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Efficient estimation for the additive hazards
model in the presence of left-truncation
and interval censoring
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The additive hazards model is one of the most commonly
used regression models in failure time data analysis and
many authors have discussed its inference under various sit-
uations (Lin and Ying, 1994; Lin et al., 1998; Zeng et al.,
2006; Wang et al., 2010). In this paper, we consider it when
one faces left-truncated and interval-censored data, which
often occur in, for example, epidemiological and medical
follow-up studies. For inference, an efficient sieve maximum
likelihood estimation procedure is developed and assessed by
simulation studies, which indicate that the proposed method
works well in practical situations. An illustrative example is
also provided.
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1. INTRODUCTION

The additive hazards model is one of the most commonly
used regression models in failure time data analysis, espe-
cially when one is interested in excess risk or risk difference
(Kalbfleisch and Prentice, 2002; Klein and Moeschberger,
2003). For the inference about the model, many estimation
procedures have been proposed under various situations (Lin
and Ying, 1994; Lin et al., 1998; Zhou and Sun, 2003; Zeng
et al., 2006; Wang et al., 2010). For example, some of the
early works were given by Lin and Ying (1994) and Lin et al.
(1998), who considered the situations of right-censored data
and current status data described below, respectively. More
recently, both Zeng et al. (2006) and Wang et al. (2010)
discussed the fitting of the model to interval-censored data.

By interval-censored failure time data, we mean that the
failure time of interest is observed only to belong to an inter-
val or a window instead of observed exactly or right-censored
(Finkelstein, 1986; Sun, 2006; Chen et al., 2012). It is easy to
see that such data naturally occur in many fields including
medical follow-up studies such as clinical trials. In these sit-
uations, it is usually the case that study subjects are given a
set of prespecified clinical or observation times for checking
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the status or occurrence of a certain disease or medical con-
dition. However, it is well-known that it is common that the
real observation times will be different from subject to sub-
ject and the occurrence time of the disease or medical con-
dition is known only to be between some observation times.
For the case where each subject is observed only once, the
observed data are usually referred to as current status data
(Jewell and van der Laan, 2004ab). Other fields that often
produce interval-censored data include demographical stud-
ies, economic and financial studies, epidemiological studies,
social sciences and tumorigenicity experiments.

Many authors have investigated regression analysis of
interval-censored failure time data and some early refer-
ences include Finkelstein (1986), Huang (1996) and Huang
and Wellner (1996). For relatively complete and recent ref-
erences, the readers are referred to Sun (2006) and Chen et
al. (2012). In addition to censoring, a failure time study may
also involve the left-truncation, which occurs if a subject has
to satisfy certain conditions or experience some initial events
to be included in a study. It is apparent that the truncation
can make the analysis much more complicated and the anal-
ysis would yield biased results if one ignores the truncation
as discussed below (Pan and Chappell, 1999).

Several methods have been proposed for regression anal-
ysis of left-truncated and interval-censored data. For exam-
ple, Kim (2003) considered left-truncated and current sta-
tus data and Pan and Chappell (2002) and Shen (2014) in-
vestigated the general situation, all under the proportional
hazards model. However, it does not seem to exist an estab-
lished procedure for fitting the additive hazards model to
such data. It is well-known that sometimes the proportional
hazards model may not fit the data well or be appropriate
and the additive hazards model describes a different aspect
(Lin and Ying, 1994; Kulich and Lin, 2000). In particular,
one may want to employ the additive hazards model when
the interest is on additive or excess risk as often in, for
example, social sciences, for which the proportional hazards
model is clearly not appropriate. In the following, an efficient
estimation procedure is presented for the additive hazards
model with left-truncated and interval-censored data.

The remainder of the paper is organized as follows. We
will begin in Section 2 with introducing some notation,
the model and the assumptions used throughout the pa-
per. A sieve maximum likelihood estimation procedure is
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then developed in Section 3 for estimation of unknown
parameters. In the method, piecewise linear functions are
used to approximate the baseline cumulative hazard func-
tion (Huang and Rossini, 1997). The resulting estimators of
regression parameters are shown to be consistent and have
asymptotic normal distribution and furthermore, we show
that they are efficient. Section 4 presents some results ob-
tained from a simulation study conducted to evaluate the
proposed estimation procedure and they suggest that the
approach works well for practical situations. An illustrative
example is provided in Section 5 and Section 6 contains some
discussion and concluding remarks.

2. NOTATION, MODEL AND
ASSUMPTIONS

Consider a failure time study that involves n indepen-
dent subjects as well as both left-truncation and interval-
censoring. For subject i, let Ti denote the failure time of
interest and suppose that there is a vector of covariates
denoted by Zi, i = 1, ..., n. Also let Xi denote the left-
truncation time and Ui and Vi the interval-censored observa-
tion times associated with subject i such thatXi < Ui < Vi

and one only knows Xi ≤ Ti ≤ Ui, Ui < Ti ≤ Vi or
Ti > Vi. Define δ1i = I(Ti ≤ Ui), δ2i = I(Ui < Ti ≤ Vi),
δ3i = I(Ti > Vi), i = 1, ..., n. Then the observed data have
the form

{Yi = (δ1i, δ2i, Xi, Ui, Vi, Zi) ; i = 1, ..., n } .

In the following, we suppose that the main objective is to
make inference about the effects of the Zi’s on the Ti’s.

To describe the covariate effects, we will assume that
given Zi, the hazard function of Ti has the form

(1) λ(t|Z) = λ0(t) + βTZ ,

where λ0(t) denotes an unknown baseline hazard function
and β is a vector of regression parameters. That is, the Ti’s
follow the additive hazards model (Lin and Ying, 1994).

Define Λ0(t) =
∫ t

0
λ0(s)ds, the baseline cumulative haz-

ard function, and S0(t) = exp{−Λ0(t) }, the baseline sur-
vival function. Then the survival function of Ti has the form
S(t) = S0(t) exp{−βTZit }.

In the following, we will assume that given Zi, (Xi, Ui, Vi)
are independent of Ti. Then the conditional likelihood func-
tion of β and Λ0 given Ti ≥ Xi can be written as

Ln(β,Λ0) =

n∏
i=1

{P (Xi ≤ Ti ≤ Ui|Ti ≥ Xi)}δ1i

{P (Ui < Ti ≤ Vi|Ti ≥ Xi)}δ2i {P (Ti > Vi|Ti ≥ Xi)}δ3i .

