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Single-gene negative binomial regression models
for RNA-Seq data with higher-order asymptotic
inference

Yanming Di

We consider negative binomial (NB) regression models
for RNA-Seq read counts and investigate an approach where
such NB regression models are fitted to individual genes sep-
arately and, in particular, the NB dispersion parameter is
estimated from each gene separately without assuming com-
monalities between genes. This single-gene approach con-
trasts with the more widely-used dispersion-modeling ap-
proach where the NB dispersion is modeled as a simple func-
tion of the mean or other measures of read abundance, and
then estimated from a large number of genes combined. We
show that through the use of higher-order asymptotic tech-
niques, inferences with correct type I errors can be made
about the regression coefficients in a single-gene NB regres-
sion model even when the dispersion is unknown and the
sample size is small. The motivations for studying single-
gene models include: 1) they provide a basis of reference for
understanding and quantifying the power-robustness trade-
offs of the dispersion-modeling approach; 2) they can also
be potentially useful in practice if moderate sample sizes be-
come available and diagnostic tools indicate potential prob-
lems with simple models of dispersion.
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1. INTRODUCTION

During the past few years, RNA sequencing (RNA-Seq)
has been widely adopted as the technology of choice for
quantifying gene expression profiles and dynamics under
different environmental or experimental conditions due to
its unprecedented throughput, comprehensiveness, resolu-
tion and sensitivity [12, 13, 26]. In a typical RNA-Seq ex-
periment, mRNA is isolated from cells of interest, converted
to complementary DNA (cDNA) either before of after be-
ing randomly fragmented, ligated with library adapters, and
enriched by a limited number of polymerase chain reaction
(PCR) cycles. The resulting cDNA library is covalently at-
tached to a flow cell, amplified and sequenced in a mas-
sively parallel fashion to produce hundreds of millions of

short RNA-Seq reads. To infer gene expression, the RNA-
Seq reads are aligned to sequence features in a reference
database. The relative frequency of RNA-Seq reads that
match sequence features of a gene serves as a measure of
that gene’s expression.

The negative binomial (NB) distribution is a useful
model for RNA-Seq read counts and serves as the basis
of several statistical packages for assessing differential ex-
pression from RNA-Seq data, including edgeR [17], DE-
Seq [1], NBPSeq [6], and the recent version of Cuffdiff
(http://cufflinks.cbcb.umd.edu/manual.html) in Cufflinks
[22]. The technical variability in RNA-Seq read counts
has been demonstrated to be near Poisson [9], but RNA-
Seq reads from independent biological samples commonly
show extra-Poisson variation (i.e., overdispersion) and prac-
tically useful models must also incorporate this biologi-
cal variability. The NB distribution, which may be de-
rived as a gamma mixture of Poisson distributions, is a
flexible and convenient choice. The NB distribution uses
a dispersion parameter to capture the extra-Poisson vari-
ation. These statistical packages differ in how they handle
the modeling and estimation of the NB dispersion parame-
ter.

Regression models are essential for exploring gene expres-
sion as a function of explanatory variables and for com-
paring gene expression between groups while accounting for
other factors. The R package MASS [23] and recent ver-
sions of edgeR, DESeq and NBPSeq all include implemen-
tations of NB regression models. Gene expression analysis
from RNA-Seq data often involves fitting separate regres-
sion models to thousands of genes and testing the regres-
sion coefficients in each fitted model, but current RNA-Seq
studies tend to be based on small sample sizes (for exam-
ple, three biological replicates for each of two treatment
groups, for a total sample size of six). The large number
of genes combined with the small sample size causes more
attention than usual on the power of the statistical tests.
One power-saving strategy explored by edgeR, DESeq, and
NBPSeq is to model the NB dispersion as a simple para-
metric or smooth function of the estimated expression level
and thus pool information from all genes to jointly esti-
mate the NB dispersion. If the assumption that the dis-
persion is similar for genes with similar expression levels is
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valid, the dispersion-modeling approach can effectively save
one degree of freedom from each regression model. This can
translate into considerable power improvement, especially in
small-sample situations. However, the power benefit of the
dispersion-modeling approach relies on the estimated dis-
persion models being adequate. It is not well understood
how robust the approach is if the fitted dispersion mod-
els are inadequate. We believe at least two further devel-
opments are needed to accurately quantify the power ben-
efit and address the robustness concerns of the dispersion-
modeling approach. First, a goodness-of-fit test is needed to
assess the adequacy of the NB dispersion models. Mi et al.
[11] provides one recent such attempt. Second, single-gene
models not reliant on a dispersion model and accurate in-
ference tools for such models are needed to serve as a basis
of reference. This second point is the focus of the current
paper.

In this paper, we investigate a more basic approach that
does not rely on a dispersion model. We consider NB regres-
sion models fitted to each gene separately where, in particu-
lar, the NB dispersion is estimated from each gene separately
without assuming commonalities between genes. One moti-
vation for studying such single-gene models is that they pro-
vide a basis of reference for understanding and quantifying
the power-robustness trade-offs of the dispersion-modeling
approach. We will use simulation studies to illustrate the
utility of single-gene models in power-robustness investiga-
tions. Single-gene models can also be potentially useful in
practice if moderate sample sizes are available and diag-
nostic tools [see, e.g., 11] indicate potential problems with
simple models of dispersion.

One particular statistical challenge we address is that
there is no exact test for testing the regression coefficients
in an NB regression model. Asymptotic tests—most no-
tably the Wald test and the likelihood ratio test—are avail-
able, but are mathematically justified only for large sam-
ple sizes. We consider likelihood ratio tests with a higher-
order asymptotic (HOA) adjustment [20]. In an earlier study
[5], we have demonstrated that the HOA-adjusted likelihood
test is very accurate when the dispersion parameter can be
treated as known—it provides type I error that matches the
nominal specification even when the sample size is as small
as six. In this paper, we will demonstrate that the accuracy
of HOA inference extends to situations where the dispersion
is unknown and needs to be estimated from a small sample
size.

