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Regression analysis of interval-censored failure
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Regression analysis of interval-censored failure time data
has recently attracted a great deal of attention and many
procedures have been developed (Chen et al., 2012; Finkel-
stein, 1986; Sun, 2006; Sun and Li, 2013). However, most
of the established procedures are for noninformative censor-
ing, meaning that the censoring mechanism is independent
of the underlying failure time of interest. In this paper, we
discuss a more general situation where the censoring mech-
anism and the failure time of interest may be related and a
sieve maximum likelihood estimation procedure is proposed
for such data arising from the additive hazards model. In the
method, the copula model is employed to model the correla-
tion. The asymptotic properties of the resulting estimators
are established and a simulation study is conducted, which
indicates that the presented approach works well for the sit-
uations considered. An illustrative example is also provided.
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models, Informative censoring, Regression analysis.

1. INTRODUCTION

Statistical analysis of interval-censored failure time data
has recently attracted a great deal of attention (Chen et
al., 2012; Finkelstein, 1986; Sun, 2006; Sun and Li, 2013).
By interval-censored data, we mean that instead of being
known exactly, the failure time of interest is observed only
to belong to a window or an interval. We will have an exact
observation if the interval reduces to a single point and a
right-censored observation if the interval includes infinity.
In other words, interval-censored data include right-censored
failure time data as a special case (Kalbfleisch and Prentice,
2002). Amomg others, one field that often produces interval-
censored data is medical follow-up or clinical studies (Chen
et al., 2012; Finkelstein, 1986).

Many procedures have been developed for regression anal-
ysis of interval-censored failure time data (Betensky et al.
2001; Chen and Sun 2010; Goggins and Finkelstein 2000; Lin
et al., 1998; Wang et al., 2010). However, most of the exist-

∗Corresponding author.

ing methods only apply to the situation where the censoring
mechanism that generates censoring intervals is independent
of the failure time of interest, which is often referred to as
noninformative censoring. As pointed out by many authors,
sometimes this may not be true (Betensky and Finkelstein,
2002; Finkelstein et al., 2002; Huang and Wolfe, 2002; Zhang
et al., 2007). For example, in the case of right-censored data,
the failure time of interest and the censoring time may be
related and Huang and Wolfe (2002) discussed regression
analysis of such data under the proportional hazards model.
Finkelstein et al. (2002) and Zhang et al. (2007) consid-
ered the interval-censored data in which the censoring inter-
vals may be correlated with the failure time of interest. The
former investigated the nonparametric estimation problem,
while the latter considered the regression problem. In this
paper, we will discuss the same problem as that in Zhang
et al. (2007), but employ the more general copula model
approach (Hougaard, 2000; Nelsen, 2006; Zheng and Klein,
1995).

Among many regression models for failure time data, one
of the most commonly used models is the additive hazards
model (Chen and Sun, 2010; Li et al., 2012; Lin et al., 1998;
Lin and Ying, 1994; Martinussen and Scheike, 2002; Tong et
al., 2012; Zhou and Sun, 2003). For example, one of the early
references on this model was given by Lin and Ying (1994),
who discussed the fitting of the model to right-censored
data. Following them, Lin et al. (1998) and Martinussen and
Scheike (2002) investigated the same problem except for cur-
rent status data and developed some estimating equation-
based approaches. More recently, Li et al. (2012) and Tong
et al. (2012) studied the use of the model for regression anal-
ysis of clustered interval-censored data and bivariate current
status data, respectively. In the following, we will focus on
regression analysis of interval-censored data arising from the
additive hazards model when there exists informative cen-
soring.

To present the proposed method, we will first in Sec-
tion 2 describe the type of interval-censored data or cen-
soring mechanism considered here along with some notation
and models. In particular, we will assume that the relation-
ship between the failure time of interest and the censoring
mechanism can be described by the correlation between the
failure time and the length of a censoring interval. Note that
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this would be the case in, for example, a medical follow-up
study as in this situation, patients may tend to visit clinical
centers less or more often than the pre-specified schedule
depending on their disease status. More comments on this
are given below. The copula model will be used to model the
correlation. For inference, we will present a sieve maximum
likelihood estimation procedure based on I-spline functions
in Section 3 (Ramsay, 1988; Lu et al. 2007) and the asymp-
totic properties of the proposed estimators are established.
A simulation study is performed in Section 4 and the ob-
tained results indicate that the proposed method works well
in practical situations. Section 5 provides an illustrative ex-
ample and Section 6 contains some concluding remarks.

