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Group analysis of fMRI data using L1 and L2

regularization
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In clinical studies using functional magnetic resonance
imaging (fMRI), it is of interest to compare multiple sub-
jects from different groups. We investigate the analysis of
such data using random effects and non-parametric estima-
tion of mean activation curves. The random effects model-
ing replaces the existing approach in fMRI literature where
each curve is ‘normalized’ by a percent change. For the mean
curves we consider smoothing via splines using L1 or L2 reg-
ularization. Our general framework allows analysis of fMRI
curves that are correlated, and with correlated within curve
errors. We describe a unified algorithm that uses existing
software to carry out the estimation. The different regular-
ization approaches are compared using simulation. We apply
the method to an fMRI study about the effects of caffeine
on the motor cortex of the brain, and discuss the limitation
on currently available computing resources for carrying out
such analysis on very large data sets.

AMS 2000 subject classifications: Primary 62.
Keywords and phrases: Correlated curves, Correlated
errors, Functional linear model, Penalized splines, Semipara-
metric mixed-effects model, Voxel level analysis.

1. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a pop-
ular method of studying brain activity by measuring blood
flow to the brain. Researchers in a variety of fields rely on
fMRI as a non-invasive technique to explore how minds are
working (or not) in experiments. Introductions to fMRI data
analysis can be found in [1, 21, 29]. However, the analysis
of fMRI data remains challenging for several reasons. Data
is often high-dimensional and noisy. Sample sizes are often
small. In addition to variation between study subjects, there
is also variation between two fMRI sessions of the same sub-
ject. Data from a single subject is correlated in both time
and space.

In clinical studies it is often of interest to analyze fMRI
data from groups of study subjects under different condi-
tions. Since there is substantial between subject and session
variation (see Figure 5) it is common to standardize by con-
version to a percent change; that is, to divide the observed
activation time series by some kind of baseline activation
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such as its mean over time. A side effect of doing so is that
it artificially induces variation in the amplitudes of activa-
tion from subject to subject. Here we consider a different
approach via modeling the between-subject variation using
random effects.

Of clinical interest is the underlying mean activation
functions from the groups, or their contrasts. In this paper
we consider the semi-(non)parametric mixed effect model
where the mean activation functions are unspecified. These
are also referred to as functional linear models (see for exam-
ple, [11, 38, 39]). In the functional data literature, the errors
are often assumed to be i.i.d. This, however, is not the case
for fMRI data. In addition in our application the curves
(i.e. time series) are paired. We explore an approach that
can accommodate potentially complex correlation among
the curves. We consider the L1 and L2 regularization, to-
gether with splines to obtain nonparametric estimate of the
mean function(s) in the presence of correlated errors. With
L1 penalty and a large number of basis functions, it is a
way of knot selection with simultaneous penalized estima-
tion of the spline coefficients. With L2 penalty and penal-
ized splines, we take advantage of the fact that the combined
spline function and random effects can be fitted in a single
mixed effects model framework.

1.1 A brief review of L1, L2 and mixed
effects

For the L1 regularization, the least absolute shrinkage
and selection operator (LASSO) was introduced in [35] for
the purposes of variable selection and estimation in linear
regression. A discussion of the LASSO in comparison with
other shrinkage techniques can be found in [15]. Knight and
Fu [19] studied the asymptotics of LASSO estimates in the
context of linear regression with i.i.d. errors; in a doctoral
dissertation Gupta [12] studied the asymptotics of LASSO
estimates in the presence of correlated errors and a large
number of covariates. Wang, Li and Tsai [36] studied the
problem of joint selection of covariates and order of autore-
gressive process via the LASSO. The LASSO has been ap-
plied to nonparametric setting with i.i.d. errors [26], and
some related theory is presented in [4, Section 6.2.3].

Two applications of L1 regularization in mixed effects
models were recently proposed [2, 17], where the number
of predictors is less than the number of observations. More
recently, Schelldorfer et al. [32] proposed L1 regularization
for linear mixed models when the number of predictors is
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much larger than the number of observations, and where
model selection only concerned the fixed effects.

