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With the advent and development of CLIP-seq technolo-
gies, a growing number of CLIP-seq experiments are be-
ing performed to identify the targets of RNA-binding pro-
teins and understand the regulation mechanism of these
proteins. Although broad similarities exist between CLIP-
seq and ChIP-seq, statistical methods developed to identify
binding sites from ChIP-seq data are not directly applica-
ble to CLIP-seq data because of some differences between
the two technologies. First, transcript abundance has a large
impact on CLIP-seq results, and needs to be accounted for
when analyzing CLIP-seq data. Second, mutations near the
binding sites from CLIP-seq data offer valuable informa-
tion that can be incorporated in analysis. Other differences
arise from the ability of RNA to form complex secondary
structures and from many other technical aspects of the two
purification protocols. To date, no systematic studies have
been conducted to investigate the general statistical proper-
ties of CLIP-seq data, the merits of including RNA-seq as a
matching control, and the performance of different binding
site identification methods for CLIP-seq data. In this study,
we performed a comprehensive evaluation of various statis-
tical issues in using CLIP-seq data to identify RNA-protein
binding sites. We demonstrate the value of RNA-seq data
in background estimation and peak calling. We show that
the large dispersion in CLIP-seq data compared to ChIP-
seq data is the main reason for the difficulty in peak calling
in the former. Using both real and simulated data, we also
show the importance of biological/technical replicates and
of combining mutation and peak analysis to accurately iden-
tify binding sites from CLIP-seq data.

1. INTRODUCTION

Nucleic-acid (DNA and RNA) binding proteins play a
crucial role in gene expression regulation. The identifica-
tion of the full spectrum of DNA or RNA binding sites
of these proteins is necessary to fully characterize their bi-
ological roles. ChIP-seq has been widely and successfully
used in DNA-binding protein studies and many computa-
tional methods have been developed to identify binding sites
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from ChIP-seq data (Kharchenko, Tolstorukov et al. 2008,
Zhang, Liu et al. 2008, Rozowsky, Euskirchen et al. 2009,
Kuan, Chung et al. 2011). Similarly, CLIP (crosslinking
and immunoprecipitation) coupled with high throughput se-
quencing (also called HITS-CLIP) facilitates the identifica-
tion of binding sites for RN A-binding proteins (Ule, Jensen
et al. 2005, Wang, Tollervey et al. 2009, Murigneux, Sauliere
et al. 2013). For HITS-CLIP, protein and bound RNAs are
crosslinked by exposure to UV light. The resulting covalent
bonds allow very stringent immunoprecipitation conditions.
The isolated RNA fragments are then subjected to reverse
transcription and ¢cDNA sequencing. In addition to HITS-
CLIP, there are other types of CLIP data generated from
different protocols, such as PAR-CLIP (Hafner, Landthaler
et al. 2010) and iCLIP (Konig, Zarnack et al. 2011). Be-
cause the CLIP data generated from each protocol have
their unique features, we will focus on HITS-CLIP in this
article, and the term CLIP-seq refers to the sequencing data
generated from HITS-CLIP experiments for the rest of the
article.

Although CLIP-seq and ChIP-seq data are generated by
sequencing RNA and DNA co-purified with proteins, di-
rectly applying ChIP-seq data analysis methods to CLIP-
seq datasets is neither suitable nor efficient for four main
reasons. First, ChIP-seq data have relatively uniform and
random distribution of background tags, so the binding re-
gions can be detected with excess tags compared to other
genomic regions. In contrast, the tag counts are much more
variable in CLIP-seq data because its read count is not only
related to protein binding (or affinity of protein binding),
but also strongly correlated with the transcript abundance.
As a result, some true binding sites may not have high read
counts if they fall within transcripts that are expressed at
low levels. Therefore, the ChIP-seq binding site identifica-
tion methods assuming uniform background may perform
poorly in the identification of binding sites for CLIP-seq
data. Second, the potential binding regions for CLIP-seq are
spatially much more restricted than those for ChIP-seq be-
cause CLIP-seq only identifies protein binding on coding or
non-coding transcribed regions. However, ChIP-seq binding
site identification methods assume that binding sites could
be identified in any positions on the genome and as a re-
sult, the protein binding site prediction using these methods
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could be suboptimal for CLIP-seq. Third, mutations (sub-
stitutions, deletions, insertions) occur at UV cross-linking
sites (usually corresponding to the binding sites) in CLIP-
seq data (Kishore, Jaskiewicz et al. 2011, Zhang and Dar-
nell 2011). Unlike formaldehyde-induced cross-linking used
in ChIP, UV cross-linking is not reversible by heat. When
the protein is digested by proteinase K, incomplete diges-
tion leaves amino acid residues on the RNA, which affects
fidelity as reverse transcriptase reads through the fragments.
As a result, some mutations may be introduced exactly
where the intermolecular contacts have taken place at the
binding sites. Hence, cross-linking induced mutations are
a unique feature in CLIP-seq, which could potentially im-
prove the spatial resolution of protein binding site identifica-
tion. Fourth, in ChIP-seq, sequencing of both DNA strands
constructs a pair of peaks of reads on forward and reverse
strands (Park, 2009) and such peak pairs help pinpointing
binding sites. In contrast, CLIP-seq delivers strand specific
sequences that result in a single peak of reads on the strand
which RNA is transcribed from. Hence, the ChIP-seq bind-
ing site identification methods based on peak pair approach
are not applicable to CLIP-seq.

Because of the distinct features of CLIP-seq data, CLIP-
specific computational methods are required to gain more
accurate binding site identification. However, the effects of
these unique features of CLIP-seq data on protein binding
site identification are not fully investigated yet. To more ef-
fectively facilitate the design of binding site identification
methods for CLIP-seq, it is necessary to conduct systematic
analyses to understand the difference of statistical proper-
ties between CLIP-seq and ChIP-seq and explore statistical
reasons for their differences.

Meanwhile, using a matching control sample is an effec-
tive way to reduce false positives and false negatives in bind-
ing site identification. In ChIP-seq, there is a general con-
sensus on the choice of matching control samples and the
protocols to generate them (Park 2009, Landt, Marinov et
al. 2012). In contrast, although the background levels are
highly variable in CLIP-seq data, it is still experimentally
challenging to generate appropriate controls (Ule, Jensen et
al. 2005, Murigneux, Sauliere et al. 2013). Because CLIP-seq
data have been found to be correlated with transcript abun-
dance, RNA-seq data have been proposed as possible control
for CLIP-seq (Darnell 2010). However, the advantage of in-
cluding RNA-seq as control for CLIP-seq data analysis has
not been thoroughly studied.

In this study, we conducted a comprehensive investiga-
tion of statistical aspects of binding site identifications using
CLIP-seq data. First, we considered background modeling
for CLIP-seq data. Second, we evaluated the performance
of binding site identification methods designed for CLIP-
seq. Third, through the analysis of simulated CLIP-seq and
ChIP-seq data, we compared the performance in binding site
identifications from these two data types, and investigated
possible reasons for their different performances. We also
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studied the merit of including RNA-seq data as matching
controls.

