̂j

}

−λ

J∑
j=1

|b̂j |

= f(θ̂, b̂)

That is, θ̂′ and b̂′ maximizes f(θ, b) with

median(b̂′1, . . . , b̂
′
J) = 0. Under the assumption that

b̂j ≥ 0 for all 1 ≤ j ≤ J , equality holds in the above

derivation only if at least one b̂j = 0.

Proof of Proposition 2.5. Without loss of generality, assume
b̂j �= 0, (j = 1, . . . , k) and b̂j = 0, (j = k + 1, . . . , J) after
the first step of model fitting with the L1 penalty. In the
second step of model fitting without the L1 penalty, we have
(θ̂, b̂) = argmax(θ,b) f(θ, b), where

f(θ, b)

=

k∑
j=1

{
nj ln

(
I∑

i=1

θiaije
bj

)
−

I∑
i=1

θiaije
bj

}
(A.1)

+
J∑

j=k+1

{
nj ln

(
I∑

i=1

θiaij

)
−

I∑
i=1

θiaij

}
.

Solving

∂f(θ, b)

∂bj
= nj −

I∑
i=1

θiaije
bj = 0

we have

(A.2) bj = log

(
nj∑I

i=1 θiaij

)
.

Plugging (A.2) into (A.1), we have

f(θ, b) =
k∑

j=1

(nj lnnj − nj)

+

J∑
j=k+1

{
nj ln

(
I∑

i=1

θiaij

)
−

I∑
i=1

θiaij

}

therefore θ̂ = argmaxθ f
′(θ) where

f ′(θ) =
J∑

j=k+1

{
nj ln

(
I∑

i=1

θiaij

)
−

I∑
i=1

θiaij

}

is exactly the log-likelihood after removing all the observa-
tion nj ’s whose corresponding bj ’s are non-zero.

Proof of Proposition 2.6

Without loss of generality, throughout this section, as-
sume k and J are fixed with 1 < k < J and

b1 = b2, . . . , bk = 0 < bk+1 ≤ bk+2 ≤ . . . bJ .

The key to the proof of Proposition 2.6 is the following
Lemma:

Lemma A.1 (Main Lemma). As N → ∞,
1b̂j=0 for some k<j≤J → 0 a.s.

The proof requires the following:

Lemma A.2 (Rearrangement inequality). For any 1 ≤
i, j ≤ J with ni < nj, if θ̂, b̂ maximize (2.3), b̂i ≤ b̂j.

Proof of Lemma A.2. The proof is by contradition. Suppose
that the likelihood (2.3) is maximized and for some i and

j with ni < nj , b̂i > b̂j . Let τ be the transposition (i, j).
Then, the rearrangement inequality implies that f(θ, b) <
f(θ, bτ ).

Lemma A.3.
∑

i,j i≤k,k<j≤J 1(ni > nj) → 0 a.s.

Proof of Lemma A.3. If i ≤ k and k < j, the CLT implies

1(ni > nj) → 0 a.s.

as N → ∞ which completes the proof since J is finite.

Lemma A.4. Let

Ω = {
∑
i≤k

1(|ni −Nθ(1 + ebk+1)| > max
k<j≤J

√
nJ )}

∩ {
∑

i,j i≤k,k<j≤J

1(ni < nj)}.

Then, Ω → 1 a.s.

Proof of Lemma A.4. Since n1 = Po(Nθ), and bk+1 > 0,
the CLT and Lemma A.3 imply Ω → 1 a.s.

Proof of Lemma A.1. The proof is by contradiction. As
above, the dependence of the point estimates of parameters
N is repressed.

Suppose

1
b̂j=0 for some k < j ≤ J i.o.
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Since J is not growing with N , without loss of generality,
we can assume that for a fixed set A ⊂ {k + 1 . . . J},

∪j∈A1{b̂j=0} i.o.

Then, Lemma A.4 implies that

∪j∈A1{b̂j=0} i.o. on Ω.

Let Ωi denote the infinite subsequence of events where

∪j∈A1{b̂j=0}

On the events Ωi, Proposition 2.5 implies that

θ̂ → θ(1 +
∑
j∈A

ebj ).

Therefore, on Ωi, for all j with 1 ≤ j ≤ k, Lemma A.4
implies

b̂j = ln

(
1 +

Sλ(nj − θ̂N)

θ̂N

)
> 0

Now Lemma A.2 and Lemma A.4 imply that on Ωi, the
MLE must satisfy b̂i > 0 for all 1 ≤ i ≤ J , which contradicts
Proposition 2.4.

Proof of Proposition 2.6. Lemma A.1 states that as N →
∞,

1b̂j=0 for some k < j ≤ J → 0 a.s.

On the complement of this event, Proposition 2.5 implies
θ̂ → θ a.s.

Received 1 October 2013
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López-Bigas, N., Audit, B., Ouzounis, C., Parra, G. and Guigó, R.

(2005). Are splicing mutations the most frequent cause of hereditary
disease? FEBS Lett 579 1900–1903.

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and
Wold, B. (2008). Mapping and quantifying mammalian transcrip-
tomes by RNA-Seq. Nat Methods 5 621–628.

Pachter, L. (2011). Models for transcript quantification from RNA-
Seq. ArXiv e-prints.

Pruitt, K. D., Tatusova, T., Klimke, W. and Maglott, D. R.

(2009). NCBI Reference Sequences: current status, policy and new
initiatives. Nucleic Acids Res 37 D32–D36.

Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and
Pachter, L. (2011). Improving RNA-Seq expression estimates by
correcting for fragment bias. Genome Biol 12 R22.

Salzman, J., Jiang, H. and Wong, W. H. (2011). Statistical modeling
of RNA-Seq data. Statistical Science 26 62–83. MR2849910

Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O.

(2012). Circular RNAs Are the Predominant Transcript Isoform
from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE
7 e30733.

Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. and
Brown, P. O. (2013). Cell-Type Specific Features of Circular RNA
Expression. PLoS Genet 9 e1003777.

She, Y. and Owen, A. B. (2011). Outlier detection using nonconvex
penalized regression. Journal of the American Statistical Associa-
tion 106. MR2847975

Tibshirani, J. andManning, C. D. (2013). Robust Logistic Regression
using Shift Parameters. arXiv preprint arXiv:1305.4987.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A.,
Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J.

and Pachter, L. (2010). Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nat Biotechnol 28 511–515.

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L.,
Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B.

(2008). Alternative isoform regulation in human tissue transcrip-
tomes. Nature 456 470–476.

Witten, D. M. (2013). Penalized unsupervised learning with outliers.
Statistics and its Interface 6 211. MR3066686

Hui Jiang
Department of Biostatistics
Center for Computational Medicine and Bioinformatics
University of Michigan
Ann Arbor, MI 48109
USA
E-mail address: jianghui@umich.edu

444 H. Jiang and J. Salzman

http://www.ams.org/mathscinet-getitem?mr=2849910
http://www.ams.org/mathscinet-getitem?mr=2847975
http://www.ams.org/mathscinet-getitem?mr=3066686
mailto:jianghui@umich.edu


Julia Salzman
Department of Biochemistry
Stanford Cancer Institute
Stanford University
Stanford, CA 94305
USA
E-mail address: julia.salzman@stanford.edu

A penalized likelihood approach for robust estimation of isoform expression 445

mailto:julia.salzman@stanford.edu

	Introduction
	A penalized likelihood approach
	The model
	Optimization
	Statistical properties

	Experiments
	Simulations
	Real data analysis

	Discussion
	Acknowledgements
	Appendix section
	References
	Authors' addresses