This rest of the paper is organized as follows. Section 2
clarifies the NB regression model. Section 3 reviews HOA
inference. In Section 4, we use simulations to demonstrate
the accuracy of HOA inference and illustrate its utility
in assessing the power and robustness of the dispersion-
modeling approach. Section 5 includes a discussion and
conclusion. The Appendix provides additional technical de-
tails.

2. NB REGRESSION MODEL

We restrict attention to read counts mapped to a single
gene. Let Yj represent the number of RNA-Seq reads from
biological sample j attributed to a gene and let Xjk be the
value of the k-th explanatory variable associated with bio-
logical sample j, for j = 1, . . . , n and k = 1, . . . , p. The ex-
planatory variables are numerical representations of factors
such as treatment type, genotype, time after treatment, and
so on. Let Nj be the total number of unambiguously aligned
sequencing reads associated with biological sample j, which
we refer to as the (observed) library size of sample j. Our
NB regression model for describing the mean expression as a
function of explanatory variables includes the following two
components:

1. An NB probability distribution for the frequency of
reads:

(1) Yj ∼ NB(μj , φ)

where μj is the mean and φ is the NB dispersion pa-
rameter such that Var(Yj) = μj +φμ2

j . We assume that
frequencies Yj are independent of one another.

2. A log-linear regression model for the mean as a function
of explanatory variables

(2) log(μj) = log(Nj) + log(Rj) +

p∑
k=1

βkXjk,

where β′
ks are unknown regression coefficients and Rj ’s

are optional normalization factors, explained below.

The structure of the model resembles a generalized linear
model [10], but it is important to note that the dispersion
parameter, φ, is unknown. This aspect of the model also con-
trasts with the NB regression models implemented in edgeR
[17], DESeq [1], and NBPSeq [6, 5]. In those packages, the
dispersion parameters are modeled as a simple parametric
(NBPSeq) or smooth function (DESeq and edgeR) of the
mean or some other measure of read abundance. The dis-
persion model is estimated from all genes combined and,
in current implementations of these software packages, the
estimated values of the dispersion are then treated as the
truth in tests of differential expression. If the dispersion can
be adequately modeled by a simple parametric function as
in the NBPSeq approach, likelihood inferences can be made
with the weaker assumption that the parameters in the dis-
persion model (rather than the fitted values of the disper-
sion) are known [see 5, for more dicussion on this point].
EdgeR also provides options for estimating the dispersion
as a weighted average of genewise estimates and fitted val-
ues from a constant or smooth function under an empirical
Bayes framework. With this option, genewise estimation is
possible by choosing appropriate prior weights, but, again,
the dispersion estimates are treated as the truth in tests for
regression coefficients.
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In model (2), the observed library sizes Nj differ due
to chance variation in the preparation and sequencing of
the samples. The NB regression model directly accounts for
variable library sizes. The normalization factors Rj have to
do with the apparent reduction or increase in relative read
frequencies of non-differentially expressing genes simply to
accommodate the increased or decreased relative read fre-
quencies of truly differentially expressing genes. Anders and
Huber [1], Robinson and Oshlack [18], and Li et al. [7] dis-
cussed the need to include Rj ’s and methods for estimating
them. The quantity NjRj is often referred to as “effective li-
brary size”, “normalized library size” or “sequencing depth”
in other papers.

3. WALD TEST, LIKELIHOOD RATIO TEST
AND HIGHER ORDER ASYMPTOTIC

ADJUSTMENT

In a regression setting, testing differential gene expression
can usually be reduced to testing that one or more of the
regression coefficients equals zero. In general, there does not
exist an exact test for this purpose. We consider two well-
known classical asymptotic tests, the Wald test and the like-
lihood ratio test, and a more recent development, the like-
lihood ratio test with higher-order asymptotic adjustment
(HOA). We refer to the latter as the HOA test. Although
there are ongoing works on creating general-purpose rou-
tines for computing HOA tests that require only a function
for computing the likelihood and a function for simulating
observations under the model considered (personal commu-
nication with Professor Don Pierce), in current practices,
the HOA test usually requires specific implementations for
different likelihood functions. In an earlier study [5], we have
implemented and demonstrated the excellent performance of
the HOA test in NB regression models where the NB dis-
persion parameter can be treated as known. The present
situation, with the dispersion parameter unknown, is more
challenging. The new technical contribution of this paper is
the implementation of the HOA test in the NB regression
model when dispersion is unknown.

In the following paragraphs of this section, we briefly re-
view the three asymptotic tests and put them in the NB re-
gression context. In particular, we summarize the key ideas
behind the HOA adjustment. This background information
will help readers better understand the results in the follow-
ing sections.

In the NB regression model in Section 2, the unknown
parameters are the vector of regression coefficients, β =
(β1, . . . , βp), and the dispersion parameter φ. For computa-
tional purposes, it is easier to use the size parameter κ = 1/φ
instead of φ. We wish to test hypotheses about components
of β. Without loss of generality, suppose that θ = (ψ, ν),
where ψ = (β1, . . . , βq) and ν = (βq+1, . . . , βp, κ), and the
null hypothesis is ψ = ψ0. In regard to this hypothesis, the
q-dimensional parameter ψ is the parameter of interest and

ν is a nuisance parameter. We let θ̂ = θ̂(y) = (ψ̂, ν̂) be the
maximum likelihood estimator of the full parameter vector
and θ̃ = θ̃(y) = (ψ0, ν̃) be the maximum likelihood estima-
tor under the null hypothesis.

Under the usual regularity conditions, the likelihood ratio
statistic,

λ = 2(l(θ̂)− l(θ̃)),

converges in distribution to a chi-square distribution with
degrees of freedom q under the null hypothesis [27]. When
ψ is one-dimensional (q = 1), the signed square root of the
likelihood ratio statistic λ, also called the directed deviance,

(3) r = sign(ψ̂ − ψ0)
√
λ,

converges to a standard normal distribution. The Wald test
[24, 25] is based on the Wald statistic,

(4) w =
(ψ̂ − ψ0)√
[j−1(θ̂)]ψψ

,

where j(θ̂) is the observed information computed at θ̂ and
[. . . ]ψψ refers to the square submatrix corresponding to the
ψ component. We use the observed information here since
the Fisher (expected) information does not have closed-form
expression when the dispersion is unknown in the NB regres-
sion model. Under the null hypothesis, the Wald statistic
also converges to a standard normal distribution.