The resulting log-likelihood function has the form

ln(β,Λ0) =

n∑
i=1

{
Λ0(Xi) + βTZiXi

}
(2)

+ δ1i log
{
exp{−Λ0(Xi)− βTZiXi}

− exp{−Λ0(Ui)− βTZiUi}
}

+ δ2i log
{
exp{−Λ0(Ui)− βTZiUi}

− exp{−Λ0(Vi)− βTZiVi}
}

+ (1− δ1i − δ2i)
{
−Λ0(Vi)− βTZiVi

}
.

In the next section, we will discuss the maximization of the
log-likelihood function above with the focus on the inference
about regression parameters β.

3. EFFICIENT SIEVE MAXIMUM
LIKELIHOOD ESTIMATION

Now we consider the estimation of β and Λ0. For this, it
is apparent that a nature approach is to maximize the log-
likelihood function ln directly. On the other hand, it is well-
known that the maximization is not easy or straightforward
due to the dimension of Λ0(t). To deal with this, following
Huang and Rossini (1997) and others, we propose to employ
the sieve approach that approximates Λ0(t) by using linear
functions.

Let 0 = t0 < t1 < . . . < tqn = τ denote a partition of
the observation interval [0, τ ], where τ denotes the largest
follow-up time. Here qn is usually called the sieve number
and set to be an increasing integer along with n at the rate
O(nκ) with 0 < κ < 1/2. Define Hn to be the set of all
linear functions

Λn(t) =

qn∑
l=1

Il(t)

{
hl−1 +

hl − hl−1

tl − tl−1
(t− tl−1)

}
with Λn(t) ≤ M for 0 ≤ t ≤ τ . Here Il(t) = I(tl−1 < t ≤
tl), M is a constant, and 0 = h0 ≤ h1 ≤ h2 ≤ . . . ≤ hqn ≤
M are unknown parameters. It is easy to see that Λn(tl) =
hl, l = 0, 1, . . . , qn. By following the sieve approach, we
can estimate β and Λ0 by maximizing ln(β,Λ0) over Θn =
B × Hn, where B denotes the parameter space for β. In
practice, it is more convenient to reparameterize the hl’s
by hl =

∑l
k=1 eγk to remove the range limitation, where

γ = (γ1, . . . , γqn)
T are some unknown parameters. With

respect to γ, we can rewrite Λn(t) as

Λn(t) = I1(t) e
γ1

t− t0
t1 − t0

(3)

+

qn∑
l=2

Il(t)

(
l−1∑
k=1

eγk + eγl
t− tl−1

tl − tl−1

)
.

It is easy to see that Λn(t) is a piecewise linear function
and by focusing on the space Θn, we have a finite parame-
ter estimation problem compared to the original estimation
problem. Also it can be easily shown that as n → ∞, Θn con-
verges to the original parameter space Θ and thus Θn can
be used as a sieve space.
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For estimation of β and Λ0, we propose to use the esti-
mator θ̂n = (β̂n, Λ̂n) defined as

ln(β̂n, Λ̂n) = max
Θn

ln(β,Λ) = max
β,γ′

ls
ln(β, γ

′
ls) .

For the determination of θ̂n, it is apparent that a natural
method is to solve the following score equations

U(β) =

n∑
i=1

δ1i
Sni(Xi)(−ZiXi)− Sni(Ui)(−ZiUi)

Sni(Xi)− Sni(Ui)
(4)

+ δ2i
Sni(Ui)(−ZiUi)− Sni(Vi)(−ZiVi)

Sni(Ui)− Sni(Vi)

+ (1− δ1i − δ2i)(−ZiVi) + ZiXi = 0

and

U(γl) =

n∑
i=1

δ1i
Sni(Xi)(−∂Λn(Xi)

∂γl
)− Sni(Ui)(−∂Λn(Ui)

∂γl
)

Sni(Xi)− Sni(Ui)

(5)

+ δ2i
Sni(Ui)(−∂Λn(Ui)

∂γl
)− Sni(Vi)(−∂Λn(Vi)

∂γl
)

Sni(Ui)− Sni(Vi)

+ (1− δ1i − δ2i)(−
∂Λn(Vi)

∂γl
)

+
∂Λn(Xi)

∂γl
= 0 , l = 1, ..., qn ,

where

Sni(t) = exp(−Λn(t)− βTZit),

∂Λn(t)

∂γl
=

{
I(t > tl) +

t− tl−1

tl − tl−1
Il(t)

}
eγl .

In the following, we will establish the consistency of
θ̂n and the asymptotic normality and efficiency of β̂n. For
this, let G(x, u, v) denote the joint distribution function of
(Xi, Ui, Vi) and define the distance

d{(β1,Λ1), (β2,Λ2)} = ‖ β1 − β2 ‖2 + ‖ Λ1 − Λ2 ‖2 ,

where

‖ Λ1 − Λ2 ‖22 =

∫
{Λ1(x)− Λ2(x)}2 + {Λ1(u)− Λ2(u)}2

+ {Λ1(v)− Λ2(v)}2dG(x, u, v) .

All limits below are taken as n → ∞. First we will give a
result about the information matrix for β.

Theorem 3.1. Suppose that the regularity conditions (A1)–
(A7) described in the Appendix hold. Then it can be shown
that the information matrix I(β) given in the Appendix for
β is a positive definite matrix with finite entries.

Theorem 3.2. Suppose that the regularity conditions (A1)–
(A7) described in the Appendix hold. Then we have

d(θ̂n, θ0) = d{(β̂n, Λ̂n), (β0,Λ0)} → 0

in probability. Furthermore, it can be shown that

d(θ̂n, θ0) = d{(β̂n, Λ̂n), (β0,Λ0)}
= Op(max{n−(1−κ)/2 , n−rκ})

in probability with 0 < κ < 1/2, r defined in the condition
(A5) and β0 being the true value of β.

Theorem 3.3. Suppose that β0 is an interior point of B and
1/4r < κ < 1/2. Also assume that the regularity conditions
(A1)–(A7) described in the Appendix hold. Then we have

√
n(β̂n − β0) = −I−1(β0)

√
nPnl

∗
β0
(Y ) + op(1)

→ N( 0, I−1(β0) )

in distribution, where Pn denotes the empirical measure of
{Yi = (δ1i, δ2i, Xi, Ui, Vi, Zi) ; i = 1, . . . , n } and l∗β the effi-
cient score function for β derived in the Appendix.