2. METHODS

2.1 Data preprocessing
2.1.1 CLIP-seq datasets

To study the statistical aspects of binding site identi-
fications using CLIP-seq data, we generated an in-house
CLIP-seq dataset for protein LIN-28 from C. elegans with
high coverage. We also generated a corresponding RNA-
seq dataset. (Details about data preparation/generation
can be found in Supplementary Methods section in on-
line supplement http://www.intlpress.com/SII/p/2015/8-
4/SII-8-4-CHEN-supplement.pdf.) The RNA-binding pro-
tein LIN-28 is an important regulator of proper temporal
succession of several developmental events in C. elegans.
The reasons we chose this pair of CLIP-seq and RNA-seq
datasets are two folds. First, LIN-28 is known to recog-
nize a ‘GGAG’ motif in a sequence-specific manner to reg-
ulate target mRNAs or miRNAs (Wilbert, Huelga et al.
2012, Mayr and Heinemann 2013). Compared to CLIP-seq
datasets studying Ago or Ago-like proteins that bind to sev-
eral different motif seeds (Chi, Zang et al. 2009), the rela-
tively unique motif pattern of LIN-28 provided more well-
defined ground truth to assess binding site identification
performance. Second, since both CLIP-seq and RNA-seq
datasets were generated from the same biological samples,
these RNA-seq datasets allowed us to evaluate the effect of
taking RNA-seq data as a matching control for CLIP-seq
data in a more unbiased way. Both CLIP-seq and RNA-seq
datasets have two replicates. Since replicates are highly re-
producible, we only present the results from CLIP-seql and
RNA-seql for the rest of the article.

Reads from both CLIP-seq and RNA-seq experiments
were mapped to the C. elegans genome version WS190/ce6
using Novoalign (http://www.novocraft.com/) with param-
eters -F ILMFQ -t 85 -1 25 -s 1 -0 SAM -r None’.
Novoalign was chosen for mapping reads because it can re-
move adapters at the ends and allow identification of sub-
stitutions and small indels in the reads. To exclude ambigu-
ous regions, we only considered reads mapped to exon re-
gions. Since most genes in the C. elegans RefSeq database in
the UCSC genome browser (http://genome.ucsc.edu/) lack
UTR annotation, we extended 200bp at 5’end and 750bp
at 3’end based on the known UTR length in Wormbase
(http://www.wormbase.org/) and the mapped tags nearby
genes (Suppl. Fig. 1). Then the overlapping exon regions
were concatenated to generate the target regions for subse-
quent analysis. Reads mapped to the exons were extracted
and summarized for each 150bp non-overlapping window.
Since the CLIP-seq data were generated from strand-specific
sequencing, it was summarized for the forward and reverse
strands separately. Two strands were combined to generate
the final count for RNA-seq data because the RNA-seq data
was generated from two-stranded sequencing.



2.1.2 ChlP-seq datasets

In this study, we also included a ChIP-seq dataset as a
comparison to CLIP-seq data. Because binding site identifi-
cation has been well studied for ChIP-seq data (Kharchenko,
Tolstorukov et al. 2008, Park 2009), we would gain a better
understanding of binding site identifications using CLIP-seq
data by comparing data features and identification results
between CLIP-seq data and ChIP-seq data. For fair com-
parisons, we selected ChIP-seq data for transcription factor
PHA-4 in C. elegans at the embryonic stage (Zhong et al.,
2010). Aligned read files were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo/) with acces-
sion number GSE14545. Reads were mapped using ELAND
and only uniquely mapped reads were used. Both ChIP and
input samples have two biological replicates and the repli-
cates for each sample were merged. The reads were extended
by 200bp to its 3’end and the number of reads was summa-
rized for each non-overlapping 200bp window.

2.2 Background estimation

The improvements of purification and sequencing tech-
nologies have greatly increased the specificity of DNA/RNA
pull-down in ChIP and CLIP experiments. However, a large
portion of unwanted nucleotide sequences, which are usu-
ally called background tags, are still observed in sequencing
data. One essential step to improve the sensitivity and speci-
ficity in binding site identification is to accurately distin-
guish protein binding enriched tags from background tags.
The distribution of background tags could be statistically
estimated using only ChIP-seq/CLIP-seq data or utilizing
both ChIP-seq/CLIP-seq data and their matching controls.
Currently, the optimal strategy to estimate background in
CLIP-seq is still under-investigated, especially for the case
that matching control experiments are utilized. Thus, we
considered various background models by fitting different
statistical models to the CLIP-seq dataset with and with-
out control experiments. We also conducted similar analysis
on the ChIP-seq dataset as a comparison.

2.2.1 Background estimation in CLIP-seq data without
matching control

Since the majority of the tag-mapped regions in
ChIP/CLIP experiments are non-binding regions, we could
use the immunoprecipitation experiment itself to estimate
the background tag distribution. In the case without con-
trol samples, we considered three models for background es-
timation: Poisson model, negative binomial model (gamma-
Poisson) and beta-binomial model. In our following discus-
sion, x is used to denote the number of reads in the window
under consideration.

Poisson model Poisson model is the first distribution to de-
scribe the background tags in ChIP-seq experiments and it is
still one of the most widely used statistical models (Zhang,
Liu et al. 2008, Rozowsky, Euskirchen et al. 2009, Zang,

Schones et al. 2009). In ideal protein binding DNA experi-
ments, it is expected the background tags would be almost
uniformly generated from the whole genome. In this sce-
nario, the generation of random background tags could be
described as a Poisson process with a single parameter Ay
along the genome (Equation 1). In contrast, in CLIP-seq
experiments measuring RNA binding, it is hard to expect
that such uniformity assumption holds because the amount
of background tags in each region would be related to the
abundance of the corresponding RNA in the cells. Despite
this, we still applied standard Poisson distribution to see
how well (or poorly) the Poisson model fit the CLIP-seq
data.

(1)
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Negative binomial/gamma-Poisson model If we use Pois-
son distribution to model tag counts, we implicitly assume
that variance equals to mean in the data. However, this as-
sumption usually does not hold in high throughput immuno-
precipitation experiments because of many factors in these
experiments, such as non-randomness and biases of sequenc-
ing on some regions. Violation to the Poisson assumption is
even more severe in other sequencing data types such as
RNA-seq because the read counts vary in different regions
due to transcript abundance. Such a violation to the Poisson
assumption is referred as overdispersion. Popular strategy to
handle overdispersion in the data is to allow more flexibil-
ity in the relationship between mean and variance in the
distribution. In gamma-Poisson model, it is assumed that
Poisson means follow a Gamma prior distribution instead of
considering it as a fixed constant. The marginal distribution
of gamma-Poisson model follows the negative binomial dis-
tribution (equation 2). Thus, negative binomial distribution
(equivalent to gamma-Poisson model) could provide better
fits to the over-dispersed datasets. In fact, it is commonly
used to model background tags in ChIP-seq data (Ji, Jiang
et al. 2008).