The L2 regularization has been widely used in the non-
parametric setting including smoothing splines and penal-
ized splines. The penalized splines (p-splines) have enjoyed
popularity since its initial introduction in [7], mainly due to
its relative computational ease. An overview of the p-splines
can be found in [31]. The asymptotic theory for p-splines was
first established in [14], in the case of independent errors and
uniformly dense knots. It was then extended to explicitly ac-
count for the number of knots, non-normal outcomes, and
to make connections with kernel smoothing [37, 18, 23, 6].
There is very little work on the theory of p-splines with
correlated errors.

Recognizing the connection between the L2 penalty and
the random effects likelihood function [34, 31], Brumback
and Rice in [3] applied smoothing splines to the analysis of
nested curves. This mixed-effects model approach has be-
come popular in the fMRI literature (see [24] and references
therein).

2. MODEL AND ESTIMATION FOR THE
FMRI DATA

Consider the functional data from a fMRI session as a
curve over time. To describe the statistical methodology in
this section while keeping the notation simple, let yik be
the measurement at time tk for curve i, i = 1, . . . ,m and
k = 1, . . . , n. Here we assume that the measurements are
taken at the same time points t1, . . . , tn for all the curves,
as is the case for our fMRI data. We assume that the curves
are independent, coming from different study subjects. Later
in the applications we generalize the model to correlated
curves, but the statistical methodology remains the same.
We assume the following model:

(1) yik = μ(tk) + z�ikbi + εik,

where μ(t) is a smooth function of t, z�ikbi is a curve specific
deviation from μ(tk) and εi = (εi1, . . . , εin)

� is distributed
as N(0, V1). We assume that the bi’s are vectors of random
effects independently drawn from N(0, D1), each associated
with a covariate vector zik.

2.1 Regularized spline fit of μ(t)

We approximate the function μ(t) over the interval [t1, tn]
by a linear combination of basis functions. B-spline basis
are often preferred in conjunction with L2 penalization, for
their numerical stability and compact support [8]. For the
L1 penalty, however the minimal overlapping support of the
B-spline basis is a disadvantage; when one spline is removed
from the set via a zero coefficient, the entire basis must
be re-calculated, or otherwise a ‘dip’ will appear in the esti-
mated function. In the following we use the truncated power
basis functions, which also makes the presentation simple.
We start with a large number of evenly spaced knots in the
interval [t1, tn]. An L1 penalty simultaneously reduces the

number of knots and estimates the spline coefficients that
are non-zero. Alternately, an L2 penalty keeps all the knots
and penalizes the estimated spline coefficients.

The truncated cubic spline basis can be written {1, t, t2,
t3, (t− τ1)

3
+, . . . , (t− τQ)

3
+}, where (x)+ = x if x > 0 and 0

otherwise, and τ1, . . . τQ are the knots. We approximate

(2) μ(t) ≈ β0 + β1t+ β2t
2 + β3t

3 +

Q∑
l=1

βl+3(t− τl)
3
+.

For each curve i, denote yi = (yi1, . . . , yin)
�, and

Xi =

⎡⎢⎣1 t1 t21 t31 (t1 − τ1)
3
+ . . . (t1 − τQ)

3
+

...
...

...
...

...
...

1 tn t2n t3n (tn − τ1)
3
+ . . . (tn − τQ)

3
+

⎤⎥⎦ .

Let Zi = (z�i1, ..., z
�
in)

�. Let X = (X�
1 , . . . , X�

m)�, β = (β0,
. . . , βQ+3)

�, Z = diag(Z1, . . . Zm), b = (b�1 , . . . , b
�
m)�,

ε = (ε�1 , . . . , ε
�
m)� and y = (y�1 , . . . , y

�
m)�. Then model

(1) becomes y = Xβ + Zb + ε in matrix form. Let D =
diag(D1, . . . , D1), V = diag(V1, . . . , Vn), and Σ = V +
ZDZ�. Apart from a constant the log-likelihood of y is then

(3) l(y|β,Σ) = −1

2
log |Σ| − 1

2
(y −Xβ)�Σ−1(y −Xβ).