For testing a one-dimensional parameter (q = 1),
Barndorff-Nielsen [2, 3] has derived a modified directed de-
viance

(5) r∗ = r − 1

r
log(z),

where z is an adjustment term to be discussed below. Un-
der the null hypothesis ψ = ψ0, r

∗ is, in wide generality,
asymptotically standard normally distributed to a higher
order of accuracy than the directed deviance r itself. Tests
based on higher-order asymptotic (HOA) adjustment to the
likelihood ratio statistic, such as r∗ or its approximation
(explained below), are referred to as HOA tests. They gen-
erally have better accuracy than corresponding unadjusted
likelihood ratio tests, especially in situations where the sam-
ple size is small and/or when the number of nuisance pa-
rameters is large. It was insightfully pointed out in Pierce
and Peters [15] and Pierce and Bellio [14] that there are
two aspects of the HOA adjustment: one reducing the ef-
fects of nuisance parameter estimation and the other im-
proving the normal approximation to r when the informa-
tion for the parameter of interest is small. Reducing the
effect of nuisance parameter estimation is particularly rele-
vant when the dispersion is unknown in the NB regression
model.

In practice, however, the definition and computation of
the adjustment term z in Barndorff-Nielsen’s original for-
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mulation are generally difficult [notable exceptions include
full-rank exponential families, see, e.g., 15]. In a major
step forward, Skovgaard [19] developed accurate approxi-
mations to Barndorff-Nielsen’s original formulation that in-
volve only calculations similar to those involved in com-
puting the expected information. With Skovgaard’s ap-
proximations, the HOA test becomes practical for gen-
eral use. Skovgaard [20] gave a comprehensive review of
the development of the theory and practice of higher or-
der asymptotics. That paper also presented a generaliza-
tion of Barndorff-Nielsen’s r∗ statistic to tests for multi-
dimensional parameters (q > 1), but the computation is
more complicated. In this paper, we will focus on testing
one-dimensional parameters only. In Appendix A, we pro-
vide implementation details of the HOA test with Skov-
gaard’s approximations in the context of the NB regression
model.

4. SIMULATION RESULTS

In Sections 4.1 and 4.2, we present Monte Carlo sim-
ulation results comparing type I errors and power of the
three large-sample tests: Wald, likelihood ratio, and HOA
tests. In Section 4.3, we discuss the cost—in terms of statis-
tical power or sample size requirement—of estimating the
unknown dispersion parameter as compared to treating it
as known in single-gene models. Finally, in Section 4.4, we
present results from a simple power-robustness investigation
of the dispersion-modeling approach, the major point being
that single-gene models serve as an important reference in
such investigations.

4.1 Type I error simulations

We use simulations to compare the accuracy—in terms
of producing Type I error rates that match the nominal
levels—of three asymptotic tests: the HOA test based on
the r∗ statistic in (5), the unadjusted likelihood ratio (LR)
test based on the r statistic in (3), and the Wald test based
on the w statistic in (4). For a one-dimensional parameter of
interest, all three of these tests (HOA, LR, and Wald) have
the same asymptotic null distribution—a standard normal
distribution.

We start with a series of two-group comparison examples.
The regression model (2) includes the two-group comparison
model as a special case. To model RNA-Seq read counts in
two groups (say groups 1 and 2), two covariates X1, X2 are
needed (p = 2). One can define the intercept term Xj1 = 1
for all samples j = 1, . . . , n, and define

Xj2 =

{
0 if sample j is from group 1,

1 if sample j is from group 2.

Then β1 will represent the log relative mean of group 1
and β2 the log fold change in relative means between the
two groups. Testing differential gene expression between the

two groups amounts to testing β2 = 0. In the following ex-
amples, we fixed Nj = 106 for all j in equation (2) and
set group means by specifying β values. For example, when
β1 = −9.21, β2 = 0, the mean counts will be 100 for both
groups. We will avoid the issue of count normalization and
let Rj = 1 for all samples and treat them as known when
fitting the NB regression model.

Tables 1 and 2 show Monte Carlo type I error rates for
the three large-sample tests from simulated NB two-group
comparisons, indicating the superiority of the HOA test—in
producing accurate type I error rates—over the Wald and
the unadjusted LR tests. Results in each subtable were based
on 10,000 simulated two-group data sets. Each data set con-
tains 6 NB counts, divided into two groups: one of size 2
and one of size 4. We used the three large-sample tests to
test the two possible one-sided alternatives. When the group
sizes are not balanced, it can happen that the asymptotic
test p-values are more accurate in one tail of the test statistic
distribution than in the other. Using one-sided tests and un-
balanced group sizes enabled us to investigate the behaviors
of the asymptotic p-values in both tails of the test statistic
distribution. In Table 1, we fixed the dispersion at φ = 0.1
and varied the mean values from 10 to 1,000. In Table 2, we
fixed the mean value at μ = 100 and varied the dispersion
from 0.3 to 0.02. In all cases, the type I error rates for the
LR and Wald tests are substantially inflated. The maximum
standard error of simulation is approximately 0.005 in this
set of simulations, so there is a hint of evidence that the
type I error rates for the HOA test are also slightly inflated
in some simulated data sets, but the accuracy of the HOA
test should be adequate for practical applications.

Table 3 shows further simulation results for a simple re-
gression setting. Table 4 shows simulation results for testing
the interaction term in an experiment with a 2 × 2 treat-
ment structure and with 3 replicates per treatment group.
These results show similar conclusions—the HOA test pro-
duces type I error rates consistently and substantially closer
to the nominal error rates than the Wald and unadjusted
LR tests.