The proofs of the results above are sketched in the Ap-
pendix. Note that Theorem 3.2. suggests that the proposed
estimator θ̂n is not only consistent, but also can be optimal
with setting κ = 1/(1 + 2r), which gives the convergence
rate of nr/(1+2r), equal to n1/3 or n2/5 for r = 1 or 2, re-
spectively. Theorem 3.3. tells us that one can approximate
the distribution of β̂n by the normal distribution and its
asymptotic covariance reaches the lower bound. That is, β̂n

is efficient.
To make inference about β based on the result above, one

needs to estimate the information matrix I(β). For this, one
common method is to use the observed information matrix,
which would involve the calculation of the second deriva-
tives of the log likelihood. Instead we suggest to employ
the profile likelihood method (Murphy and van der Vaart,
1999). Specifically, let pln(β) = ln(β,Λβ) denote the profile
log likelihood for β, where Λβ denotes Λ that maximizes
ln(β,Λ) for given β. Also let h1, . . . , hd denote random vari-
ables and ei a d-dimensional vector of zeros except the ith
element being equal to one, where d denotes the dimension
of β. For i �= j = 1, ..., d, define

−Îij =
1

nhihj
(pln(β̂ + hiei + hjej)− pln(β̂ + hiei)

− pln(β̂ + hjej) + pln(β̂))

and

−Îii =
1

nh2
i

(pln(β̂ + hiei)− 2pln(β̂) + pln(β̂ − hiei))

for i = 1, ..., d. Then one can show that if hi
P→ 0 and

both hi/hj and (
√
nhi)

−1 are bounded in probability, Îij
converges in probability to the (i, j)th component of the
information matrix I(β). In other words, I(β) can be con-
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Table 1. Simulation results on estimation of β with discrete covariates

β0 n Bias SSE ESE CP

20% left-truncation

0 100 -0.0110 0.2830 0.2691 0.949
200 -0.0053 0.1908 0.1871 0.952

0.5 100 0.0119 0.3380 0.3442 0.955
200 0.0013 0.2388 0.2368 0.948

1 100 0.0169 0.4204 0.4149 0.949
200 0.0135 0.2823 0.2860 0.948

40% left-truncation

0 100 -0.0086 0.2852 0.2731 0.945
200 -0.0050 0.1929 0.1858 0.952

0.5 100 0.0076 0.3430 0.3397 0.956
200 0.0070 0.2403 0.2384 0.951

1 100 0.0233 0.4200 0.4135 0.950
200 0.0074 0.2883 0.2856 0.947

Table 2. Simulation results on estimation of β with continuous covariates

β0 n Bias SSE ESE CP

20% left-truncation

0 100 -0.0070 0.4952 0.4554 0.933
200 -0.0057 0.3283 0.3204 0.952

0.5 100 -0.0166 0.6014 0.5618 0.939
200 0.0075 0.3947 0.3968 0.947

1 100 0.0186 0.7219 0.6589 0.928
200 0.0088 0.4558 0.4582 0.938

40% left-truncation

0 100 -0.0148 0.4876 0.4468 0.935
200 -0.0034 0.3202 0.3214 0.953

0.5 100 -0.0178 0.6000 0.5712 0.936
200 0.0060 0.4007 0.3999 0.956

1 100 0.0308 0.7210 0.6616 0.934
200 0.0206 0.4829 0.4622 0.949

sistently estimated by Î = ( Îij ). For the numerical stud-

ies below, we use either hi = max(|β̂i|, 1) × sign(β̂i)/
√
n or

hi = sign(β̂i)/
√
n.

4. A SIMULATION STUDY

To evaluate the finite sample performance of the estima-
tion procedure proposed in the previous sections, we con-
ducted a simulation study. In the study, for the covariate, we
considered three cases. The first two are to assume that there
exists one covariate and the Zi’s follow either the Bernoulli
distribution with the success probability being 0.5 or the
uniform distribution over (0, 1), respectively. The third case
is to assume that there exist two covariates with the first
one generated from the Bernoulli distribution with the suc-
cess probability being 0.5 and the second covariate from the
uniform distribution over (0, 1). For the generation of the
left-truncated and interval-censored times, we first gener-
ated W1i, W2i and W3i from the exponential distributions
with the parameters a, b and c, respectively, and then took

Xi = W1i, Ui = Xi+W2i+0.1 and Vi = Ui+W3i+0.1. The
failure times of interest Ti’s were generated under model (1)
with λ0(t) = 1 and the empirical approach was employed
to obtain the required truncation and censoring percentages.
The results given below are based on 1,000 replications.

Tables 1 and 2 present the results on estimation of β
based on the simulated data with the Zi’s being either dis-
crete or continuous, respectively, the true value β0 = 0, 0.5
or 1, and n = 100 or 200. The results include the esti-
mated bias (Bias) given by the average of the estimators
minus the true value of β, the sample standard error (SSE),
the average of the estimated standard errors (ESE) and the
95% empirical coverage probability (CP). Here we took qn
to be the integer part of n1/3. In each of the tables, the top
part is for the case of 20% left-truncation, while the bottom
part corresponds to 40% left-truncation. These results sug-
gest that the proposed estimator seems to be unbiased and
the variance estimation method also seems to work well. As
expected, the results became better when the sample size
increased.
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Table 3. Simulation results on estimation of β with two covariates

β0 n Bias SSE ESE CP

(β1, β2) = (0.5, 1)

100 β1 0.0251 0.4461 0.4427 0.955
β2 0.0355 0.8077 0.7468 0.933

200 β1 -0.0096 0.3061 0.3086 0.953
β2 -0.0089 0.5416 0.5243 0.939

(β1, β2) = (0.5, 0.5)

100 β1 0.0338 0.4017 0.3880 0.944
β2 0.0167 0.7348 0.6425 0.925

200 β1 0.0115 0.2805 0.2729 0.948
β2 -0.0044 0.4755 0.4530 0.939

Table 4. Estimated biases with and without taking into account the left-truncation

Covariate Type % of left-truncation n With left-truncation Without (ignoring) left-truncation

discrete 20% 100 -0.0124 -0.2896
200 -0.0052 -0.2816

40% 100 0.0114 -0.5282
200 0.0097 -0.5262

continuous 20% 100 0.0156 -0.2954
200 0.0089 -0.2767

40% 100 -0.0260 -0.5953
200 -0.0112 -0.5357

The results on estimation of β with two covariates are
given in Table 3 with β0 = (0.5, 1)′ or (0.5, 0.5)′, 40% left-
truncation percentage and the other set-ups being the same
as in Tables 1 and 2. Again these results indicate that the
proposed estimation procedure seems to work well. In ad-
dition, the CP in all three tables plus the quantile plots
of the standardized estimator against the standard normal
variable, which are not shown here, suggest that the normal
approximation to the distribution of the proposed estima-
tor seems to be appropriate too for the situations considered
here. It is interesting to note that the results obtained un-
der two different truncation percentages are close to each
other. In other words, for the situations considered here,
the truncation percentage does not seem to have significant
effects.