We estimate the parameters in (3) by maximizing a pe-
nalized log-likelihood. To make clear the distinction be-
tween the unpenalized and penalized coefficients, we par-
tition β = (β�

u , β�
p )� where the unpenalized coefficients are

in βu = (β0, ..., β3)
�, and the penalized coefficients are in

βu = (β4, ..., βQ+3)
�. Let β̂ and Σ̂ jointly maximize the pe-

nalized log-likelihood
(4)

lp(y|β,Σ) = −1

2
log |Σ|− 1

2
(y−Xβ)TΣ−1(y−Xβ)−pλ(βp),

where pλ(βp) is a penalty term, and λ > 0 is a penalty
parameter. We can choose λ by minimizing either the AIC
or the BIC:

(5) λ̂ = argmin
λ

{
−l(y|β̂, Σ̂) + a ·DF

}
,

where DF is the effective degrees of freedom. For the L1

penalty, the DF is the number of non-zero parameters in the
model; while for the L2 penalty, it is the trace of the ‘hat’
matrix H plus the number of error covariance parameters
[27, 28]. The hat matrix H is such that ŷ = Xβ̂+Zb̂ = Hy.
For AIC we let a = 1. For BIC [32] considered a = log (nm),
i.e. nm is considered as the sample size. On the other hand,
one may consider the number of independent curves, m, as
the sample size, so that a = log (m).

L1 regularization

If the L1 penalty is used, p1λ(βp) = λ
∑Q+3

q=4 |βq| in (4). In
this case some of the coefficients in βp will be estimated to be
exactly zero. Therefore the L1 regularization is a way of knot
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selection. However, this is different from the knot selection
such as considered by [16, 40], in the sense that the non-zero
coefficients are also penalized. In contrast, the more classical
knot selection approach is followed by regression splines,
where none of the spline coefficients are shrunk towards zero,
given the selected knots.

L2 regularization

When the L2 penalty is used, p2λ(βp) = λ
∑Q+3

q=4 (βq)
2. It

is recognized that (4) is the ‘log-likelihood’ with elements in
βp acting as i.i.d. normally distributed random effects with
variance equal to 2/λ; here the ‘log-likelihood’ refers to the
joint log-likelihood of y and βp. It has also been recognized

that given λ, the estimated β̂p from (4) is the best linear un-
biased predictor (BLUP) in this mixed effects model formu-
lation [34, 31, 3]. The equivalent mixed models formulation
has been exploited in analyzing fMRI data.

Unified computational framework

The criterion in (4) may be non-convex in β and the pa-
rameters in Σ. In the following we iterate between the penal-
ized and the non-penalized parameters until convergence. In
other words, given the penalty parameter λ, at the (j+1)th
step we iterate between

(βj+1
p |βj

u,Σ
j) = argmin

βp

{
(y −Xuβ

j
u −Xpβp)

�(Σj)−1(6)

(y −Xuβ
j
u −Xpβp) + pλ(βp)

}
and

(Σj+1, βj+1
u |βj

p)(7)

= argmin
Σ,βu

{
1

2
log |Σ|+ 1

2
(y −Xuβu −Xpβ

j
p)

�

Σ−1(y −Xuβu −Xpβ
j
p)

}
.

When the L1 penalty p1λ(βp) is used, β
j+1
p may be obtained

from (6) using any of the standard methods for LASSO in
linear models (LARS, cyclic or greedy coordinate descent,
homotopy); we found that the R package ‘lars’ worked well.
When the L2 penalty p2λ(βp) is used, (6) is simply ridge
regression, and we use the function ‘lm.ridge’ from the R
package ‘MASS’. Finally (7) is equivalent to fitting a linear
mixed model on the outcome y∗ = y − Xpβ

j
p, so one can

use any software for such models, and we use the R package
‘nlme’.