A ~ Gamma(a,b)
(X | A) ~ Poisson(\)
let w=ab,a=1/a

I(z+a™t) 1 v a ! 1/
(e 1) \p+a-? uw+ ol

= NegBin(z | p, o)

p(ac | Maa) =

Beta-binomial model Instead of using Poisson distribution,
uniformly distributed background tags can also be modeled
by binomial distribution with constant parameter across
the genome. However, the overdispersion problem still re-
mains because a single parameter determines both mean
and variance in binomial distribution. Similar to gamma-
Poisson model, we can handle overdispersion within the
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binomial framework by assuming that the success proba-
bility follows a Beta distribution (Skelly, Johansson et al.
2011, Zhou, Xia et al. 2011). This hierarchical beta-binomial
model (equation 3) provides more flexibility in modeling the
over-dispersed RNA expression data. It has been used to
model tag distributions in RNA-seq data (Zhou, Xia et al.
2011).

0 ~ Beta(a,b)
(X | 8) ~ binomial(n,0)
= X ~ Bb(a,b,n),
where probability mass function is given as

px | a,b) = (Z) B(x +;7(;1’;)x+b)

3)

2.2.2 Background estimation in CLIP-seq data with match-
ing control

One effective way to improve background estimation is
to collect data from matching immunoprecipitation control
experiments (Zhang, Liu et al. 2008, Kuan, Chung et al.
2011). For ChIP-seq data, input samples can be obtained
by following the same protocol used to generate ChIP sam-
ples except that DNA fragments are purified without im-
munoprecipitation (Park 2009). Input data essentially re-
flects contaminated tags pulled down by other proteins
and non-random background tags resulting from biases of
pulling-down, sequencing and mapping. Similar biases and
contamination also exist in CLIP-seq experiments. In prin-
ciple, the ideal matching control could be constructed by
removing the RNA binding protein of interest (for exam-
ple, as a consequence of genetic mutation), or, alternatively,
by using a non-specific antibody instead of one targeting
the RNA-binding protein. However, in practice, such con-
trol experiments often yield a very limited number of reads
to be sequenced and sequencing such a small amount of
reads is prone to result in significant biases in protein bind-
ing identification. Therefore, they are usually not the pre-
ferred controls in CLIP-seq studies (Ule, Jensen et al. 2005,
Murigneux, Sauliere et al. 2013). Alternatively, RNA-seq
can be considered as a matching control for CLIP-seq be-
cause the CLIP-seq tag counts are also influenced by the
transcript abundance in a sample, which RNA-seq is de-
signed to measure (Uren, Bahrami-Samani et al. 2012). We
also note that in addition to transcript abundance, RNA-seq
can also provide local biases information, such as sequenc-
ing/mapping biases, which are usually present in CLIP-seq
as well. Thus, although RNA-seq is not a direct match-
ing control for CLIP-seq, it may offer valuable information
about transcript abundance, regional biases and background
tag distributions for CLIP-seq data. So we evaluated its us-
age as control for CLIP-seq.

Poisson/negative  binomial regression model When a

matching control dataset is available, regression models are
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often used to describe the relationship between immunopre-
cipitation data and matching controls (Kuan, Chung et al.
2011). We considered two models here for background esti-
mation in CLIP-seq data with controls: Poisson regression
model and negative binomial regression model (equation 4).
Let x; be the number of reads in the i-th window in CLIP-
seq and r; be the number of reads in the i-th window in the
matching control (RNA-seq here).
(4)
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For all the models described above, parameters were esti-
mated using the maximum likelihood estimation (MLE). De-
tails of parameter estimation for each model can be found in
Supplementary Methods (http://www.intlpress.com/SII/p/
2015/8-4/SI1-8-4-CHEN-supplement.pdf).

2.3 Binding site identification in CLIP-seq
real data

Many computational methods have been developed to
identify protein-DNA binding sites from ChIP-seq exper-
iments (Zhang, Liu et al. 2008, Rozowsky, Euskirchen et
al. 2009, Kuan, Chung et al. 2011). However, these meth-
ods cannot be directly applied to CLIP-seq data due to the
non-homogeneous background tags, specific study regions
(RNA only) and the unique feature of mutation information
of CLIP-seq. Because of the valuable information offered by
the mutations in CLIP-seq data, binding site identification
in CLIP-seq can be improved by incorporating mutation in-
formation in addition to considering the tag accumulation
patterns (as peak calling). We studied binding site identifi-
cation in real CLIP-seq data through both mutation analysis
and peak calling.

2.3.1 Binding site identification by mutation analysis

Crosslinking-induced mutations (CIMS) can facilitate ac-
curate binding site identification. However, optimal strate-
gies to utilize mutation information have not been fully
investigated yet. In order to address this question, we ex-
amined the mutation patterns induced by cross-linking in
CLIP-seq and also studied the methods to identify crosslink-
ing induced mutations (i.e., to distinguish them from the
mutations introduced by sequencing and/or mapping er-
rors) from CLIP-seq. To identify the subtype of the mu-
tations representing crosslinking sites, we summarized and
analyzed three types of mutations—substitution, deletion,
and insertion, respectively. Furthermore, to show that the
sites identified using mutation information are truly related



to protein binding, we applied the same analysis to the cor-
responding RNA-seq data as a negative control.

To generate the mutation profiles, mutations were clus-
tered if they were at the same position. Less confident mu-
tation calls were pre-filtered using the following criteria be-
cause they might be errors or biases due to sequencing. First,
because sequencing usually introduces errors on repeated
tandem sequences (e.g., region containing a sequence of the
same nucleotides, such as TTTT), we extracted the sur-
rounding regions of mutation cluster positions and excluded
those on the tandem sequences with at least 5 repeats. Sec-
ond, some mutations result from PCR biases on particular
regions in high-depth CLIP sequencing. To avoid PCR am-
plification biases, we required mutation clusters containing
at least three unique mutations. In this work, unique muta-
tion is defined as the number of reads with unique mutation
pattern, in the sense of the length of the mutations (indels
can be more than 1bp), the position of the mutation on the
read and the strand of the read (applicable for RNA-seq).
Third, for mutations longer than 1bp, only the first base was
retained.

After  pre-filtering, distinguished  potential
crosslinking-induced mutation sites from sequencing
errors using the two methods detailed below. For the first
method, we ranked the mutation positions by the number
of unique mutations present at the position. This is because
the number of unique mutations may be a more robust
measure than the total number of mutations. We call this
method rule based approach in the following discussion.
For the second method, mutation sites were ranked by the
p-values from the hypothesis testing whether the propor-
tion of reads with mutation in the position is significantly
higher than that in the whole genome (equation 5). The
reported p-values were adjusted for multiple testing using
the Benjamini-Hochberg (BH) method (Benjamini and
Hochberg 1995). This method is called binomial test in the
following.

we

-value(a | y,p) = Ppr(1 = pyv—=
o p-value(a | y,p) ;(m>p(1 p)

# of mutation type
# of reads * read length

where p =

and a is the number of mutations at the position and y is
the total number of reads mapped to that position.

We inferred which of the three mutation types is the pri-
mary one for crosslinking induced mutations in CLIP and
evaluated two ranking methods for their ability to detect the
known GGAG motif in the de novo motif analysis. Specifi-
cally, we extracted sequences with 15bp up and downstream
of each mutation position using the UCSC genome browser.
We then identified the de novo motifs from the top 500
mutations based on each ranking method (for the binomial
test, we also required BH adjusted P-value < 0.05) using the

MEME algorithm (Bailey, Boden et al. 2009) with parame-
ters -mod zoops -nmotifs 3 -minw 4 -maxw 8 -dna -maxsize
500000. Finally, to see the enrichment levels of motifs in
each ranking method, we searched the motif identified with
MEME in mutation sequences using the FIMO algorithm
(Grant, Bailey et al. 2011) with parameters —output-pthresh
5e-3 —motif 1 —norc —max-stored-scores 500000.