2. INTERVAL-CENSORED DATA AND
INFORMATIVE CENSORING

Consider a failure time study that consists of n indepen-
dent subjects and gives only interval-censored data charac-
terized by {Li < Ti ≤ Ri; i = 1, ..., n }. Here Ti denotes the
failure time of interest but not observed and (Li, Ri] rep-
resents the interval to which Ti is observed to belong. As
mentioned above, many procedures have been developed for
the analysis of such interval-censored data, but most of them
assume that Li and Ri are independent of Ti completely or
given covariates and this may not be true in practice. The
latter situation is usually referred to as informative censor-
ing (Sun, 2006). In the following, we consider a situation
where Li and Ri may be related to Ti, but they are inde-
pendent given the interval length Wi = Ri − Li. In other
words, the relationship between Ti and (Li, Ri] can be de-
scribed by the relationship between Ti and Wi.

A motivating example for the informative censoring de-
scribed above is clinical trials or medical follow-up studies.
In these situations, some pre-specified observation or follow-
up times are usually given before the study, but it is wel-
known that most patients would not follow these time points
for their clinical visits or observations. One case that can of-
ten occur is that the patients may tend to pay less or more
visits than the pre-specified visits depending on their health
or disease status. A natural way to describe this is clearly
to employ the interval lengths Wi’s. Note that an equiva-
lent approach for describing the informative censoring here
is by the relationship between Ti and Li, which may be more
natural given the fact that it is often the case that (Li, Ri]
depends on Ti through Li. On the other hand, it is more
convenient to model the relationship between Ti and Wi.

More specifically, we will assume that

P (Ti ≤ t|Li, Ri, Zi) = P (Ti ≤ t|Wi, Zi)

given the vector of covariates Zi. To describe the effects
of covariates of the Ti’s and Wi’s, we will assume that the
hazard function of Ti has the form

(1) λ(t|Zi) = λ10(t) + Z ′
iβ ,

and Wi follows the proportional hazards model given by

(2) λ(w|Zi) = λ20(w) exp(Z
′
iγ) .

In the above, both λ10(t) and λ20(w) are unspecified base-
line hazard functions, and β and γ denote the vectors of
regression parameters. That is, the Ti’s follow the additive
hazards model marginally (Lin and Ying, 1994).

Let FT and FW denote the marginal distribution of the
Ti’s and Wi’s, respectively, and F their joint distribution
given covariates. Then it follows from the Theorem 2.3.3 of
Nelsen (2006) that there exists a copula function Cα(u, v)
defined on I2 = [0, 1] × [0, 1] with Cα(u, 0) = Cα(0, v) = 0,
Cα(u, 1) = u and Cα(1, v) = v such that

F (t, w) = Cα((FT (t), FW (w)) .

In the above, the parameter α represents the association
between the Ti’s and Wi’s. Note that the copula model is
commonly used to describe the correlation between vari-
ables and among others, one advantage is that it allows one
to model the correlation and the marginal distribution sep-
arately (Hougaard, 2000; Zheng and Klein, 1995). By fol-
lowing the conditional inversion idea (Section 2.8 and Sec-
tion 3.1, Nelsen, 2006), we have

P (T ≤ t|W = w,Z) =
∂Cα(u, v)

∂v

∣∣∣
u=FT (t),v=FW (w)

,

which will be denoted by mα(FT (t), FW (w)) for simplicity.
In the following, it will be supposed that the main goal is

to estimate the regression parameters β and γ. By following
Zheng and Klein (1995) and others, we will assume that the
copula function and α are known. More comments on this
are given below.