Once the estimates of β and Σ are obtained, predictions
of the random effects b can be obtained by the best linear
unbiased predictor (BLUP)

(8) b̂ = D̂Z�Σ̂−1(y −Xβ̂).

As mentioned earlier, the estimated bi’s help to capture the
between-subject variation among the curves.

2.2 Standard errors

To make inference about the estimated mean function
μ(t), we consider the sandwich estimator of [9]. Denote the
vector of all non-zero elements of the estimated β and the
parameters in Σ by θ. Let ∇l and ∇2l be the first and sec-
ond derivatives of l in (3) with respect to θ. The sandwich

estimate for the covariance of θ̂ is

(9) ĉov(θ̂) = m{∇2l(θ̂)−Λ}−1ĉov{∇l(θ̂)}{∇2l(θ̂)−Λ}−1,

where the (k, s)-element of Λ is ∂2pλ(θ)/∂θk∂θs, and the

(k, s)-element of ĉov{∇l(θ̂)} is
(10){

1

m

m∑
i=1

∂li(θ̂)

∂θk

∂li(θ̂)

∂θs

}
−
{

1

m

m∑
i=1

∂li(θ̂)

∂θk

}{
1

m

m∑
i=1

∂li(θ̂)

∂θs

}
.

When pλ(θ) is the L1 penalty, following [10] we approx-
imate ∂2pλ(θ)/∂βk∂βk by 1/|βk|. The formulas for ∇l

and ∇2l are given in the Appendix. Once ĉov(β̂) is ob-
tained, a 95% pointwise confidence interval for μ(tk) may
be formed by μ̂(tk)± 1.96ck, where ck is the kth element of√
diag(X ĉov(β̂)X�).

3. SIMULATIONS

It has been known that proper estimation of the error
variance-covariance is important for the selection of penalty
parameter [33, 20]. In order to understand the performance
of the different penalties in the setting of nonparametric
smoothing with correlated errors, we carry out simulation
studies in this section. The simulations also investigate the
different criteria (AIC or BIC) in choosing the penalty pa-
rameter λ.

For each of 100 simulation runs, we generate m = 5, 10 or
40 curves under model (1), each of length n = 70 points. The
true curve is either μ(t) = sin (10πt/70) (‘sine’) or one that
mimics hemodynamic response (‘fmri’). For the latter we use
the R package neuRosim, which allows for three models of
hemodynamic response function and various types of noise.
We use the following double gamma model of hemodynamic
response:
(11)

h(t) =

(
t

d1

)a1

exp

(
− t− d1

e1

)
− c

(
t

d2

)a2

exp

(
− t− d2

e2

)
with the default setting for the parameters: a1 = 6, a2 = 12,
e1 = e2 = 0.9, c = 0.35, di = aiei, i = 1, 2. This hemo-
dynamic response is then convoluted with an experiment
design of 10 seconds of rest, followed by 30 seconds of an
activity, followed by 30 seconds of rest. The resulting true
mean curve is shown in the right panel of Figure 1. Data are
generated from either the ‘sine’ or ‘fmri’ curve with errors εi
distributed as N(0, σ2R1(ρ)) where R1(ρ) is the correlation
matrix of a first order autoregressive process AR(1) with
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Figure 1. True mean curves used in simulation.

correlation parameter ρ = 0.4. We carry out simulations
both with and without random effects.

For each simulated data set, we estimate the mean curve
using the regularization methods described in the previous
section. For the L1 regularization the initial knots are placed
at every data point, and for the L2 regularization the knots
are placed at every other data point. For each method, the
penalty parameter λ is chosen to minimize the AIC, and the
BIC with the sample size m or nm. Convergence is declared
if the sum of the absolute changes in the parameters is less
than 10−4.