To further investigate the truncation effect on the esti-
mation of regression parameters, we repeated the studies
above but assuming no truncation in fitting the proposed
estimation procedure to the simulated data. In other words,
we compared the proposed method to the same method but
ignoring the truncation. Table 4 displays the estimated bi-
ases for the two approaches under various situations with
β0 = 1 and the other set-ups being the same as with ei-
ther Table 1 or 2. It is easy to see that the ignoring of the
left-truncation yielded biased estimates. In all results given
above, we chose the sieve number qn to be the integer part
of n1/3, which is 4 or 5 for n = 100 or 200, respectively.
As suggested by a referee, it would be useful to evaluate
the robustness of the proposed estimation procedure to the
sieve number. Table 5 presents the results on estimation of

β by using different sieve numbers with the other set-ups
being the same as in Table 1. One can see from the table
that they are similar to each other and suggest that the pro-
posed estimation procedure seems to be robust to the sieve
number.

Note that in the above, the focus has been on the interval-
censored data that can be described by the two variables Ui

and Vi. In practice, the observed data may have a different
format like those arising from periodic follow-up studies such
as clinical trials. To assess the validity of the proposed esti-
mation procedure for these situations, we also performed the
study in which each subject was supposed to be observed at
a sequence of fixed, equally spaced time points t1 < · · · < tk.
Furthermore, it was assumed that at each time point, a sub-
ject was actually observed with the probability p, and we
defined Ui and Vi to be the largest and smallest tj at which
subject i was observed and that are smaller and larger than
the generated failure time Ti, respectively. The other set-ups
are the same as before and Table 6 gives the obtained estima-
tion results with 40% left-truncation, the Zi’s following the
Bernoulli distribution, k = 10, tj = 1 + 0.1j, j = 1, . . . , 10
and p = 0.6 or 0.8. They indicate that the proposed ap-
proach seems still to be valid and perform well. We also
considered other set-ups and obtained similar results.

5. AN ILLUSTRATIVE EXAMPLE

In this section, we illustrate the inference procedure pro-
posed in the previous sections by applying it to the AIDS
cohort study of hemophiliacs discussed in DeGruttola and
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Table 5. Simulation results with different sieve numbers

n qn Bias SSE ESE CP

20% left-truncation

100 3 0.0166 0.3414 0.3392 0.954
4 -0.0182 0.3406 0.3392 0.947
5 -0.0199 0.3197 0.3338 0.942

200 4 0.0127 0.2407 0.2349 0.953
5 0.0113 0.2364 0.2349 0.944
6 -0.0029 0.2321 0.2309 0.926

40% left-truncation

100 3 0.0156 0.3402 0.3381 0.956
4 0.0198 0.3462 0.3396 0.948
5 0.0157 0.3513 0.3427 0.954

200 4 0.0143 0.2312 0.2350 0.957
5 0.0103 0.2429 0.2353 0.947
6 0.0045 0.2457 0.2358 0.946

Table 6. Simulation results based on the simulated data from periodic follow-up studies

β0 n Bias SSE ESE CP

p = 0.8

1 100 0.0501 0.3843 0.3724 0.957
200 0.0157 0.2569 0.2545 0.950

0.5 100 0.0145 0.3158 0.3000 0.950
200 0.0115 0.2050 0.2053 0.953

0 100 -0.0086 0.2539 0.2422 0.950
200 -0.0025 0.1641 0.1655 0.953

p = 0.6

1 100 0.0407 0.4010 0.3763 0.954
200 0.0158 0.2524 0.2560 0.955

0.5 100 0.0097 0.3067 0.2972 0.959
200 0.0084 0.2111 0.2061 0.950

0 100 -0.0096 0.2561 0.2416 0.948
200 0.0050 0.1642 0.1664 0.956

Lagakos (1989) and Kim et al. (1993) among others. The
original study consists of 257 patients with Type A or B
hemophilia and these patients were at risk for HIV-1 infec-
tion due to the contaminated blood factor that they received
for their treatment. Also the patients are classified into two
groups, lightly and heavily treated groups, according to the
amount of blood they received and one of the original study
goals is to assess the effect of the amount of blood or the
group effect. For both HIV-1 infection and AIDS diagno-
sis times, only interval-censored data are available. For the
analysis below, following others, we will focus on the 188
patients who were found to be infected by HIV-1 at the
time of the analysis and among them, 41 were diagnosed to
have AIDS. Our interest is on the group effect on the AIDS
diagnosis time.

For the analysis, define Ti to be the AIDS diagnosis time
for patient i and Zi = 0 if the ith patient belongs to the
lightly treated group and Zi = 1 otherwise. By following
Kim (2003), we will use the midpoint of the observed interval
for HIV-1 infection as the left-truncation time for the AIDS

diagnosis time. Some comments on this are given below. To
apply the proposed estimation procedure, we tried several
sieve numbers. With qn = 5, we obtained β̂n = 0.0172
with the estimated standard error of 0.0080, which gives
the p-value of 0.0324 for testing no group effect. If using
qn = 9, the method yielded β̂n = 0.0197 with the esti-
mated standard error being 0.0086, corresponding to the
p-value of 0.0224 for the same test. The results with other
qn are similar and they all suggest that the patients in the
heavily treated group had significantly shorter AIDS diag-
nosis time or higher risk of developing AIDS than in the
lightly treated group. For comparison, we also analyzed the
data by using the proposed method but ignoring the trun-
cation as discussed in the previous section. The resulting
estimates with qn = 5 and qn = 9 for the group effect are
−0.0088 or −0.0521, respectively. The negative sign of the
estimated treatment effect clearly suggests that the ignoring
of left-truncation can lead to some misleading or completely
different results or conclusions as suggested by the simula-
tion study.
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6. CONCLUDING REMARKS

This paper discussed regression analysis of left-truncated
and interval-censored failure time data arising from the ad-
ditive hazards model. For estimation, an efficient sieve max-
imum likelihood estimation procedure was developed with
the use of piecewise linear functions to approximate the un-
known baseline cumulative hazard function. In addition, we
established the asymptotic properties of the proposed esti-
mators including the efficiency of the estimated regression
parameters. The simulation study indicates that the pro-
posed method seems to work well for practical situations.