We note that the LR and Wald tests are much less accu-
rate when the dispersion is unknown than when the disper-
sion can be treated as known. As a comparison, in Table 5,
we show one set of Monte Carlo type I error rates for HOA,
LR and Wald tests when the dispersion φ was treated as
known. These results are to be compared with those in Ta-
ble 1. More numerical results in the dispersion-known cases
can be found in Di et al. [5]. These results, combined with re-
sults from Table 2, suggest that the increased inaccuracy of
HOA and LR tests in the dispersion-unknown case has more
to do with the fact that we have to estimate the unknown
dispersion parameter rather than the amount of dispersion
in the data. We explained in Section 3 that one aspect of
the HOA adjustment is to reduce the effects of estimating
nuisance parameters. The simulations here confirm the ef-
fectiveness of this aspect of HOA adjustment.
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Table 1. Monte Carlo Type I error rates of one-sided HOA, LR and Wald tests for two-group comparisons at nominal levels
(alpha) 1%, 5%, 10%, and 20%. Results are based on 10,000 simulated two-group data sets. Each data set contains 6 NB

counts, divided into two groups: one of size 2 and one of size 4. The alternative hypothesis is that the group with size 4 has a
smaller (tables (a), (c) and (e)) or greater (tables (b), (d) and (f)) mean. The simulations were performed under the null
hypothesis: both groups were simulated to have the same means (10, 100, or 1,000). The dispersion parameters were

simulated to be 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.007 0.019 0.034
0.05 0.049 0.075 0.089
0.10 0.095 0.128 0.139
0.20 0.195 0.227 0.230

(a) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.008 0.018 0.023
0.05 0.049 0.081 0.086
0.10 0.101 0.140 0.144
0.20 0.204 0.248 0.250

(b) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.035 0.065
0.05 0.057 0.100 0.120
0.10 0.109 0.163 0.174
0.20 0.210 0.253 0.257

(c) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.037 0.068
0.05 0.056 0.106 0.132
0.10 0.108 0.167 0.187
0.20 0.210 0.267 0.275

(d) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.014 0.037 0.064
0.05 0.059 0.103 0.122
0.10 0.111 0.160 0.172
0.20 0.211 0.255 0.259

(e) μ = 1000, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.039 0.072
0.05 0.056 0.107 0.135
0.10 0.108 0.173 0.189
0.20 0.210 0.272 0.281

(f) μ = 1000, φ = 0.1

Finally, we remark that the performance of all three
asymptotic tests will improve as the sample size increases,
which is to be expected. Table 6 shows Monte Carlo type I
errors for the HOA, LR and Wald tests from simulated NB
two-group comparisons where the sample sizes have been
increased to 30.

4.2 Power simulations

We also compared the power of the three large-sample
tests under two-group comparison settings using Monte
Carlo simulation. We considered two different alternative
scenarios since the relative performance of the tests depends
upon whether the larger or smaller group has the larger
mean. In each case, we simulated 100,000 two-group data
sets. Each data set contains 6 NB counts, divided into two
groups: one of size 2 and one of size 4. The dispersion was
simulated to be 0.1 for both groups, but was treated as un-
known when performing the test. The mean of the group
with size 2 was simulated to be 100 and the mean of the
group with size 4 was either 50 or 200. Since the actual type
I errors from the likelihood ratio and the Wald tests do not
match the nominal level, we report size-corrected power. We
determine the critical value of a test (Wald, LR or HOA)
also through Monte Carlo simulation—performing the test

on 100,000 data sets simulated under the null and taking
the α-th quantile of the resulting p-values.

Figure 1 summarizes the size-corrected power for the
HOA, LR and Wald tests at different alpha levels under
the two two-group comparison settings described above. We
noticed that when the larger group (group with size 4) has
a larger mean, the Wald test has better power than the LR
test, and the LR test has better power than the HOA test.
When the larger group has a smaller mean, there is less dif-
ference between the power of the three tests and none of the
tests will dominate at all alpha levels. These behaviors differ
somewhat from what we observed in Di et al. [5] where the
dispersion was treated as known. In that study, we did not
see notable difference in power between the three tests when
testing the two possible one-sided alternatives in two-group
settings. This suggests that the power difference revealed in
the current simulation is closely related to the additional un-
certainty introduced by the unknown dispersion parameter.

4.3 The cost of estimating the dispersion
parameter

With the HOA technique, inferences with correct type I
errors can be made about the regression coefficients in an
NB regression model even when the dispersion parameter
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Table 2. Monte Carlo Type I error rates of one-sided HOA, LR and Wald tests for two-group comparisons at nominal levels
(alpha) 1%, 5%, 10%, and 20%. Results are based on 10,000 simulated two-group data sets. Each data set contains 6 NB

counts, divided into two groups: one of size 2 and one of size 4. The alternative hypothesis is that the group with size 4 has a
smaller (tables (a), (c) and (e)) or greater (tables (b), (d) and (f)) mean. The simulations were performed under the null

hypothesis: both groups were simulated to have the same mean 100. The dispersion parameters were simulated to be 0.3, 0.1,
0.05, or 0.02

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.034 0.056
0.05 0.054 0.096 0.114
0.10 0.107 0.156 0.167
0.20 0.210 0.248 0.250

(a) μ = 100, φ = 0.3

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.037 0.074
0.05 0.054 0.111 0.140
0.10 0.109 0.176 0.195
0.20 0.208 0.273 0.282

(b) μ = 100, φ = 0.3

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.035 0.065
0.05 0.057 0.100 0.120
0.10 0.109 0.163 0.174
0.20 0.210 0.253 0.257

(c) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.037 0.068
0.05 0.056 0.106 0.132
0.10 0.108 0.167 0.187
0.20 0.210 0.267 0.275

(d) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.013 0.037 0.062
0.05 0.057 0.098 0.116
0.10 0.105 0.157 0.168
0.20 0.205 0.247 0.251

(e) μ = 100, φ = 0.05

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.013 0.035 0.062
0.05 0.058 0.104 0.127
0.10 0.110 0.167 0.183
0.20 0.211 0.266 0.273