Figure 2 left panel shows the boxplots of the integrated
squared error (ISE) of the estimated μ(t) from the 100 sim-
ulation runs, when no random effects were simulated or fit-
ted, i.e. zik = 0 in model (1). For the right panel we sim-
ulated random intercept for each curve, i.e. zik = 1 and
bi ∼ N(0, 100). We then used the estimated bi to ‘center’
each curve, and the ISE’s are averaged over the m curves.
Comparing the left and right panels it is seen that there is
relatively little difference with or without the random ef-
fects; this makes sense since we have a large ‘cluster’ size of
70 for each curve to estimate the bi’s. From the plots we see
that the ISE decreases with the number of curves. BIC(nm)
leads to underperformance compared to AIC and BIC(m),
in particular for the ‘fmri’ true curve. AIC and BIC(m)
are roughly comparable, with AIC performing slightly bet-
ter when m = 5 and under L1 regularization for the ‘fmri’
curve. Overall there is not a clear preference between the L1

and L2 regularization methods in term of ISE. Supplement
Figure 1 (http://www.intlpress.com/SII/p/2015/8-3/SII-8-
3-overholser-supplement.pdf) contains 3 randomly selected
simulation runs with m = 10, no random effects, and using

AIC; upon close inspection the fits using the L2 regulariza-
tion appear slightly less smooth.

Supplement Figure 2 shows the boxplots of the estimated
correlation ρ, Supplement Figure 3 shows the boxplots of
the estimated error variance σ2, and Supplement Figure 4
shows the boxplots of the estimated random effect variance.
It is seen that all these parameters are underestimated the
majority of the times, though the bias reduces with increas-
ing number of curves. For correlation and error variance
BIC(nm) appear to provide less biased though more var-
ied estimates. Also L1 regularization appears to provide less
biased estimates of σ2.

At the suggestion of a reviewer we contrast in Figure 3
the L1 and L2 fits with no penalty fits, where knots were
placed at every other data point. We note that the neces-
sity of regularization is very much data dependent, in par-
ticular dependent on the amount of data as compared to
the number of parameters, as well as the signal-to-noise
ratio. For m = 5 and 10 we see that in terms of ISE
there is little advantage of regularization under the true
‘sine’ curve; but when the true curve is ‘fmri’ L1 regu-
larization clearly reduces the ISE. When m = 40 (data
not shown) even L1 regularization no longer appears to
have a clear advantage. On the other hand, the variance
parameters appear to be better estimated with regular-
ization in general (see Supplement Figures 5–7). Tabu-
lated simulation results are given in the Supplement Ta-
bles 1–4.

4. FMRI DATA ANALYSIS

The Center for Functional MRI at UCSD performed a
study to examine the effect of caffeine on the blood oxy-
genation level dependent (BOLD) signal from fMRI sessions
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Figure 2. Boxplots of (average) integrated squared error (ISE) of the estimated curves. Left panel: without random effects;
right panel: with random effects. (a) m = 5, (b) m = 10, (c) m = 40.
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Figure 3. Boxplots of average integrated squared error (ISE) of the estimated curves, compared with no penalty (left panel).
(a) m = 5, (b) m = 10.

[30]. The study had 11 subjects, but 2 were dropped due
to head movement during the scans. A block design was
used for finger tapping: after an initial period of 20 seconds,
the subjects were told to alternate finger tapping (30 sec-
onds) and not finger tapping (30 seconds) for five cycles.
The BOLD signal was measured every 2 seconds and the
first 4 seconds were dropped from each scan, giving a total
of 156 time points for the duration of each scan. Two fMRI
sessions were performed for each subject: once for a ‘pre-

caffeine’ session and again after ingested 200 mg of caffeine
(the ‘post-caffeine’ session). During finger tapping periods,
some of the voxels in the motor-cortex region of the brain
became ‘activated’, as more oxygen was sent to that part of
the brain. Following standard preprocessing, the voxels in
the motor cortex for each subject were selected that were
activated in both the pre and post caffeine sessions. Fig-
ure 4 shows the BOLD signals from the motor cortex of the
9 study subjects, before and after caffeine, where each curve
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Figure 4. BOLD signals from the motor cortex of 9 subjects, before and after caffeine.

Figure 5. Average BOLD signals for the 9 subjects by session. (Color figure online)

represents a voxel. Numbers of activated voxels per subject
ranged from 35 to 124.