Note that in the proposed estimation approach, we have
employed piecewise linear functions to approximate the
baseline cumulative hazard function and one advantage of
such approximation is its simplicity. Alternatively, one may
use any other smooth functions and develop similar estima-
tion procedures. Among others, for example, one may apply
I-spline functions or the seminonparametric approximation
discussed in Zhang and Davidian (2008). However, the im-
plementation may be more complicated. Also it is worth
noting that for the implementation of the proposed estima-
tion procedure, as usual, one faces a constrained estimation
problem as only values of β that makes λ(t|Z) in model (1)
nonnegative are valid.

As pointed out above, the focus of this paper has been
on the left-truncated and interval-censored data that can
be characterized by variables Xi, Ui and Vi. In particular, it
has been assumed that the truncation time is exactly known.
Sometimes this may not be the case (Turnbull, 1976) and
instead the truncation time may be known only to belong
to an interval. In this latter situation, it is easy to see that
a simple and natural approach is to employ an imputation
procedure to impute the truncation time and then apply
the proposed method as in Section 5. However, this clearly
may not yield a valid analysis and an appropriate approach
should be to apply some new methods that can deal with
both interval-truncated and interval-censored data, whose
development is beyond the scope of this paper. With respect
to the format of censoring intervals, in reality, one could
face the interval-censored data given or described by other
formats such as those arising from clinical trials or periodic
follow-up studies in general. The simulation study given in
Section 4 indicates that the proposed estimation procedure
seems to be valid for these types of interval-censored data
too. On the other hand, of course, it would be useful to
provide some theoretical justification to it.

There exist several other directions for more research too.
For example, it would be helpful to develop a data-driven
method for the selection of the sieve number in the proposed
approach. In addition to left-truncation, sometimes one may
also face right-truncation or a truncation interval (Turn-
bull, 1976) as mentioned above and thus it would be use-
ful to generalize the presented method to these situations.
Another direction for future research is the investigation
of the model adequacy and the development of some test

procedures for it. In the case of right-censored failure time
data, some procedures have been developed based on various
types of residuals. For interval-censored data, however, there
seems to exist little research except Ghosh (2003), who con-
sidered the current status data situation only. Of course, a
related question is the robustness of the proposed estimation
procedure to model (1). For this, we conducted a small sim-
ulation study and the results indicate that as expected, the
bias of the estimated regression parameter increased when
the underlying model moved away from model (1).
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APPENDIX A. PROOFS OF THE
THEOREMS

Before presenting the proof, we will first define some no-
tation and describe the regularity conditions needed. Let
the parameter space be Θ = B × Φ, where B is a bounded
subset of Rd and Φ is defined by

Φ = {Λ : [τ0, τ1] → [m0,M0] and Λ is nondecreasing}.

Condition (A1). Given Z, (X,U, V ) are independent of T .

Condition (A2). The joint distribution of (X,U, V, Z ) does
not depend on (β,Λ0 ) .

Condition (A3). There exist 0 < τ0 < τ1 and 0 < m0 <
M0 < ∞, such that P (τ0 ≤ X < U < V ≤ τ1) = 1 and
m0 < Λ0(τ0) < Λ0(τ1) < M0.

Condition (A4). There exists a positive number η such that
P (U −X ≥ η) = 1 and P (V − U ≥ η) = 1.

Condition (A5). For r = 1 or 2, the rth derivative of Λ0(t)
is bounded and continuous over [τ0, τ1].

Condition (A6). (a) Z is bounded, that is, there exists z0 >
0, such that P (|Z| ≤ z0) = 1. (b) The distribution of Z is
not concentrated on any proper affine subspace of Rd, (i.e.
of dimension d− 1 or smaller).

Condition (A7). The conditional density g(x, u, v|z) of
(X,U, V ) given Z has uniformly bounded partial derivatives
with respect to x, u and v. The bounds of these partial
derivatives do not depend on z.

Note that the regularity conditions described above are
commonly used in the interval-censored data literature
(Huang, 1996; Huang and Wellner, 1996). In particular, con-
ditions (A1) and (A2) are to ensure the independent censor-
ship and conditions (A3) and (A6)(a) usually hold in typical
medical studies. The condition (A4) is commonly required
to ensure the existence of interval censoring and (A6)(b) is
simply for the identification of the model.
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A.1 Proof of Theorem 3.1

To calculate the information for β. Let l(β,Λ) be the log-
likelihood function for a sample size n = 1. Define functions
Ai, i = 1, 2, 3, 4, by

A1(x, u, v, z) =
exp(−Λ(x)− βT zx)

exp(−Λ(x)− βT zx)− exp(−Λ(u)− βT zu)
,

A2(x, u, v, z) =
exp(−Λ(u)− βT zu)

exp(−Λ(x)− βT zx)− exp(−Λ(u)− βT zu)
,

A3(x, u, v, z) =
exp(−Λ(u)− βT zu)

exp(−Λ(u)− βT zu)− exp(−Λ(v)− βT zv)
,

and

A4(x, u, v, z) =
exp(−Λ(v)− βT zv)

exp(−Λ(u)− βT zu)− exp(−Λ(v)− βT zv)
.

By conditions (A3) and (A4), A1, A2, A3 and A4 are positive
functions of (x, u, v, z). Let y = (δ1, δ2, x, u, v, z). Then the
score function for β is

l̇β(y) =
∂

∂β
l(y;β,Λ) = z{δ1(−xA1 + uA2)

+ δ2(−uA3 + vA4)− (1− δ1 − δ2)v + x}.

The score operator for Λ is

l̇Λφ(y) =
∂

∂s
l(y;β,Λ + sφ) |s=0

= δ1(−φ(x)A1 + φ(u)A2) + δ2(−φ(u)A3 + φ(v)A4)

− (1− δ1 − δ2)φ(v) + φ(x).