(f) μ = 100, φ = 0.05

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.009 0.027 0.047
0.05 0.053 0.093 0.110
0.10 0.108 0.152 0.163
0.20 0.208 0.248 0.252

(g) μ = 100, φ = 0.02

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.010 0.025 0.045
0.05 0.054 0.089 0.105
0.10 0.105 0.147 0.159
0.20 0.201 0.248 0.254

(h) μ = 100, φ = 0.02

Table 3. Monte Carlo Type I error rates of one-sided HOA, LR and Wald tests for the coefficient of X in an NB log-linear
regression model, log(μ) = log(N)+β0 +β1X, at nominal levels (alpha) 1%, 5%, 10%, and 20%. Results are based on 10,000
simulated NB samples of size 6, with the predictor X = 1, 2, 4, 8, 16, and 32. These simulations were performed under the true
null hypothesis where β1 = 0, β0 = −9.21 and N = 106, so the mean frequencies were μ = 100 for all counts. The dispersion
parameter was simulated to be 0.1. The alternative hypotheses are β1 < 0 (left side of table) and β1 > 0 (right side of table)

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.037 0.072
0.05 0.058 0.110 0.135
0.10 0.110 0.170 0.189
0.20 0.211 0.270 0.278

(a)

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.034 0.056
0.05 0.054 0.095 0.111
0.10 0.102 0.148 0.160
0.20 0.203 0.242 0.245

(b)
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Table 4. Monte Carlo Type I error rates of one-sided tests for negative (left side of table) or positive (right side of table)
interaction in a 2× 2 design at nominal levels (alpha) 1%, 5%, 10%, and 20%. The corresponding regression model is

log(μ) = log(N) + β0 + β1X1 + β2X2 + β3X1X2, where X1 and X2 are indicator variables for two two-level factors. Results
are based on 10,000 simulated NB samples of size 12 (3 replicates per treatment group). These simulations were performed
under the true null hypothesis, so there was no interaction effect in the simulations (β3 = 0). Other parameters were specified
as N = 106, β0 = −9.21, β1 = 0.41, β2 = 0.69, and the mean frequencies ranged from 100 to 300. The dispersion parameter

was simulated to be 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.013 0.034 0.049
0.05 0.056 0.098 0.111
0.10 0.108 0.159 0.167
0.20 0.211 0.261 0.264

(a)

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.032 0.045
0.05 0.052 0.094 0.107
0.10 0.104 0.154 0.162
0.20 0.205 0.252 0.255

(b)

Table 5. Monte Carlo Type I error rates of one-sided HOA, LR, and Wald tests for two-group comparisons at nominal levels
(alpha) 1%, 5%, 10%, and 20%, when the dispersion φ was treated as known. The simulation models, simulated data
sets and test hypotheses are all the same as in Table 1. The p-values of the LR and Wald tests are much closer to the nominal

levels here

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.009 0.008 0.007
0.05 0.049 0.047 0.045
0.10 0.096 0.092 0.092
0.20 0.197 0.189 0.189

(a) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.009 0.011 0.008
0.05 0.050 0.053 0.051
0.10 0.103 0.107 0.107
0.20 0.200 0.211 0.211

(b) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.011 0.009
0.05 0.051 0.049 0.045
0.10 0.105 0.100 0.097
0.20 0.207 0.199 0.196

(c) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.010 0.011 0.013
0.05 0.050 0.056 0.061
0.10 0.107 0.113 0.117
0.20 0.204 0.214 0.217

(d) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.008 0.008 0.007
0.05 0.052 0.049 0.046
0.10 0.104 0.099 0.094
0.20 0.205 0.199 0.196

(e) μ = 1000, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.013 0.016
0.05 0.053 0.057 0.061
0.10 0.105 0.111 0.116
0.20 0.205 0.215 0.218

(f) μ = 1000, φ = 0.1

is unknown and the sample size is small. The single-gene
NB regression models, together with the HOA inference,
can serve as a basis of comparison in power and sample size
analyses. We illustrate this point using further simulations
in two-group comparison settings.

The single-gene NB regression models we considered in
this paper do not rely on a dispersion model, but there is
necessary cost in statistical power associated with having to
estimate the NB dispersion parameter. Figure 2 compares

the power of the HOA test when the dispersion is unknown
to the power of the HOA test when the dispersion is known.
Under such a small sample situation (the sample size is only
six), the power benefit of knowing the dispersion is sub-
stantial, especially at a small nominal significance level. For
example, for detecting a fold change of 2 in mean at a sig-
nificance level 0.01, the power of the HOA test is almost
doubled (32.3% versus 59.8%) when the dispersion can be
treated as known than when the dispersion is unknown.
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Table 6. Monte Carlo Type I error rates of one-sided HOA, LR and Wald tests for two-group comparisons at nominal levels
(alpha) 1%, 5%, 10%, and 20%. Results are based on 10,000 simulated two-group data sets. Each data set contains 30 NB

counts, divided into two groups: one of size 10 and one of size 20. The alternative hypothesis is that the group with size 20 has
a smaller (left side of table) or greater (right side of table) mean. The simulations were performed under the null hypothesis:
both groups were simulated to have the same mean (10, 100 or 1,000). The dispersion parameters were simulated to be 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.014 0.018
0.05 0.048 0.054 0.059
0.10 0.099 0.107 0.109
0.20 0.199 0.207 0.208

(a) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.010 0.013 0.015
0.05 0.048 0.056 0.058
0.10 0.094 0.106 0.109
0.20 0.198 0.211 0.212

(b) μ = 10, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.008 0.010 0.013
0.05 0.049 0.055 0.058
0.10 0.100 0.107 0.109
0.20 0.204 0.209 0.209

(c) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.015 0.019
0.05 0.051 0.059 0.065
0.10 0.099 0.111 0.116
0.20 0.203 0.216 0.219

(d) μ = 100, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.012 0.015 0.017
0.05 0.051 0.057 0.060
0.10 0.097 0.105 0.107
0.20 0.196 0.202 0.202