4.1 Voxel averaged data analysis

For this analysis, we average over the BOLD signals of
activated voxels at each time point for each subject and
session. This average is referred to as the ‘signal’, and is
shown in Figure 5. Denote i = 1, . . . , 9 subjects, j = 1, 2

sessions (‘1’ for pre-caffeine), and k = 1, . . . , 156 time points.
Instead of model (1) where the curves are independent, here
the two sessions within the same study subject are paired.
We assume

(12) yijk = μj(tk) + bij + εijk,

where (bi1, bi2)
� ∼ N(0, D1) with D1 an unrestricted 2 × 2

covariance matrix, counts for the shift (centering) of each
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Figure 6. Pre- and post-caffeine L1 fits. The black dots are the average signals of the 9 subjects, and the grey lines are fits
with no penalty.

Figure 7. Pre- and post-caffeine L2 fits. The black dots are the average signals of the 9 subjects, and the grey lines are fits
with no penalty.

subject and session, as well as induces the correlation
between pre- and post-caffeine sessions within a subject.
(εij1, . . . , εij156)

� ∼ N(0, V1) where V1 has an AR(1) cor-
relation structure, which was used in [30].

Following the approaches described in Section 2, Figure 6
shows the L1 estimate of the mean activation curves μj(t),
and Figure 7 shows the L2 estimate of μj(t), j = 1, 2. As in
the simulations, for the L1 regularization the initial knots

were placed at every data point, and for the L2 regular-

ization the knots were placed at every other data point.
AIC was used to choose the penalty parameter λ, since it
appears to work well overall relative to the BIC’s in our
simulations. Consistent with our simulations of last section,

the L2 fit appears less smooth and follows the data closer
than the L1 fit, and is almost indistinguishable from the fits
with no penalty (grey lines). Supplement Figure 8 plots the
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Figure 8. Mean difference μ1(t)− μ2(t) (red: L1; blue: L2 fit; grey: no penalty). The shaded areas are when finger-tapping
was prompted. (Color figure online)

individual activation difference between the pre- and post-
caffeine sessions yi1k − yi2k, super-imposed with the fitted
μ1(tk) + bi1 − μ2(tk) − bi2. The fact that the fitted lines
are almost invisible reflects the fact that the individual ran-
dom effects bij ’s appear to be well estimated, capturing the
variation among the subjects.

Finally, Figure 8 shows the estimated difference μ1(t) −
μ2(t) from the L1 and L2 fits. Super-imposed on the plot
are the shaded intervals when finger tapping was prompted.
[30] found significantly shortened time to reach 50% of peak
response after ingesting caffeine. The positions of negative
dips relative to the finger-tapping prompts, i.e. towards the
early part of the interval, also reflect faster activation post-
caffeine compared to pre-caffeine. In this way our analysis
confirms the findings of [30] which was done using direct
comparisons of times to reach 50% of peak responses.

4.2 Voxel level data analysis

For the analysis using all of the data points in Figure 4, let
yivjk be the BOLD signal at time k, during session j, in voxel
v for subject i for i = 1, . . . , 9, j = 1, 2, k = 1, . . . , n (=156),
and v = 1, . . . , ni where ni the number of activated voxels
varies from 35 to 124. We assume the following model:

(13) yivjk = βij1[i �=1] + μj(tk) + bivj + εivjk.

Note that we use fixed effects βij for the subject and ses-
sion specific shift of the activation. εivj = (εivj1, . . . , εivjn)

T

again has an AR(1) structure, and biv = (biv1, biv2)
� is in-

dependently distributed N(0, D1) for each iv, inducing the

correlation between pre- and post-caffaine sessions within a
voxel.