Let F is the distribution corresponding to Λ and P is
the joint probability measure of (δ1, δ2, X, U, V, Z), then the
score operator l̇Λ maps L0

2(F ) to L0
2(P ), where L0

2(F ) ≡
{a :

∫
adF = 0 and

∫
a2dF < ∞}, and L0

2(P ) is defined

similarly as L0
2(F ). Let l̇TΛ : L

0
2(P ) → L0

2(F ) be the adjoint

operator of l̇Λ, i.e., for any a ∈ L0
2(F ) and b ∈ L0

2(P ),

〈b, l̇Λa〉P = 〈l̇TΛb, a〉F ,

where 〈·, ·〉P and 〈·, ·〉F are the inner products in L0
2(P ) and

L0
2(F ), respectively. We need to find φ∗ such that l̇β − l̇Λφ

∗

is orthogonal to l̇Λφ in L0
2(P ). This amounts to solving the

following normal equation:

(A1) l̇TΛ l̇Λφ
∗ = l̇TΛ l̇β .

First note that we have

l̇TΛ l̇Λφ(t) = E[l̇Λφ(Y )|T = t]

= EZE[l̇Λφ(Y )|T = t, Z = z]

by Groeneboom and Wellner (1992), pages 8–9, or Bickel et
al. (1993), pages 271–272. Also by conditions (A1) and (A4),

E[l̇Λφ(Y )|T = t, Z = z] =

∫ t

x=τ0

∫ τ1

u=t

∫ τ1

v=u+η

[−φ(x)A1

+ φ(u)A2]g(x, u, v|z)1[u−x≥η]dvdudx+

∫ t

x=τ0

∫ t

u=x+η

∫ τ1

v=t

[−φ(u)A3 + φ(v)A4]g(x, u, v|z)1[v−u≥η]dvdudx

−
∫ t

x=τ0

∫ t

u=x+η

∫ t

v=u+η

φ(v)g(x, u, v|z)dvdudx

+

∫ τ1

x=τ0

∫ τ1

u=x+η

∫ τ1

v=u+η

φ(x)g(x, u, v|z)dvdudx,

where g(x, u, v|z) is the conditional density of (X,U, V )
given Z. Let

B1(x, u, v) = EZ [A1(x, u, v, Z)g(x, u, v|Z)],

B2(x, u, v) = EZ [A2(x, u, v, Z)g(x, u, v|Z)],

B3(x, u, v) = EZ [A3(x, u, v, Z)g(x, u, v|Z)],

B4(x, u, v) = EZ [A4(x, u, v, Z)g(x, u, v|Z)],

and B5(x, u, v) = EZ [g(x, u, v|Z)]. By the definition of A’s,
B’s are all positive functions, and

B1(x, u, v) = B2(x, u, v) +B5(x, u, v),(A2)

B3(x, u, v) = B4(x, u, v) +B5(x, u, v),(A3)

B1(x, u, v) +B4(x, u, v) = B2(x, u, v) +B3(x, u, v).(A4)

We calculate

L(t) ≡ l̇TΛ l̇Λφ(t) =

∫ t

x=τ0

∫ τ1

u=t

∫ τ1

v=u+η

[−φ(x)B1(x, u, v)

+ φ(u)B2(x, u, v)]1[u−x≥η]dvdudx+

∫ t

x=τ0

∫ t

u=x+η

∫ τ1

v=t

[−φ(u)B3(x, u, v) + φ(v)B4(x, u, v)]1[v−u≥η]dvdudx

−
∫ t

x=τ0

∫ t

u=x+η

∫ t

v=u+η

φ(v)B5(x, u, v)dvdudx

+

∫ τ1

x=τ0

∫ τ1

u=x+η

∫ τ1

v=u+η

φ(x)B5(x, u, v)dvdudx.

Let

C1(x, u, v) = EZ [ZA1(x, u, v, Z)g(x, u, v|Z)],

C2(x, u, v) = EZ [ZA2(x, u, v, Z)g(x, u, v|Z)],

C3(x, u, v) = EZ [ZA3(x, u, v, Z)g(x, u, v|Z)],

C4(x, u, v) = EZ [ZA4(x, u, v, Z)g(x, u, v|Z)],

and C5(x, u, v) = EZ [Zg(x, u, v|Z)]. Then further calcula-
tion yields

R(t) ≡ l̇TΛ l̇β(t) =

∫ t

x=τ0

∫ τ1

u=t

∫ τ1

v=u+η

[−xC1(x, u, v)

+ uC2(x, u, v)]1[u−x≥η]dvdudx+

∫ t

x=τ0

∫ t

u=x+η

∫ τ1

v=t

[−UC3(x, u, v) + V C4(x, u, v)]1[v−u≥η]dvdudx
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−
∫ t

x=τ0

∫ t

u=x+η

∫ t

v=u+η

V C5(x, u, v)dvdudx

+

∫ τ1

x=τ0

∫ τ1

u=x+η

∫ τ1

v=u+η

XC5(x, u, v)dvdudx.

Let

b(t) =

∫ τ1

u=t+η

∫ τ1

v=u+η

B1(t, u, v)dvdu

+

∫ t−η

x=τ0

∫ τ1

v=t+η

B2(x, t, v)dvdx

+

∫ t−η

x=τ0

∫ τ1

v=t+η

B3(x, t, v)dvdx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

B4(x, u, t)dudx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

B5(x, u, t)dudx.

After some straightforward calculations, the derivative of
L(t) is

L′(t) = −b(t)φ(t) +

∫ τ1

u=t+η

∫ τ1

v=u+η

φ(u)B2(t, u, v)dvdu

+

∫ t−η

x=τ0

∫ τ1

v=t+η

φ(x)B1(x, t, v)dvdx

+

∫ t−η

x=τ0

∫ τ1

v=t+η

φ(v)B4(x, t, v)dvdx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

φ(u)B3(x, u, t)dudx.

Similarly, let

c(t) =

∫ τ1

u=t+η

∫ τ1

v=u+η

C1(t, u, v)dvdu

+

∫ t−η

x=τ0

∫ τ1

v=t+η

C2(x, t, v)dvdx

+

∫ t−η

x=τ0

∫ τ1

v=t+η

C3(x, t, v)dvdx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

C4(x, u, t)dudx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

C5(x, u, t)dudx.