2.3.2 Binding site identification by peak analysis

Although mutation analysis provides a de novo method to
identify binding sites in CLIP-seq, it still cannot substitute
for the whole-region peak analysis. The mutations are esti-
mated to be induced at crosslinking sites 8% to 20% of the
time depending on the protein binding factors (Zhang and
Darnell 2011), so the sensitivity would be low if only muta-
tions are used to identify binding sites. Hence, it is necessary
to also consider peak analysis to increase sensitivity in pro-
tein binding site identification using CLIP-seq data. Since
CLIP-seq data have the features of significantly non-uniform
distribution of background tags and high correlation with
RNA-seq data, we compared the binding site identification
results with and without using RNA-seq as a matching con-
trol in peak analysis. These are called one sample (CLIP-
seq only) and two sample (CLIP-seq VS RNA-seq) studies,
respectively, in our following discussion. Such comparisons
can directly assess the effectiveness of each method and the
usefulness of including RNA-seq in CLIP-seq data analy-
sis. Considering the background tag features of CLIP-seq,
we evaluated three methods (one one-sample study and two
two-sample studies) for CLIP-seq peak analysis.

One-sample study Since negative binomial distribution can
well capture the overdispersion in sequencing data and the
nonrandom distribution of background tags, we used a sim-
ple negative binomial test to call the peaks from the CLIP-
seq dataset for one-sample analysis. Because a single distri-
bution is used to model background tag distribution across
different genomic regions, those regions having higher tag
counts are more likely to be selected by this method.

Two-sample study We considered two methods to in-
clude RNA-seq data as matching controls to model back-
ground tag distributions. With these control data, the non-
randomness and non-uniformity of background tags may be
incorporated by allowing distinct means and variances for
different regions. We used a dynamic Poisson method to es-
timate local Poisson parameters from RNA-seq control for
each CLIP-seq region, and a negative binomial regression
method to capture the relationship between CLIP-seq and
RNA-seq globally. We also considered the overdispersion of
CLIP-seq data given the RNA-seq data. These two methods
represent local and global estimation methods of mean and
variability of background for CLIP-seq data, respectively.
Because the negative binomial regression method was dis-
cussed in ‘Background estimation’ of the Method section
(equation 4), we only describe the dynamic Poisson model
here.
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In the dynamic Poisson model, background Poisson mean
in each window is locally estimated using the read counts in
nearby windows of control samples. Note that for RNA-seq
data, transcript abundance is usually summarized by exons
or genes and a window may belong to more than one gene
or exon region in our processed data. So we chose to use the
maximum parameter from genes, exons and surrounding re-
gions as the parameter for each window in dynamic Poisson
model, as shown in equation 6.

AT
Pz | \i) = e,
x;!
(6) '
Ai = max | max ;Pai)y, max, (Aek), max ()

where x; is the number of reads in the i-th window; ); is the
Poisson parameter estimated from RNA-seq data and used
to calculate p-value for the i-th window, normalized based
on the total read count ratio in exon regions of CLIP-seq
and RNA-seq; Ag; is the parameter for gene j that the i-th
window belongs to; A¢r is the parameter for exon k that
the i-th window belongs to; and Ay is the parameter from
surrounding region [ of the i-th window. The surrounding
region is defined as the windows on the exon island that the
i-th window under study belongs to, and the exon island
is defined as the non-overlapping and concatenated exon
regions on the genome. We chose A; to be the maximum
value among all these parameters to control false positive
peak identifications.

After we estimated parameters associated with the back-
ground model, the statistical evidence for peaks is calculated
as P(X > x; | ©), where z; is the read count in the i-th
window and © are the parameter estimates. Finally, all the
windows were ranked based on their p-values and the top
peaks were considered for comparisons.

Assessment of peak calling methods Reliable ground truth
for binding sites is essential to accurately assess the perfor-
mance of peak calling methods for CLIP-seq data. In prac-
tice, true binding sites are rarely available for CLIP-seq data
and the most straightforward alternative is to examine the
enrichment of known motifs in the binding sites predicted by
each method. However, such an approach is not satisfactory
for LIN-28 because its short known motif ‘GGAG’ occurs
all over the genome. This could be even more problematic
when the resolution of binding site identification is low, as
in the case of peak detection analysis, because there is a
higher probability that an identified peak region contains
this short motif just by chance when the region becomes
wider. As a result, the occurrence of the LIN-28 motif itself
is insufficient to be used as a validation for binding sites
and additional criteria are required to obtain more reliable
ground truth for binding sites.

Fortunately, for CLIP-seq data, the crosslinking induced
mutations provide valuable information on ‘gold standard’
binding sites that could be used to assess the peak call-
ing methods. Therefore, we define the ‘true’ binding sites
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to be the positions that ‘GGAG’ motif (more precisely, the
motif identified by MEME algorithm from the top ranked
mutations) was detected within 15bp up and downstream of
high confident mutations. We chose this window size because
most of the ‘GGAG’ motif was detected within 15bp from
the binding sites identified by the mutation analysis. Then,
the performance of binding site identification was assessed
based on the proportion of top peak regions (extended by
100bp to both sides) containing these binding sites. In ad-
dition, since some random ‘GGAG’ motif would also be de-
tected on high confident mutation clusters just by chance, we
further randomly inserted the same number of selected high
confident mutations into the regions of study and calculated
the proportion of top peak regions overlapping with ran-
domly inserted ‘GGAG’ motif. The final enrichment score
of true binding sites for each method is defined as

(7)

where propust is the proportion of peak regions with ‘true’
binding sites and prendom is the proportion of peak regions
with random motif. Finally, in order to exclude those pos-
sible artificial binding sites identified by peak analysis, we
only considered the windows with more than 10 tag counts
in both CLIP-seq and normalized RNA-seq data and win-
dow length equal to 150bp.