(e) μ = 1000, φ = 0.1

Estimated Type I Error Rates
alpha HOA LR Wald

0.01 0.011 0.015 0.019
0.05 0.050 0.058 0.064
0.10 0.102 0.117 0.121
0.20 0.205 0.220 0.222

(f) μ = 1000, φ = 0.1

Figure 1. Monte Carlo power of one-sided HOA tests for two-group comparisons. Each power estimate was based on 100,000
simulated two-group data sets. Each data set contains 6 NB counts, divided into two groups: one of size 2 and the other of
size 4. The group mean was simulated to be μ1 = 100 for the group with size 2 and the mean was a) μ2 = 50 (left panel) or
b) μ2 = 200 (right panel) for the group with size 4. The dispersion was simulated to be φ = 0.1, but was treated as unknown
when performing the tests. The curves summarize the size-corrected power of the one-sided HOA, LR, and Wald tests. At
each α level, the power was determined by comparing test p-value to a critical value determined by Monte Carlo simulation

under the null.
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Figure 2. Monte Carlo power of one-sided HOA tests for two-group comparisons at nominal levels 0.05 and 0.01 as the fold
change in group means increases from 1 (no change) to 2. Each power estimate is based on 10,000 simulated two-group data
sets. Each data set contains 6 NB counts, divided into two groups of size 3 each. The group mean is 100 for the first group
and ranges from 100 to 200 for the second group. The one-sided alternative is that the second group has a greater mean. The
solid curves are power of the HOA test when the dispersion (φ = 0.1) is treated as known. The dashed curves are the power of
the HOA test when the dispersion is unknown. The top two curves are power at the significance level α = 0.05. The bottom

two curves are the power at the significance level α = 0.01.

Another way to quantify the cost of estimating the disper-
sion parameter is to examine the power and sample-size re-
lationship. In Figure 3, we show the power of the HOA tests
for two-group comparisons at three nominal significance lev-
els, 0.05, 0.01, and 0.0001, as the sample sizes increase from
6 to 60. Under this simulation setting, at the nominal sig-
nificance level α = 0.05, about 2 additional observations are
needed for the HOA test with unknown dispersion to match
the power of the HOA test with known dispersion before
the power curves eventually level off. As the nominal sig-
nificance level is lowered to 0.01 and 0.0001, the number of
additional observations needed to match power increases to
4 and 8 respectively. For example, the sample sizes needed
to achieve 60% power at levels 0.05, 0.01 and 0.0001 are
10, 18, and 42 respectively when the dispersion is known,
and are 12, 22, and 50 when the dispersion is unknown. In
other words, the cost of estimating the unknown dispersion
is higher when a lower significance level needs to be used,
for example, when we need to adjust for multiple testing.

We emphasize that the power in the dispersion-known
cases represents ideal scenarios: in practice, the dispersion
is unknown. The results here indicate the potential power
benefits of the dispersion-modeling approach where the dis-
persion is modeled as a simple function and estimated from

a large number of genes. Whether and to what degree those
benefits can be realized in practice, however, depend on
many factors: the adequacy of the dispersion model, the
uncertainties associated with model fitting, and so on.

4.4 Comparison to the dispersion-modeling
approach

In Sections 1 and 2, we mentioned methods that model
the NB dispersion as a parametric or smooth function of
the estimated mean or other measures of abundance of the
expression level and then treat the estimated dispersion val-
ues as the truth in subsequent tests for differential expres-
sion. Intuitively, methods using such a dispersion-modeling
approach should perform well if and only if the dispersion
model adequately captures the dispersion-mean dependence.
Furthering understanding of the power-robustness trade-offs
in the dispersion-modeling approach is one key motivation of
the present study. In this section, we present simulation re-
sults in a scenario where the fitted dispersion model becomes
increasingly inadequate in capturing the true dispersion-
mean dependence. We investigate how the performance of
the dispersion-modeling approach deteriorates under such a
scenario. The single-gene models we developed will serve as
a useful baseline for comparison in this investigation.
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Figure 3. Monte Carlo power of one-sided HOA tests for two-group comparisons at nominal levels 0.05, 0.01 and 0.0001 as
the sample sizes increases from 6 to 60. Each power estimate is based on 10,000 simulated two-group data sets. Each data set
contains two groups of NB counts of equal sizes. The group mean is 100 for the first group and 150 for the second group. The

one-sided alternative is that the second group has a greater mean. The solid curves are power of the HOA test when the
dispersion (φ = 0.1) is treated as known. The dashed curves are the power of the HOA test when the dispersion is unknown.
The top two curves are power at the significance level α = 0.05. The middle two curves are the power at the significance level

α = 0.01. The bottom two curves are the power at the significance level α = 0.0001.

To keep the discussion and presentation simple, we will
consider only one of the methods that use the dispersion-
modeling approach, the NBQ method, which models the
log dispersion as a quadratic function of the log mean rel-
ative frequencies. The NBQ model extends the NBP model
discussed in Di et al. [6] to allow slight curvature in the
dispersion-mean dependence. Several dispersion-modeling
methods have been proposed in recent years, but our ex-
perience indicates that the difference between the differ-
ent modeling methods—in terms of size-corrected statistical
power—is much less significant than the difference between
whether or not to use the modeling approach. [In 11, we pro-
vided more comprehensive review and comparisons between
different dispersion-modeling methods.]