3. SIEVE MAXIMUM LIKELIHOOD
ESTIMATION

Define Λ1(t) =
∫ t

0
λ10(s)ds, Λ2(w) =

∫ w

0
λ20(s)ds, and

θ = (β, γ,Λ1,Λ2). Let fW denote the marginal density func-
tion of the Wi’s given covariates. Then under the models
above, we have

FT (t) = 1− exp{−Λ1(t)− Z ′βt} ,
FW (w) = 1− exp{−Λ2(w) exp(γ

′Z)} ,

and

fW (w) = exp{−Λ2(w) exp(γ
′Z)}λ20(w) exp(γ

′Z) .

Furthermore define δi = I(Ri < ∞), i = 1, · · · , n and let ζ
denote longest follow-up time. Then the likelihood of θ has
the form

L(θ)

=

n∏
i=1

{
[mα(FT (Ri), FW (Wi))
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−mα(FT (Li), FW (Wi))]fW (Wi)
}δi

×
{
1− FW (ζ − Li)− FT (Li)

+ Cα(FT (Li), FW (ζ − Li))
}1−δi

.

The derivation of the likelihood function above is sketched
in Appendix B.

For estimation of β and γ or θ, a natural way is clearly to
maximize the likelihood function L(θ). On the other hand,
this may not be easy due to the dimensions of Λ1(t) and
Λ2(t). For this, following Huang and Rossini (1997) and
others, we will employ the sieve approach. Specifically, let
ψ = (Λ1,Λ2) and define the sieve space

Θn =
{
θn = (β, γ, ψn) : ψn = (Λ1n(t),Λ2n(t))

}

= B ⊗M1
n ⊗M2

n

for θ. In the above,

B = {(β′, γ′)′ ∈ R2p, ‖β‖+ ‖γ‖ ≤ M} ,

M1
n = {Λ1n : Λ1n(t) =

m+kn∑
j=1

ξjIj1(t),

ξj ≥ 0, j = 1, . . . ,m+ kn, t ∈ [l, u]} ,

and

M2
n = {Λ2n : Λ2n(t) =

m+kn∑
j=1

ηjIj2(t),

ηj ≥ 0, j = 1, . . . ,m+ kn, t ∈ [0, ζ − l]} .

Here p denotes the dimension of Zi, the Ij1’s and Ij2’s are
I-spline base functions, and m and kn = o(nν) represent
the order and the number of interior knots of the functions,
respectively, with 0 < ν < 0.5. Then it is natural to estimate
θ by maximizing the log likelihood function ln(θ) = logL(θ)
over the sieve space Θn.

Define the estimator θ̂n = (β̂n, γ̂n, Λ̂1n, Λ̂2n) =
argminΘn ln(θ). To establish the asymptotic properties of

θ̂n, let θ0 = (β0, γ0,Λ10,Λ20) denote the true value of θ.
Also for a vector a and a function f , let ‖a‖ denote the Eu-
clidean norm and ‖f‖∞ = supt |f(t)|, the supremum norm.
For a random variable X being distributed according to the
probability measure P , define ‖f(X)‖2 = (

∫
f2dP )1/2, the

L2(P ) norm. The following three theorems give the consis-
tency and asymptotic normality of the proposed estimator.

Theorem 1. Suppose that the conditions A1–A4 described
in Appendix A hold. Then as n → ∞, we have that ‖β̂n −
β0‖ → 0, ‖γ̂n − γ0‖ → 0, ‖Λ̂1n − Λ10‖2−→0, and ‖Λ̂2n −
Λ20‖2−→0 almost surely.

Theorem 2. Also suppose that the conditions A1–A4 de-
scribed in Appendix A hold. Then as n → ∞, we have that

‖Λ̂1n − Λ10‖2 + ‖Λ̂2n − Λ20‖2 = Op(n
−(1−ν)/2 + n−rν) ,

where r is defined in condition A4 described in Ap-
pendix A.

Theorem 3. Suppose that the conditions A1–A5 described
in Appendix A hold and r > 2. Then as n → ∞, we have

n1/2 ( (β̂n − β0)
′, (γ̂n − γ0)

′)′ → N(0,Σ)

in distribution, where Σ is given in Appendix A. Further-
more β̂n and γ̂n are semiparametrically efficient.