EnrichScore = probust — Prandom

2.4 Simulation analysis

To investigate how the choice of peak calling methods
(with or without RNA-seq) affects binding site identifi-
cation in CLIP-seq and to examine why similar methods
show different performance between CLIP-seq and ChIP-
seq experiments, we performed simulation for both CLIP-
seq and ChIP-seq data. To generate more realistic simu-
lated datasets, we first fitted negative binomial regression
models of each real CLIP-seq and ChIP-seq dataset on the
corresponding RNA-seq data and input data, respectively.
Then, we generated background tags of CLIP-seq/ChIP-
seq dataset based on real RNA-seq/input controls using
the negative binomial regression models with estimated re-
gression coefficients (a,b) and dispersion parameters «. Fi-
nally, we randomly spiked in 2,000 binding sites to the
simulated datasets. Here, the signal strength A; for these
spiked-in binding events was generated based on the esti-
mated strength for ‘true’ binding sites in real CLIP-seq data.
Specifically, by considering the non-uniformity of binding
affinity strengths along the genome, we randomly simulated
affinity values from the empirical distribution of A; as fol-
lows. First, we calculated the ratio of CLIP-seq tag count
versus the RNA-seq tag count for each window in regions
containing high confident mutations and other background
regions (i.e., regions that do not contain high confident mu-
tations), denoted as ratiopinding and ratiopeckground, FESPEC-
tively. Then, we derived the empirical distribution of Ay
by estimating the g-th quantile of distribution of affinity



strength parameter A\; as the g-th quantile of ratiopinding
divided by the g-th quantile of ratiopgerground- After we
obtained the empirical distribution of A1, the smallest 5%
and the largest 5% were trimmed to avoid extreme affin-
ity strength. Finally, the strengths of spiked-in binding sites
were randomly sampled from this trimmed empirical dis-
tribution of \;, denoted as F'(\;) (equation 8). To further
exclude ambiguous regions, the affinity strength estimation,
the generation of spiked-in binding sites and the analysis
of simulation results were implemented using only the win-
dows of size 150bp with CLIP-seq (original or simulated)
and/or normalized RNA-seq count larger than 10. To avoid
confounding effects of binding strength in the comparison
between ChIP-seq and CLIP-seq data, binding affinity of
the ChIP-seq data was also simulated from the empirical
distribution of \; estimated from the CLIP-seq data. Simu-
lations were iterated 10 times for each scenario.

A ~ F(A\)
Z; ~ Bernoulli(m)

if Zi = 07 XZ ~ NegBZ‘n(eGrH)log(r)’ a)
if Zi =1, X; ~ NegBin(\y;e®tt1o8() q)

(®)

Performance of peak calling methods on CLIP-seq and
ChIP-seq data For the performance comparison of peak
calling methods, we first simulated a spiked-in dataset of
which affinity strengths were sampled from the empirical dis-
tribution of Ay as described in the previous section to mimic
realistic immunoprecipitation datasets. In addition, we also
simulated a dataset with extremely high constant affinity
strength (A} = 5% A1 50t quantile) to see the performance of
different methods when there is much clearer separation be-
tween binding and non-binding regions. We considered the
same set of methods (negative binomial, dynamic Poisson
and negative binomial regression) for both CLIP-seq and
ChIP-seq data. For ChIP-seq data, MACS (Zhang, Liu et
al. 2008) and MOSAICS (Kuan, Chung et al. 2011) were
used as implementations of the dynamic Poisson method
and the negative binomial regression method, respectively.
The performance of peak calling methods was assessed by
both the receiver operating characteristic (ROC) curves and
the proportion of true binding sites identified among the top
ranking peaks predicted by each peak calling method.

Effect of dispersion parameters Although ChIP-seq and
CLIP-seq technologies share many similarities, there is a
critical difference in their tag generating processes for both
binding site regions and background regions. Specifically,
ChIP-seq tags are relatively uniformly distributed over the
genome whereas CLIP-seq tags are strongly associated with
transcript abundance in a sample. Statistically, such a dif-
ference in tag generating process can be described as signif-
icantly larger dispersion parameters for CLIP-seq compared
to those for ChIP-seq data. Hence, to examine the effect
of dispersion parameters on binding site identification, we

simulated ChIP-seq and CLIP-seq datasets on which the
dispersion parameters were switched while all the other pa-
rameters remained the same as in the previous simulation
settings. The effect of dispersion parameters was assessed
by comparing the ROC curves and the proportion of true
binding sites identified in the top ranking peaks between the
datasets of original and switched dispersion parameters.

Effect of biological /technical replicates As ChIP-seq proto-
col becomes mature, two or three biological replicates are
often considered to be sufficient to obtain reliable identifi-
cation of binding sites in ChIP-seq. For example, the EN-
CODE Consortium sets two replicates as a standard to im-
plement ChIP-seq experiments (Landt, Marinov et al. 2012).
In contrast, the necessary number of replicates for CLIP-seq
has not been established in the literature. Thus, we eval-
uated the importance of biological/technical replicates in
CLIP-seq studies by simulating datasets with various num-
bers of replicates (1, 2, 4, 6, 8, 10, 12, 14, and 16). For
each number of replicate, the tag count values averaged over
the CLIP-seq replicates was considered as the estimator for
CLIP-seq tag count in each window. This simulation would
give us an idea about the number of replicates required in
CLIP-seq to obtain reliable binding site identification by
peak analysis.

3. RESULTS

3.1 Background estimation

In this section, we considered which model would provide
the best fit for CLIP-seq background data. In addition, we
also examined whether RNA-seq can be used as a suitable
control for CLIP-seq data and whether binding site identi-
fication could be improved by including RNA-seq data.

We first examined the relationship between CLIP-seq and
RNA-seq data by comparing it with that between ChIP-seq
and input data. Figures 1A and 1B show that the immuno-
precipitation datasets are well correlated with corresponding
controls for both ChIP-seq and CLIP-seq experiments. The
correlation was 0.773 for ChIP-seq versus input (Fig. 1A),
0.455 for CLIP-seq versus RNA-seq (Fig. 1B), 0.803 among
CLIP-seq replicates (Suppl. Fig. 2A) and 0.719 among RNA-
seq replicates (Suppl. Fig. 2B), respectively. Such a high cor-
relation between immunoprecipitation and input datasets
is mainly due to the large amount of the background tags
present in protein-binding experiments. This implies that
input data and RNA-seq data can capture background infor-
mation of ChIP-seq and CLIP-seq data, respectively. Com-
pared to ChIP-seq, correlation is weaker in the CLIP-seq
dataset and the correlation between ChIP-seq and input is
as high as those between replicates of CLIP-seq or RNA-seq.

Figure 1A also shows that in ChIP-seq data, there are
mainly two well-separated clusters. The larger cluster with
lower ChIP-seq counts represents the background windows
while the smaller cluster with higher ChIP counts represents
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the potential binding sites of the protein. In contrast, Fig-
ure 1B shows that there is no such clear separation between
backgrounds and binding sites for CLIP-seq vs. RNA-seq.
This observation is consistent with the relatively lower cor-
relation between CLIP-seq data and RNA-seq data (0.455).
In summary, compared to input control which captures the
background information of ChIP-seq data nicely, RNA-seq
data provides relatively limited information on the back-
ground of CLIP-seq data. However, the statistically signif-
icant positive relationship between CLIP-seq and RNA-seq
counts suggests that RNA-seq data still offer valuable infor-
mation and may be used as a matching control for CLIP-seq
data.

In ChIP-seq data, in the majority (~90%) of windows
with lower ChIP-seq tag counts, the counts were compa-
rable to those in input data (Fig. 1C), which implies the
background regions. In the remaining 10% of windows with
higher ChIP-seq tag counts, the ratio of ChIP-seq vs. in-
put was significantly higher than the majority of windows,
which provides strong evidence for binding. In contrast, in
CLIP-seq data, the ratio of immunoprecipitation over con-
trol globally increases as CLIP-seq tag counts increase (Fig.
1D) and this might imply that windows with high CLIP-seq
tag counts might not correspond to binding regions. More-
over, large variability of the ratio of CLIP-seq vs. RNA-seq
in the windows with high CLIP-seq counts hints that the
one-sample study (CLIP only) may not be able to accu-
rately identify the binding sites.