To apply the methods described in Section 2 to the voxel
level data, which consist of 224,952 data points, we used
the San Diego Super Computer (SDSC), mainly to ease the
memory problem that made it impossible to fit the model on
an imac, for example. Table 1 gives the approximate com-
puting time on various machines, contrasting the voxel aver-
aged versus the voxel level analysis. Unfortunately we were
not able to perform the L1 fit on SDSC, because the ‘lars()’
function failed to converge. It would be of interest in the fu-
ture to identify an L1 algorithm that is suitable for data sets
of this size. Supplement Figure 5 shows for three randomly
picked voxels per subject and session, the fitted and the ob-
served BOLD signals, where the fitted curves are obtained
using L2 regularization with AIC to choose the penalty pa-
rameter λ. The fact that the fitted and the observed curves
are hard to distinguish once again shows that the parame-
ters and in particular the random effects are very well es-
timated. Figure 9 shows the estimated μj(t) (j = 1, 2), to-
gether with the pointwise 95% confidence intervals obtained
using the sandwich estimator of Section 2.2. Supplement
Figure 6 shows the estimated difference μ1(t)−μ2(t) and its
corresponding pointwise 95% confidence intervals.

5. DISCUSSION

In this paper, we have explored using existing statistical
methodology to analyze group fMRI data arising in clini-
cal settings. Our project was motivated by a clinical study
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Table 1. Approximate computation times in statistical environment R

Analysis
Voxel averaged Voxel level

Number of data points 2,808 224,952

2011 imac (Intel Core i5
2.5 GHz CPU) 2 min –

Dept server (Intel Core i7 970
3.20 GHz CPU) 2 min ?∗

SDSC Triton resource (single comp node
Intel Nahalem E5530, 2.4 GHz) 2 min 1.5 days

∗The analysis repeatedly ran out of memory when the server had other users.

Figure 9. Estimated mean BOLD signal with pointwise 95% confidence intervals (shaded). (Color figure online)

to treat chronic pain and how the different therapies af-
fect the regions of interest in the brain [22]. We use non-
parametric estimates of mean activation functions allowing
for correlated errors, which is typically the case for fMRI
data. We account for the multiple subjects using random
effects modeling, which is an alternative approach to the
‘percent change’ method often used by fMRI researchers.
One main advantage of the random effects modeling is that
it does not introduce additional between-subject variation in
the amplitudes of the activation, which might be of interest

in fMRI studies [30]. The fitting algorithms can be relatively
easily carried out using existing statistical software.

As seen from our fMRI voxel level data analysis, chal-
lenges still exist in today’s academic computing environ-
ment, perhaps in connection with the use of R. The memory
problem appears to be a main one. Cloud computing might
be a solution without access to a supercomputer, but addi-
tional resources (funding, in our case) is often required in
order to use cloud computing. Admittedly the LARS algo-
rithm is most suitable when the sample size is smaller than
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the number of predictors, which is not the case for the voxel
level data. We are working to investigate other numerical
methods for L1 regularization, that will work at least with
the memory capacity of the supercomputer.

There is very little theory to guide simultaneous estima-
tion of correlation structure and choice of smoothing param-
eter. In our simulations we saw that the variance parameters
were underestimated. Recently we became aware of the work
of [25], which suggested a two-step procedure where one first
overfits the unknown mean curve, in order to obtain a con-
sistent estimate of the variance parameters. Another topic
that seems to need more theoretical work is simultaneous
confidence bands based on nonparametric estimators, in the
presence of correlated errors. Work has been done on this
problem by, for example, [5, 13], but only under i.i.d. errors.

Another approach to be explored is the elastic net,
i.e. combined L1 and L2 regularization of [41]. The elastic
net is known to enjoy the grouping effect property (i.e. re-
gression coefficients of a group of highly correlated variables
tend to be equal) of a strictly convex penalty function such
as L2. The combined penalty was shown to outperform the
L1 penalty but retains its sparsity feature. In the case of
splines, the basis functions are highly correlated (Pearson
correlation coefficient > 0.9). We hope to report our find-
ings using this approach in the near future.
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APPENDIX

Since V , Z and D are all block diagonal matrices, Σ is as
well. Denote the ith block of Σ, which corresponds to curve
i, by Σi. Also let (σ1, ..., σd) be the unknown parameters in
Σ. We have for 1 ≤ s, k ≤ d
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∂β
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