The derivative of R(t)

r(t) ≡ R′(t) = −c(t)t+

∫ τ1

u=t+η

∫ τ1

v=u+η

uC2(t, u, v)dvdu

+

∫ t−η

x=τ0

∫ τ1

v=t+η

xC1(x, t, v)dvdx

+

∫ t−η

x=τ0

∫ τ1

v=t+η

vC4(x, t, v)dvdx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

uC3(x, u, t)dudx.

By conditions (A3)–(A7), r has a bounded derivative r′ on
[τ0, τ1]. So equation (A1) reduces to

− b(t)φ(t) +

∫ τ1

u=t+η

∫ τ1

v=u+η

φ(u)B2(t, u, v)dvdu(A5)

+

∫ t−η

x=τ0

∫ τ1

v=t+η

φ(x)B1(x, t, v)dvdx

+

∫ t−η

x=τ0

∫ τ1

v=t+η

φ(v)B4(x, t, v)dvdx

+

∫ t−2η

x=τ0

∫ t−η

u=x+η

φ(u)B3(x, u, t)dudx = r(t).

By conditions (A3) and (A4), we have infτ0≤t≤τ1 b(t) > 0.
Let d(t) = −r(t)/b(t) and

K(t, w) = (

∫ τ1

w+η

B2(t, w, v)1[t+ η ≤ w ≤ τ1]dv

+

∫ τ1

t+η

B1(w, t, v)1[τ0 ≤ w ≤ t− η]dv

+

∫ t−η

τ0

B4(x, t, w)1[t+ η ≤ w ≤ τ1]dx

+

∫ t−2η

τ0

B3(x,w, t)1[x+ η ≤ w ≤ t− η]dx)/b(t).

Then we obtain a Fredholm integral equation of the second
kind,

φ∗(t)−
∫

K(t, w)φ∗(w)dw = d(t).

Furthermore, note the facts that K(t, w) is a bounded
kernel (K being a L2 kernel suffices) and if φ(t) −∫
K(t, w)φ(w)dw = 0, then we have φ(t) ≡ 0 on [τ0, τ1].

By these facts and the classical results on Fredholm integral
equations (Kanwal (1971), Sections 4.2 and 4.3; or Kress
(1989), Chapter 4), there exists a resolvent Γ(t, w) (com-
pletely determined by K) such that

(A6) φ∗(t) = d(t) +

∫
Γ(t, w)d(w)dw.

From equations (A5) and (A6), we can derive properties of
φ∗. By (A6), φ∗ is bounded on [τ0, τ1]. By (A5), this implies
φ∗ is continuous. This in turn implies φ∗ is differentiable.
Since b is bounded away from zero, the partial derivative
of each component of K with respect to t is bounded on
its integral interval and the derivative of r is bounded. It
follows that the derivative of φ∗ is bounded. This completes
the proof.

Efficient estimation for the additive hazards model 399



A.2 Proof of Theorem 3.2

Before proving Theorem 3.2., define a semi distance ρ on
Θ by

ρ2(θ, θ0) = E{(β − β0)
T l̇β(Y ) + l̇Λ(Y )[Λ− Λ0]}2,

where l̇β is the score function for β, l̇Λ is the score function
for Λ, and both are evaluated at the true parameter value
(β0,Λ0). Let φ∗ be the least favorable direction calculated
above. So ρ2(θ, θ0) = (β − β0)

T I(β0)(β − β0) + E{(β −
β0)

T l̇Λ(Y )[φ∗] + l̇Λ(Y )[Λ − Λ0]}2, where I(β0) is the infor-
mation matrix for β0. Because I(β0) is positive definite, l̇β
and l̇Λ are bounded away from 0 and ∞, this implies that
d(θ, θ0) = O(ρ(θ, θ0)).

We first prove the consistency of θ̂n, and then the con-
vergence rate. Let p(Y ; θ̂n) = p(Y ; β̂n, Λ̂n), p(Y ; θ0n) =
p(Y ;β0,Λ0n) and p(Y ; θ0) = p(Y ;β0,Λ0), where p is defined
as followed,

p(y;β,Λ)

=
{
exp{−Λ(x)− βT zx} − exp{−Λ(u)− βT zu}

}δ1{
exp{−Λ(u)− βT zu} − exp{−Λ(v)− βT zv}

}δ2{
exp{−Λ(v)− βT zv}

}1−δ1−δ2
/ exp{−Λ(x)− βT zx}.

Also let θ0n = (β0,Λ0n) be the projection of the true param-

eter θ0 ∈ Θ into Θn. Since (β̂n, Λ̂n) maximizes the likelihood
function over Θn, and (β0,Λ0n) ∈ Θn, thus we have

n∑
i=1

log p(Yi; θ̂n) ≥
n∑

i=1

log p(Yi; θ0n) ,

n∑
i=1

log
p(Yi; θ̂n)

p(Yi; θ0n)
≥ 0 .

By the concavity of the log function, for any 0 < α < 1,
(A7)

1

n

n∑
i=1

log{1−α+α
p(Yi; θ̂n)

p(Yi; θ0n)
} ≥ 1

n

n∑
i=1

α log
p(Yi; θ̂n)

p(Yi; θ0n)
≥ 0.

The left-hand side can be written as∫
log{1− α+ α

p(y; θ̂n)

p(y; θ0n)
}d(Pn − P )(y)(A8)

+

∫
log{1− α+ α

p(y; θ̂n)

p(y; θ0n)
}dP (y),

where Pn is the empirical measure of (δ1i, δ2i, Xi, Ui, Vi, Zi),
i = 1, . . . , n; P is the joint probability measure of
(δ1, δ2, X, U, V, Z).

Note that the class of functions {log(1 − α +
αp(y; θ)/p(y; θ0n)) : θ = (β,Λ) ∈ Θn} is uniformly
bounded and uniformly Lipschitz of order 1, which is thus
Glivenko−Cantelli class. This leads

(A9)

∫
log{1− α+ α

p(y; θ̂n)

p(y; θ0n)
}d(Pn − P )(y) → 0

in probability. By Jensen’s Inequality,∫
log{1− α+ α

p(y; θ̂n)

p(y; θ0n)
}dP (y)(A10)

≤ log{
∫

1− α+ α
p(y; θ̂n)

p(y; θ0n)
dP (y)}

= log{1− α+ α

∫
p(y; θ̂n)

p(y; θ0n)
dP (y)} = op(1).

Combing (A7)–(A10), we obtain that∫
log{1− α+ α

p(y; θ̂n)

p(y; θ0n)
}dP (y) = op(1).