We fitted background distribution using the Poisson, neg-
ative binomial (gamma-Poisson), and beta-binomial models
for the CLIP-seq datasets without RNA-seq data, and using
Poisson regression and negative binomial regression mod-
els for the CLIP-seq datasets with RNA-seq data as con-
trols. Figure 1E shows the results for one-sample model fit-
ting. As expected, the results indicate that the background
could be significantly underestimated if we use the Poisson
model (BIC = 17,526,877; Table S1), of which mean and
variance are assumed to be identical. This implies that the
Poisson model is not suitable for CLIP-seq data with large
variance due to transcript abundance. In contrast, both
negative binomial (BIC = 2,289,642) and beta-binomial
(BIC = 2,289,658) models fit the background almost equally
well by appropriately accounting for the overdispersion.
These results are consistent with the statistical theory that
beta-binomial model is asymptotically equivalent to gamma-
Poisson (negative binomial) model when we have large total
counts and small success probability (Skellam 1948). This is
actually the case for CLIP-seq and RNA-seq data analyzed
here because we do have large total counts since both data
sets are very deeply sequenced and the proportion for each
transcript is very small as C'.elegans has about 20,000 genes.

Figure 1F indicates that incorporating RN A-seq using re-
gression models can improve background estimation. Among
all the regression models under consideration, negative bi-
nomial regression with log-transformed RNA-seq tag counts

(BIC = 2,040,052) provides the best model fit. We also ob-
tained similar conclusions for ChIP-seq data (Suppl. Fig. 2C
and D) and this is consistent with the knowledge that ChIP-
seq and CLIP-seq have similar data generating processes.
However, closer inspection of the fitted regression lines of
immunoprecipitation data vs. control data (Suppl. Fig. 2E
and F) still indicates that ChIP-seq shows better separa-
tion of binding sites and backgrounds when the controls are
incorporated in background estimation.

In summary, our correlation, ratio trend, and model fit-
ting analyses for both ChIP-seq and CLIP-seq data indi-
cate that (1) although RNA-seq is not a perfect control for
CLIP-seq data compared to input data for ChIP-seq data, it
is still clearly beneficial to incorporate corresponding RNA-
seq datasets in the analysis of CLIP-seq data, because it
can improve the background fitting of CLIP-seq and help
identify the binding sites in the regions with relatively low
CLIP-seq counts; (2) negative binomial regression models on
log-transformed RN A-seq tag counts provide the best model
fits to the background tags of CLIP-seq data.

3.2 Binding site identification in real data
3.2.1 Binding site identification by mutation analysis

To identify binding sites from CLIP-seq, we started
with the unique feature of CLIP-seq—crosslinking induced
mutations—to identify binding sites. In order to characterize
subtypes of mutations related to binding events, we exam-
ined mutation frequencies for each mutation type (substi-
tution, deletion, and insertion) in CLIP-seq data. We also
applied the same analysis to RNA-seq data in order to esti-
mate the mutation frequencies when there are no crosslink-
ing effects. The UV crosslinking process has changed mu-
tation profiles by increasing the total number of mutations,
especially the proportion of deletions among three muta-
tion types (Table 1). In non-crosslinked RNA-seq, there was
about equal numbers of deletions (3.1% of total mutations)
and insertions (3.9%). In contrast, there was a clear prefer-
ence for deletions (5.8% for CLIP-seql and 28.4% for CLIP-
seq2) compared to insertions (0.6% for CLIP-seql and 2.1%
for CLIP-seq2) in CLIP-seq data. Furthermore, the propor-
tion of deletions increased most rapidly among three mu-
tation subtypes as CLIP-seq is more deeply sequenced (Ta-
ble 1). This suggests that deletions are particularly enriched
by crosslinking effects.

We further evaluated the preference for different muta-
tion types by examining the mutation clusters. Mutations
were clustered by their positions in exon regions and filtered
by requiring at least 3 unique mutations in each cluster and
tandem nucleotides with a length shorter than 5bp at sur-
rounding sequences. The mutation clusters showed prefer-
ential enrichment for deletions as well (Table 1). The pro-
portions of deletions in clustered data (3.5% and 6.1%) from
two CLIP-seq replicates were more comparable than those
in the total counts of mutations (5.8% and 28.4%). This
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Table 1. Mutation statistics in CLIP-seq and RNA-seq. Numbers in the parenthesis are the proportions of each type of
mutation for each dataset

All Mutations
Dataset Mapped reads Substitutions Deletions Insertions
CLIP-seql 5,087,544 1,223,405 (0.937) 75,400 (0.058) 7,272 (0.006)
CLIP-seq2 156,886,622 18,493,981 (0.695) 7,563,806 (0.284) 566,672 (0.021)
RNA-seq 26,467,641 1,175,157 (0.931) 38,519 (0.031) 49,116 (0.039)
Mutation clusters in exon regions
Clusters with unique mutations > 2 & tandem nt < 5
Dataset Substitutions Deletions Insertions
CLIP-seql 24,467 (0.964) 897 (0.035) 27 (0.001)
CLIP-seq2 436,193 (0.937) 28,342 (0.061) 1,015 (0.002)
RNA-seq 37,219 (0.986) 195 (0.005) 319 (0.008)

suggests that higher sequencing depth not only improves
the sensitivity of mutation cluster detection (more clusters
detected), but also provides increased evidence for deletion
cluster identification (clusters have higher numbers of mu-
tations).

To further evaluate the mutation types induced by
crosslinking, we performed de novo motif searching by
MEME for the top 500 mutations ranked by binomial tests.
The ‘GGAG’ motif was clearly identified near deletion sites
with a significant E-value equal to 2.4e-56 (Fig. 2A and
Suppl. Fig. 3A), which further suggests that deletion is
specifically induced by UV crosslinking. However, interest-
ingly, ‘GGAG’ was also identified from the substitution sites
as the second most significant motif (E-value 2.2e-36) from
MEME in CLIP-seql (Fig. 2A) and as the most signifi-
cant motif (E-value 9.4e-51) in CLIP-seq2 (Suppl. Fig. 3A).
Hence, although enrichment of substitution clusters was not
as obvious as enrichment of deletion clusters in general, they
do harbor a significant amount of crosslinking induced mu-
tations other than natural variations and sequencing errors.
A clear motif identified from substitutions in CLIP-seq with
deeper sequencing depth also implies the importance of se-
quencing depth for a higher confidence calling of crosslinking
induced mutations.

Because mutations in different regions were called with
different levels of statistical significance, we further investi-
gated the enrichment level of ‘GGAG’ motif in mutations
called at various confidence levels. Figure 2B shows that
when we ranked mutations using binomial tests, there was
much higher enrichment of motif containing sites at higher
confidence levels (35% to 45%), which suggests that higher
confident mutations are more likely corresponding to bind-
ing sites. Specifically, both deletions and substitutions with
higher confidence (about top 1,000 mutations) presented
35%-45% enrichment of the motif although substitutions
were overwhelmed by sequencing errors and/or natural vari-
ations at lower confident levels. In contrast, if we ranked
mutations using the rule based approach, there was no more
motif enrichment in highly ranked mutation regions. These
results suggest that the binomial test may better capture
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signals from crosslinking than the rule based approach. In
Figure 2C, non-crosslinked RNA-seq showed only random
motif enrichment about 20% at all confident levels and this
indicates that the sites identified from CLIP-seq using mu-
tation information are more likely to be related to protein
binding.