In this study, we simulated several two-group compari-
son data sets using the Arabidopsis data studied in Di et al.
[6] as a template. In each data set, we simulated NB RNA-
Seq read counts for 10,000 genes from 6 samples, divided
in two groups of size 3 each. The library sizes Nj were set
to 106. We specified the mean relative frequencies of each
gene in group 1 by sampling 10,000 estimated mean rela-
tive frequencies for the Arabidopsis data. For group 2, 500
genes were simulated to be over-expressed (with a common
fold change FC), another 500 genes were simulated to be

under-expressed (with a common fold change 1/FC), and
the remaining 9,000 genes were not differentially expressed
and had the same mean relative frequencies as in group 1.
In order to specify the dispersion values, we first specified
an NBQ model

(6) log(φNBQ
ij ) = α0 + α1 log(πij) + α2(log(πij))

2,

where i = 1, 2, . . . , 10,000 indexes genes, j = 1, 2, . . . , 6
indexes samples, and πij ’s are the mean relative frequen-
cies (i.e., πij = μij/Nj). The parameters (α0, α1, α2) =
(−1.396,−0.596, 0.117) were estimated from the Arabidop-
sis data. We then added normal noises to the dispersion
values,

(7) log(φij) = log(φNBQ
ij ) + εi,

where εi’s were identically and independently distributed
according to N(0, σ2).

In different simulated data sets, we varied the levels of
DE (FC = 1.5 or 2.0) among the 1,000 DE genes (500 over-
expressed and 500 under-expressed) and the amount of noise
(σ = 0, 0.5, 1.0 or 2.0) added to the true dispersion model.
(FC and σ were constant within each data set.) For each
simulated data set, we performed the DE tests using 1) the
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Figure 4. Comparison between the single-gene approach and the NBQ approach. Each plot shows the number of truly DE
genes (y-axis) among a specified number of top genes obtaining the smallest p-values (x-axis) from each method: solid curves

correspond to the NBQ approach, dashed curves correspond to the single-gene approach. Each plot is based on 10,000
simulated genes from 6 samples, divided in two groups of size 3 each. Mean relative frequencies in group 1 were sampled from
the estimated values for an Arabidopsis data set. In group 2, 500 genes were simulated to be over-expressed, 500 genes were
simulated to be under-expressed, and the remaining 9,000 genes were simulated to be not DE. For the top row, the fold

change was simulated to be 1.5 for all DE genes. For the bottom row, the fold change was 2.0. From left to right, the noise
levels in the dispersion simulation model were σ = 0.0, 0.5, 1.0 and 2.0 (see equation (7)).

single-gene NB regression models fitted to each gene sepa-
rately assuming the dispersion as unknown, and 2) the NBQ
approach where we first estimated the dispersion by fitting
an NBQ dispersion model (6) to all genes and then treated
the estimated dispersion values as the truth when perform-
ing the DE tests.

In Figure 4, we compared performances of the two ap-
proaches. We compared the numbers of truly DE genes
among a specified number of top genes obtaining the small-
est p-values from each method. When the fitted NBQ model
does not fully capture the mean-dispersion variation, the p-
values from the NBQ approach in general do not match their
nominal levels. This issue is common to all methods using
the dispersion-modeling approach [see, e.g., 8]. The compari-
son presented in Figure 4 is equivalent to comparing the size-
corrected power. In practical application of the dispersion-
modeling approach, though, one still needs to think about
how to adjust the dispersion-modeling approach to provide
the correct p-values even when the fitted model shows lack
of fit. This is indeed a challenging issue and is one of our
future research topics.

The results in Figure 4 generally agree with our intuition.
When the level of noise, σ, is low in the dispersion simula-
tion model (see equation (7)), we see that the dispersion-
modeling approach has better power to identify DE genes.
In other words, the dispersion-modeling approach can be ro-
bust to moderate deviation from the fitted dispersion model.
As the noise level increases, however, the dispersion-mean

relationship becomes less and less likely to be adequately
summarized by a simple parametric function (see Figure 5),
the dispersion-modeling approach starts to fail.

5. DISCUSSION AND CONCLUSION

We have demonstrated that, with the HOA technique,
accurate inferences can be made for regression coefficients
in a single-gene NB regression model even when the dis-
persion parameter is unknown and the sample size is small.
The effect of estimating the unknown dispersion parameter
from a small sample is improved by the HOA adjustment
(see Section 4.1). The single-gene models do not rely on a
dispersion model and thus require fewer assumptions about
the dependence of the dispersion on the mean or other pre-
dicting variables.

The power simulations in Section 4.3 reveal that the cost
of estimating the unknown dispersion parameter—in terms
of statistical power—can be high in small-sample situations
especially when a stringent significance level is used. These
results give some justification for the dispersion-modeling
approach currently used in edgeR, DESeq and NBPSeq (see
Sections 1 and 2 for more details) where the dispersion is
modeled as a simple function of the mean and estimated
from all genes combined. However, to fully understand the
power-robustness trade-offs of the dispersion-modeling ap-
proach requires additional considerations: the adequacy of
the dispersion model, the effect of treating the estimated
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Figure 5. As the noise level σ increases in the simulation model, the fitted dispersion model shows increasing lack of fit. In
each plot above, the x-axis is the estimated mean relative frequencies, the solid curve corresponds to the fitted NBQ

dispersion model, and black dots are the true dispersion values from the simulation model (see equations (6) and (7)). Note
that when fitting the NBQ model (6), the true values of πij were unknown and needed to be replaced by the estimated values.

The estimation errors in πij contributed to the estimation errors in the fitted dispersion model even when σ = 0.

dispersions as known, and so on. To this end, Lund et al.
[8] discussed the issue of uncertainty in dispersion estimates
and [11] proposed a goodness-of-fit test for the adequacy of
the dispersion models. Our simulation study in Section 4.4
reveals that the dispersion-modeling approach is robust to
moderate deviation from the fitted dispersion model. The
single-gene NB regression models and HOA inference ex-
amined in this paper served as a basis for comparison in
this power-robustness investigation. We believe more work
is needed on the general topic of power-robustness as NB
regression methods for RNA-Seq data continue to evolve. In
particular, our simulation study indicates that it is crucial to
accurately quantify the amount of variation that cannot be
explained by the fitted dispersion model. We are currently
developing methods for this purpose.

Our simulations in Section 4.3 also show that the cost
of estimating the dispersion parameter is relatively lower if
a moderate sample size becomes available and when a less
stringent significance level is used (see Figure 3). This indi-
cates that the single-gene models can be practically useful in
targeted investigations of a few selected genes. In such sit-
uations, the burden of multiple testing is lower. In studies
where false discovery rate [21] is used to determine p-value
cutoffs, the critical values needed to call a gene significant
depend on the total number of genes as well as the number
of truly differentially expressing genes. A larger proportion
of truly differentially expressing genes usually leads to a less
stringent p-value cutoff.