It follows that p(y; θ̂n) = p(y; θ0n) + op(1). This implies

d(θ̂n, θ0n) → 0 in probability. Since Λ0n ∈ Hn, condition
(A5) and (A7) immediately yields that d(θ0, θ0n) → 0 in
probability. By the triangle inequality, we can obtain that
d(θ̂n, θ0) → 0 in probability.

Now we give the proof of the convergence rate. Let ε
be a small and fixed positive number. Define a function
class Ψ(ε) = {l(y; θ) : d(θ, θ0n) ≤ ε, θ ∈ Θn}. It is ob-
vious that the log-likelihood function satisfies the Lips-
chitz conditions with respect to its conditions. Then, for
all 0 < ξ < ε, logN[](ξ,Ψ, d) ≤ A1(ε/ξ + qn log(ε/ξ)),
where logN[](ξ,Ψ, d) is the bracketing number and A1 is
a constant; see van der Vaart and Wellner (1996). Let
J[](ε,Ψ, d) =

∫ ε

0
{1 + logN[](ξ,Ψ, d)}1/2dξ be the integral

entropy. It follows that J[](ε,Ψ, d) ≤ A2q
1/2
n ε, where A2 is a

constant. Then together with Lemma 3.4.2 in van der Vaart
and Wellner (1996), for sufficiently large n,

E∗[ sup
ε/2≤d(θ,θ0n)≤ε,θ∈Θn

|
√
n(Pn − P )(l(y; θ)− l(y; θ0n))|]

≤ O(1)εq1/2n ,

where E∗ is the outer expectation.
By triangle inequality, one can derive that

E|l(Y ; θ)− l(Y ; θ0n)| ≤ O(1)(d2(θ, θ0n) + 2d2(θ0n, θ0)),

and thus

sup
ε/2≤d(θ,θ0n)≤ε,θ∈Θn

(El(Y ; θ)− El(Y ; θ0n)) ≤ O(1)ε2,

for sufficiently large n. Let φ(ε) = εq
1/2
n and rn = (n/qn)

1/2.
Furthermore, θn is consistent, so we can verify that the
conditions of Lemma 3.4.1 in van der Vaart and Wellner
(1996) are all satisfied. It then follows that d(θ̂n, θ0n) =
Op{(n/qn)−1/2} = Op(n

−(1−κ)/2).
Since Λ0n ∈ Hn, condition (A5) yields that∫ τ

0

|Λ0(t)− Λ0n(t)|2dt = O(n−2rκ) ,
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E{ln(y; θ0)− ln(y; θ0n)} = O(n−2rκ) ,

which, together with (A7), immediately yields that
d(θ0, θ0n) = O(n−rκ). By triangle inequality, we can obtain

that d(θ̂n, θ0) = Op(max{n−(1−κ)/2, n−rκ}).

A.3 Proof of Theorem 3.3

For the proof, we will employ Theorem 6.1 of
Huang(1996). Because β̂n maximizes ln(β, Λ̂n), we have

S1n(β̂n, Λ̂n) ≡
1

n

n∑
i=1

l̇β(Yi; β̂n, Λ̂n) = 0

with probability one for sufficiently large n. The score func-
tion for the nonparametric component evaluated at (β̂n, Λ̂n)
along the least favorable direction φ∗ will generally not be 0,
because maximization is carried out with monotonicity con-
straints. However, it suffices to show that this score function
(A11)

S2n(β̂n, Λ̂n)[φ
∗] ≡ 1

n

n∑
i=1

l̇Λ(Yi; β̂n, Λ̂n)[φ
∗] = op(n

−1/2),

where l̇Λ(y;β,Λ)[φ
∗] = l̇Λφ

∗(y) and l̇Λφ
∗(y) is defined in the

information calculation.
The proof of (A11) goes as follows. Construct a step func-

tion φ∗
n so it has jump points the same as the points where

Λ̂n changes slopes and also approximates φ∗ with precision∫ τ1

τ0

|φ∗
n − φ∗|(t)dt ≤ O(‖Λ̂n − Λ0‖2).

Following from the similar arguments in the proof of
Theorem 5.3 in Huang and Rossini(1997), we have

S2n(β̂n, Λ̂n)[φ
∗
n] ≡ op(n

−1/2). To show (A11), it suffices to

show that S2n(β̂n, Λ̂n)[φ
∗] − S2n(β̂n, Λ̂n)[φ

∗
n] ≡ op(n

−1/2).

Note that P{l̇Λ(y;β0,Λ0)[φ
∗ − φ∗

n]} = 0, we obtain that

S2n(β̂n, Λ̂n)[φ
∗]− S2n(β̂n, Λ̂n)[φ

∗
n]

= Pn l̇Λ(y; β̂n, Λ̂n)[φ
∗ − φ∗

n]

= (Pn − P )l̇Λ(y; β̂n, Λ̂n)[φ
∗ − φ∗

n]

+ P{l̇Λ(y; β̂n, Λ̂n)[φ
∗ − φ∗

n]− l̇Λ(y;β0,Λ0)[φ
∗ − φ∗

n]}.

The first term in the last line is op(n
−1/2) by uniform asymp-

totic equicontinuity of empirical processes indexed by a
Donsker class of functions. By Theorem 3.2. and the Cauchy-
Schwartz inequality, the second term is

Op(max{n−(1−κ)/2, n−rκ})2 = Op(max{n−(1−κ), n−2rκ}),

where r = 1, 2. So if we choose 1/4r < κ < 1/2, then the
second term is op(n

−1/2).
By Theorem 3.1., the Fisher information matrix for β

is positive definite. By Theorem 3.2., the rate of conver-
gence is proved. And there are two more facts. Define S1

and S2 be the limits of S1n and S2n. One is the uni-
form asymptotic equicontinuity of S1n(β,Λ)− S1(β,Λ) and
S2n(β,Λ)[φ

∗] − S2(β,Λ)[φ
∗] in a small neighborhood of

(β0,Λ0), and this follows from uniform asymptotic equicon-
tinuity of empirical processes indexed by a Donsker class
of functions. The other is the smoothness of S1(β,Λ) and
S2(β,Λ)[φ

∗] in a small neighborhood of (β0,Λ0), which fol-
lows from the Taylor expansion. Thus all conditions in The-
orem 6.1 of Huang(1996) have been confirmed and the proof
is complete.
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