Finally, we assessed the resolution of mutation analysis
using the distance between deletions and the ‘GGAG’ motif
identified within 600bp flanking regions of deletions. Figure
2D indicates that the motif is mostly enriched near muta-
tions (estimated resolution: ~30-40bp), which suggests that
mutations could identify protein-binding sites with high res-
olution.

3.2.2 Binding site identification by peak analysis

High-resolution mutation analysis provided us a list of
high confident putative binding sites for protein LIN-28.
We selected the top 897 deletion and 1,000 substitution
sites containing ‘GGAG’ motif within the 30bp flanking se-
quences from the binomial test mutation analysis as the
ground truth for binding sites to assess the performance of
peak calling methods. We first mapped these high confident
binding sites to corresponding windows on the genome and
examined the CLIP-seq tag counts and the ratios of CLIP-
seq vs. RNA-seq tag counts in these windows (Fig. 3A).
In contrast to ChIP-seq data of which binding sites are lo-
cated on high immunoprecipitation count and ratio regions
and well separable from background regions, in CLIP-seq,
there is no clear separation of the mutation-defined bind-
ing sites from the background, although there is a tendency
towards higher ratio regions. This suggests that identifying
binding regions by peak analysis could be more challenging
for CLIP-seq because peak analysis usually finds the bind-
ing sites based on CLIP-seq tag count or the ratio between
CLIP-seq and control counts.

We applied the negative binomial model, the dynamic
Poisson model, and the negative binomial regression model
to identify binding sites. These three methods represent one-
sample analysis, two-sample analysis with local parameter
estimation, and two-sample analysis with global parameter
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estimation, respectively. As expected, the top 1,500 puta-
tive binding sites identified by the negative binomial model
corresponded to posing a hard threshold on CLIP-seq tag
counts (Fig. 3B). There was a large overlap between the
top 1,500 binding sites identified by the dynamic Poisson
model and the negative binomial regression (Fig. 3C, D),
as they both used information from RNA-seq as controls.
With RNA-seq data as a control, we could identify about
20%~40% novel binding sites that are “true” binding sites
defined by high confidence mutations but were missed by

one-sample negative binomial method. This again suggests
the importance of using RNA-seq control in CLIP-seq peak
analysis. We found that in the dynamic Poisson model, due
to its local enrichment feature, some windows with high
CLIP-seq counts and high ratios could be excluded from the
top ranking peaks if they come from high abundant tran-
scripts and their tag counts are not significantly higher than
tag counts of other windows in the same transcript/exon.
The top binding sites from peak analysis (Fig. 3B, C
and D) only cover a subset of the high confident mutation-
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defined binding sites shown in Figure 3A. This is also evident
by the almost identical binding site enrichment levels ob-
served in the top ranking peaks identified by the three meth-
ods (Fig. 3E). Weak separation between binding sites and
backgrounds in CLIP-seq count and ratio of CLIP-seq vs.
RNA-seq counts resulted in indistinguishable performance
of peak analysis methods and made it challenging to identify
binding sites with low CLIP-seq count and/or ratio values.
However, Figures 3E and 3F reveal that the peak analysis
with/without RNA-seq control should still be included as
an essential part of CLIP-seq data analysis. Figure 3E in-
dicates that high quality binding sites are clearly enriched
in the top peak lists identified by each of the three meth-
ods, especially for the top 1,500 to 2,000 windows predicted
by each method. Hence, the peak analysis will enable us
to detect binding sites of a strong signal missed from the
mutation analysis that can identify only about 8~20% of
true binding sites. Figure 3F indicates that peak analysis
can identify positions of binding sites quite accurately (res-
olution ~300bp) although the resolution is still significantly
lower than that of mutation analysis (~30-40bp).

3.3 Simulations

The peak analysis using real CLIP-seq data showed that
there is only weak separation between binding sites and
background regions and the peak analysis methods identify-
ing binding sites successfully in ChIP-seq could identify only
a small subset of binding sites in CLIP-seq. In this section,
we conducted a series of simulation studies to systematically
investigate the differences in binding site identification be-
tween CLIP-seq and ChIP-seq and the factors contributing
to these differences.

In Background Estimation section, the negative binomial
regression model had the best fit for CLIP-seq/ChIP-seq
when taking RNA-seq/input as a covariate. Thus, we sim-
ulated CLIP-seq/ChIP-seq datasets from the negative bi-
nomial regression model based on real RNA-seq/input. To
mimic real binding sites, binding affinity (A1) was simulated
from the empirical distribution of A\; that was essentially es-
timated as the ratio of CLIP-seq count vs. RNA-seq count
in the regions with high confidence mutations when the ra-
tio in background regions was used as a baseline. Figure 4
shows the distribution of the ratio of CLIP-seq count vs.
RNA-seq count for (1) binding regions defined by deletion,
(2) binding regions defined by substitution, and (3) other
background regions. Although signal enrichment of bind-
ing sites is relatively weak compared to background regions,
it is clear that ratio of CLIP-seq over RNA-seq counts is
higher for both deletion- and substitution-defined binding
sites compared to background regions, which again implies
that taking RNA-seq as a control is helpful for peak analy-
sis. The binding affinity (A1) estimated from real CLIP-seq
ranged from 1.77 to 3.71 (Table in Fig. 4) and this empir-
ical distribution of A\; was used to generate simulated data
of both CLIP-seq and ChIP-seq to make the results more
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Figure 4. Estimation of binding affinity (lamdal,\,) from
binding sites identified by mutation analysis in CLIP-seq.
Boxplots show the distribution of log-transformed ratio of
CLIP-seq count vs. RNA-seq count for top deletion-defined
binding sites, top substitution-defined binding sites and other
background regions. The table provided the 10%~90%
quantiles of estimated A\, values.

comparable between them. Note that our simulation was
based on the negative binomial regression model and did
not consider exon relationships in genes. As a result, the
results would favor peak analysis using the negative bino-
mial regression method. However, this will not significantly
affect the comparison of peak analysis performance between
CLIP-seq and ChIP-seq data.

3.3.1 Performance of peak calling methods on CLIP-seq and
ChlIP-seq

We first considered a set of simulated CLIP-seq and
ChIP-seq datasets which best mimic the realistic data by
randomly generating binding affinity from the empirical dis-
tribution of A;. Hence, signal enrichment of binding sites
compared to background regions is very close to those in real
CLIP-seq data. As in real CLIP-seq data, there is no clear
separation between binding regions and background regions
in simulated CLIP-seq data (Suppl. Figs. 5A), while ChIP-
seq showed much better separation (Suppl. Figs. 4A). To
compare the performance of peak calling methods on CLIP-
seq and ChIP-seq, three calling methods (negative binomial,
dynamic Poisson and negative binomial regression) were ap-
plied to simulated datasets. Figure 5A indicates that for
ChIP-seq, the negative binomial regression method clearly
outperformed the other two methods. The area under the
curve (AUC) for negative binomial regression was 0.953 and
above 0.85 for the other two methods (Table 2). In contrast,
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Table 2. Dispersion parameters and AUC calculation for simulated datasets

Dataset Dispersion Method Regular binding Extreme binding a switched (AUC)
parameters (o) (AUC) (AUC)

Negative Binom 0.667 0.864 0.859
CLIP-seq 1.529 Dynamic Poisson 0.663 0.860 0.839

NB regression 0.688 0.882 0.957

Negative Binom 0.868 0.985 0.653
ChIP-seq 0.115 Dynamic Poisson 0.915 0.997 0.657

NB regression 0.953 1.000 0.662

these three methods performed comparably for CLIP-seq
datasets (Fig. 5B) and their AUC values (~0.65) were much
lower than those of ChIP-seq datasets (Table 2).