The proofs of the theorems above are sketched in Ap-
pendix A. To estimate the covariance matrix Σ, we suggest
to adopt the common and straightforward approach that
uses the inverse of the observed information matrix based on
the sieve likelihood function. Note that this approach could
be computationally intensive as it involves the inversion of
a potentially high-dimensional and possibly ill-conditioned
matrix. However, the simulation study given in the next sec-
tion indicates that it works well in general, especially when
m and kn are not too large.

4. A SIMULATION STUDY

A simulation study was performed to evaluate the es-
timation procedure proposed in the previous sections. In
the study, it was assumed that the covariate Zi’s follow
the Bernoulli distribution with the success probability of
0.5. To generate the failure time Ti and the censoring in-
terval (Li, Ri], we first generated two independent random
numbers ui and ci from the uniform distribution over (0, 1).
Then define the number vi to be the solution to the equa-
tion ci = ∂Cα(u, v)/∂u|u=ui,v=vi for a given copula function
Cα(u, v) and furthermore define Ti = ti and Wi = wi, where
ti and wi denote the solutions to the equations FT (ti) = ui

and FW (wi) = vi, respectively. Here we took λ10(t) = 1.5
and λ20(w) = 0.5. At the last, we define Li to be the largest
number in {0, Wi, 2Wi, 3Wi, . . . } that is smaller than the
minimum of Ti and ζ and Ri = Li + Wi. Here ζ is a con-
stant taken to give a proper percentage of right-censored
observations (PRC).

For the informative censoring, we considered two copula
models and they are the Gumbel and Frank models given
by

Cα(u, v)

=

{
exp{−[(− log u)α + (− log v)α]1/α} , α ≥ 1 ,
logα{1 + (αu − 1)(αv − 1)/(α− 1)} , α > 0, α 	= 1 ,

respectively. Note that for different copula models, the as-
sociation parameter α has different ranges and thus it is
common to employ the Kendall’s τ to measure the associa-
tion between the Ti’s and Wi’s in general. For the Gumbel
copula, the relationship is given by τ = 1 − 1/α and we
have τ = 1 + 4x−1{D1(x)− 1} for the Frank copula, where
x = − logα and D1(x) = x−1

∫ x

0
t(et − 1)−1dt. The results

given below are based on n = 200 and 500 replications with
the quadratic splines with 3 interior knots. More specifi-
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Table 1. Results on estimation of regression parameters based on the simulated data under the Gumbel model and with β0 = 0

β̂n γ̂n
PRC γ0 τ Bias SSE SEE CP Bias SSE SEE CP

20% 0.0 0.05 0.0059 0.3088 0.2942 0.950 -0.0135 0.1575 0.1587 0.954
0.25 -0.0009 0.3274 0.3146 0.964 -0.0078 0.1592 0.1587 0.950
0.50 -0.0144 0.4037 0.3612 0.959 -0.0045 0.1590 0.1587 0.950

0.2 0.05 0.0019 0.3036 0.2870 0.958 -0.0104 0.1554 0.1589 0.952
0.25 -0.0056 0.3083 0.3046 0.958 -0.0092 0.1568 0.1587 0.956
0.50 -0.0415 0.3584 0.3345 0.957 -0.0071 0.1593 0.1587 0.942

0.4 0.05 -0.0030 0.2976 0.2820 0.952 -0.0103 0.1584 0.1597 0.958
0.25 -0.0123 0.3016 0.2948 0.962 -0.0107 0.1564 0.1593 0.964
0.50 -0.0468 0.3387 0.3222 0.957 -0.0101 0.1616 0.1592 0.946

40% 0.0 0.05 0.0050 0.3210 0.3178 0.956 -0.0036 0.1758 0.1834 0.954
0.25 0.0013 0.3453 0.3484 0.968 -0.0040 0.1756 0.1832 0.960
0.50 -0.0004 0.4173 0.4015 0.976 0.00003 0.1823 0.1831 0.956

0.2 0.05 -0.0009 0.3227 0.3143 0.964 -0.0026 0.1777 0.1835 0.954
0.25 -0.0098 0.3351 0.3424 0.956 -0.0096 0.1796 0.1836 0.960
0.50 -0.0349 0.3728 0.3844 0.982 -0.0058 0.1819 0.1839 0.952