The R [16] programs for performing the simulations are
available from the author.
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APPENDIX A. IMPLEMENTATION
DETAILS OF THE HOA

TEST

We first give the general formula for the adjustment term
z in Barndorff-Nielsen’s r∗ statistic with Skovgaard’s ap-
proximations, and then provide details on quantities needed
for computing z and r∗ for the NB regression models.

Let θ = (ψ, ν) where ψ is a one-dimensional parameter
of interest and ν is a nuisance parameter and we wish to
test the null hypothesis ψ = ψ0. Let θ̂ = (ψ̂, ν̂) denote the
maximum likelihood estimate of the full parameter vector
θ and θ̃ = (ψ0, ν̃) denote the maximum likelihood estimate
of ν under the null hypothesis. Let l(θ) = l(θ; y) denote the
log-likelihood, D1(θ; y) denote the score vector

D1(θ; y) =
∂

∂θ
l(θ; y),

and j(θ) and i(θ) denote the observed and the Fisher infor-
mation matrices respectively:

j(θ) = j(θ; y) = − ∂2

∂θ2
l(θ; y).

i(θ) = Varθ D1(θ; y) = Eθ(j(θ; y)).

With Skovgaard’s approximations plugged in, the general
expression for the adjustment term z in Barndorff-Nielsen’s
r∗ statistic r∗ = r − 1

r log(z) is

(8) z ≈ |j(θ̂)|−1/2|i(θ̂)||Ŝ|−1|j(θ̃)νν |1/2
r

[Ŝ−1q̂]ψ
,

where j(θ̃)νν refers to the submatrix corresponding to ν and
the [Ŝ−1q̂]ψ refers to the component corresponding to ψ. The
two unfamiliar quantities in (8),

(9) Ŝ = Covθ̂(D1(θ̂; y), D1(θ̃; y))

and

(10) q̂ = Covθ̂(D1(θ̂; y), l(θ̂; y)− l(θ̃; y)),

are approximations to the so-called sample space derivatives.
Note that the quantities involved in computing z are simi-
lar to those involved in computing the observed and Fisher

information matrices. Specifically, the quantities needed for
computing r∗ are: θ̂, θ̃, l(θ̂, y), l(θ̃, y), j(θ̂), i(θ̂), Ŝ and q̂.

For computing the last three, we need score vectors at θ̂ and
θ̃: D1(θ̂; y) and D1(θ̃; y).

The probability mass function of a single NB random
variable Y with mean μ and size (shape) parameter κ (the
reciprocal of the dispersion) is

Pr(Y = y;μ, κ) =
Γ(κ+ y)

Γ(κ)Γ(1 + y)

(
μ

μ+ κ

)y (
κ

μ+ κ

)κ

.

Under the NB log-linear regression model introduced in Sec-
tion 2,

Yj ∼ NB(μj , φ),

log(μj) = log(NjRj) +XT
j β,

where Xj = (Xj1, . . . , Xjp)
T , β = (β1, . . . , βp)

T . The likeli-
hood of θ = (β, κ), with κ = 1/φ, from a single observation
yj is

(11) lj(θ; yj) = log(Γ(κ+ yj))− log(Γ(κ)) + y log(μj)

+ κ log(κ)− (yj + κ) log(μj + κ),

where μj = μj(β) = NjRj exp(x
T
j β). For a set of indepen-

dent NB counts, y = (y1, . . . , yn), from the NB regression
model,

(12) l(θ; y) =

n∑
j=1

lj(θ; yj).

For testing one of regression coefficients, say, β1, in the NB
regression model, ψ = β1 is the parameter of interest and
ν = (β2, . . . , βp, κ) is a nuisance parameter. The score vector
is D1(θ; y) = ( ∂l

∂β ,
∂l
∂κ ) with components

∂l

∂β
=

∑
j

∂lj
∂μj

∂μj

∂β
=

∑
j

yj − μj

σ2
j

μjxj ,

∂l

∂κ
=

∑
j

[
Ψ(κ+ yj)−Ψ(κ)+ ln(κ)+1− ln(μj +κ)− κ+ yj

μj +κ

]
,

where σ2
j = μj + μ2

j/κ and Ψ is the digamma function. The
components in the observed information j(θ) are

− ∂2l

∂β2 =−
n∑

j=1

[
∂2l

∂μj
2

∂μj

∂β

∂μj

∂β

T

+
∂l

∂μj

∂2μj

∂β∂βT

]

=−
n∑

j=1

[(
− yj
μ2
j

+
yj +κj

(μj −κj)2

)
μ2
j +

(yj −μj)μj

σ2
j

]
xjx

T
j ,

− ∂2l

∂κ2 =−
∑ [

Ψ1 (κ+ yj)−Ψ1 (κ) + κ−1

− 2 (μj + κ)
−1

+
κ+ yj

(μj + κ)
2

]
,
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and

− ∂2l

∂β∂κ
= −

∑
j

[
− (μj + κ)

−1
+

κ+ yj

(μj + κ)
2

]
μjxj ,

where Ψ1 is the trigamma function.
For computing z in equation (8), we also need the Fisher

information

i(β̂) = Varβ̂(D1(β̂;Y )),

Ŝ in equation (9), and q̂ in equation (10). These quantities do
not have closed-form expressions, but can be approximated
using Monte Carlo simulations. For that purpose, we simply
need to simulate NB counts from the NB regression model
under the full model (i.e., θ = θ̂).

For finding the maximum likelihood estimate of θ under
the null and the alternative models, we use the R function
optimize [16, 4] to maximize the profile likelihood

lp(κ) = max
β

l(β, κ),

where maxβ l(β, κ) means maximizing the likelihood over
β for fixed κ, which can be done using the standard Fisher
scoring algorithm for generalized linear models [see, e.g., 10].
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