To see how peak analysis would perform for pro-
teins with extremely high binding affinity, we simulated
datasets of which binding affinity is five times stronger, i.e.,
5+ median(A;) = 13.75. Figure 5C shows that in ChIP-seq,
all three methods identified most binding sites as their top
ranking ones and their AUC values were close to 1 (Table
2). In contrast, AUC values were still only about 0.85 for
CLIP-seq (Fig. 5D, Table 2), which is close to that of ChIP-
seq datasets with moderate affinity. In summary, although
the data generating processes of CLIP-seq and ChIP-seq are
quite similar, the peak calling methods perform significantly
worse for CLIP-seq compared to ChIP-seq data. Moreover,
for CLIP-seq, even extremely high binding affinity cannot
make the binding sites totally distinguishable from back-
ground regions.

3.3.2 Effect of dispersion parameters

As most of the parameters for data simulation were con-
trolled to be the same between simulated CLIP-seq and
ChIP-seq data, we found that the major difference between
RNA and DNA-binding can be formulated as the differences
in dispersion parameters of the negative binomial distribu-
tion between CLIP-seq (1.529) and ChIP-seq (0.115) (Table
2). In order to see if the dispersion could statistically explain
the differences in peak analysis results between ChIP-seq
and CLIP-seq, we simulated CLIP-seq and ChIP-seq data
by switching dispersion parameters between them. As ex-
pected, after dispersion parameters were switched, the peak
analysis results showed exactly opposite patterns (Fig. 5E
and F). Specifically, the AUCs for ChIP-seq with CLIP-
seq dispersion parameter were only about 0.65 while the
AUCs for CLIP-seq with ChIP-seq dispersion parameter
were above 0.85 (Table 2). This suggests that the large vari-
ance/dispersion in CLIP-seq data might be the major reason
for peak analysis challenge.

3.3.3 Effect of biological/technical replicates

Considering the large variation for transcript abundance,
the large variance/dispersion in both CLIP-seq and RNA-
seq datasets is inevitable. One way to reduce variation is to
increase the number of either biological or technical repli-
cates. To examine how many biological/technical replicates

are necessary to achieve satisfactory results in peak anal-
ysis, we simulated CLIP-seq data with different replicate
numbers. Figure 6 shows that the statistical power to iden-
tify true binding sites increases significantly as we increase
the number of replicates, in the case of large dispersion pa-
rameters in CLIP-seq. Under the simulation settings we con-
sidered here, there is no significant improvement in perfor-
mance when more than 10 replicates were used. We could
achieve an AUC higher than 0.9 with 8 replicates with the
negative binomial regression method in peak analysis. We
note that this AUC level corresponds to that for only one
replicate in ChIP-seq and this implies that larger numbers
of replicates are needed for CLIP-seq in order to handle the
larger dispersion compared to ChIP-seq.

4. DISCUSSION

As CLIP-seq is emerging as a major technique for the
study of RNA-protein interactions in vivo, it becomes more
critical to develop appropriate statistical methods to infer
binding sites through the analysis of CLIP-seq data. In this
article, we reported a thorough investigation of various fac-
tors affecting binding site identification in CLIP-seq using
both real data and simulation studies. Our results suggest
that the negative binomial regression using RNA-seq as con-
trols may be a preferred approach for modeling CLIP-seq
data, and the mutation analysis offers valuable information
to improve specificity and resolution in binding site iden-
tification. We found that larger dispersion could be one of
the main sources of difficulties in binding site identification
for CLIP-seq, which points to possible directions to improve
binding site identification for CLIP-seq. We also showed that
in order to address such a large dispersion issue in CLIP-
seq and achieve higher sensitivity and specificity in binding
site identification, it is important to have a larger number
of biological /technical replicates than ChIP-seq.

Our results suggest that it is critical to use both muta-
tion and peak analysis to accurately identify binding sites
in CLIP-seq data and these two methods cannot substitute
each other. On one hand, peak analysis provides higher sen-
sitivity for binding site identification but suffers from lower
resolution (about 300bp) and specificity. On the other hand,
mutation analysis identifies binding sites with high resolu-
tion (~30-40bp) and high specificity but suffers from lower
sensitivity as mutations are only induced near 8-20% of
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Figure 6. Effect of number of replicates on binding site identification in CLIP-seq. (A) ROC curves for negative binomial
regression methods in simulated datasets with 1, 2, 4, 6, 8, 10, 12, 14 and 16 replicates. (B) AUC for different number of
replicates on negative binomial, dynamic Poisson and negative binomial regression methods.

the binding sites. Meanwhile, in LIN-28 protein study, if
we combined both peak analysis (top 1,500 sites in nega-
tive binomial regression model) and mutation analysis (1897
high confident deletions/substitutions), we could identify
447 common binding sites. Such a combined approach im-
proved the enrichment of motif among identified binding
sites (50.6% of these overlapped sites were with GGAG mo-
tif on mutation positions) compared to mutation analysis
alone (42.3%). These observations imply that integration of
peak analysis and mutation analysis might improve binding
site identification and achieve a good balance among sensi-
tivity, specificity, and resolution.

As CLIP-seq tag counts are partially dependent on tran-
script abundance, RNA-seq data might be treated as a
matching control to infer binding sites. However, RNA-seq is
not specifically designed as a matching control for CLIP-seq
and there has been no convincing evidence for the benefits
of its inclusion. In our study, we systematically investigated
this issue by fitting the CLIP-seq data with or without RNA-
seq control and calling binding sites with one-sample or two-
sample methods. We found that it might be preferable to
use RNA-seq as a control for CLIP-seq. First, RNA-seq tag
counts are correlated with CLIP-seq, which could provide
the information about background noises coming from dif-
ferent transcript abundance and/or other local biases. Sec-
ond, regression models including RNA-seq as a matching
control improved estimation of distribution of background
tags. Third, two-sample analysis may identify some poten-
tially true binding sites that are missed by one-sample anal-
ysis.

In our study, we have ignored the isoform issue by con-
catenating overlapped exon regions. However, unlike the
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whole genome study performed by ChIP-seq, the analy-
sis of CLIP-seq data must take into account the exis-
tence of transcript isoforms generated by alternative splic-
ing. It is therefore of interest to investigate the effect
of the differential expression of transcript isoforms on
binding site identification and to integrate the inference
of the isoform abundance to the binding site identifica-
tion.
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