0.4 0.05 -0.0102 0.3239 0.3117 0.950 0.0009 0.1811 0.1848 0.956
0.25 -0.0246 0.3348 0.3406 0.956 -0.0152 0.1849 0.1848 0.952
0.50 -0.0274 0.3528 0.3707 0.966 -0.0132 0.1917 0.1849 0.942

cally, we approximate Λ1(t) and Λ2(w) by
∑6

j=1 ξjIj1(t)

and
∑6

j=1 ηjIj2(w), respectively. Then we maximize the log
likelihood function ln(θ) over the sieve space Θn or the pa-
rameters β, γ, ξj ’s and ηj ’s by using the Newton-type al-
gorithm through the R function nlm. For the knot selec-
tion, we used the 0.25, 0.5, 0.75 quantiles of the pooled set
of all Li’s and the uncensored Ri’s for estimation of Λ1,
while for estimation of Λ2, we used 0.25, 0.5, 0.75 quan-
tiles of the pooled set of the Wi’s from the non-right-
censored subjects and (ζ − Li)’s from the right-censored
subjects.

Table 1 presents the results on estimation of β and γ
based on the simulated data generated under the Gumbel
model with β0 = 0, γ0 = 0, 0.2 or 0.4, and τ = 0.05, 0.25 or
0.5. Here we considered two percentages for right-censored
observations, 20% and 40%. The table includes the esti-
mated bias given by the average of the estimators minus the
true value (Bias), the sample standard deviation (SSE) of
the estimators, the average of the estimated standard errors
(SEE) and the 95% empirical coverage probability (CP).
The results given in Table 2 were obtained similarly as with
Table 1 except β0 = 0.4. Tables 3 and 4 gives the results
obtained under the Frank model with τ = −0.5,−0.25, 0.25
and 0.5, and the other set-ups being the same as with Ta-
bles 1 and 2. One can see from these tables that the pro-
posed sieve maximum likelihood estimation procedure seems
to work well for the situations considered. In particular, the
estimator seems to be unbiased and the variance estimation
seems to be reasonable. Also as expected, the estimation is
more efficient when there is less right censoring although the
difference is not large.

Note that one question of practical interest is the robust-
ness of the proposed estimation procedure to the selection

of copula models. To investigate this, Table 5 presents the
results on estimation of regression parameters β and γ based
on the simulated data generated under the set-up used for
Table 2 but obtained as those in Table 4. That is, we gen-
erated the data from the Gumbel model but assumed the
Frank model instead. One can see that the estimation seems
to be reasonable and similar to the results given in Table 2
and suggests that the method seems to be robust. We also
considered a few other set-ups and obtained similar conclu-
sions.

5. AN ILLUSTRATIVE EXAMPLE

In this section, for the illustration, we apply the proposed
methodology to a well-known set of interval-censored data
on breast cancer patients that has been discussed by many
authors (Sun, 2006). The data set consists of 94 patients
in two treatment groups, radiation therapy alone (46) and
radiation therapy plus adjuvant chemotherapy (48). In the
study, one variable of interest is the time until the appear-
ance of breast retraction, and the patients were asked to
visit clinical centers at pre-specified time points. However,
as expected, most of them had their own observation times.
Hence only interval-censored data are available for the time
to breast retraction. One objective of the study is to com-
pare the effects of the two treatments on the time to breast
retraction.

For the analysis, define Ti to be the time to breast re-
traction for patient i and Zi = 0 if the patient was given
radiotherapy alone and 1 otherwise. Following the simula-
tion study described in the previous section, we will use the
quadratic I-spline functions for the sieve spaces and con-
sidered the use of both Gumbel and Frank models. For the
number of knots, we considered several choices including

370 S. Zhao et al.



Table 2. Results on estimation of regression parameters based on the simulated data under the Gumbel model and with
β0 = 0.4

β̂n γ̂n
PRC γ0 τ Bias SSE SEE CP Bias SSE SEE CP

20% 0.0 0.05 0.0365 0.3643 0.3535 0.956 -0.0058 0.1560 0.1587 0.952
0.25 0.0410 0.4098 0.3833 0.962 0.0065 0.1614 0.1585 0.952
0.50 0.0298 0.4944 0.4495 0.966 0.0060 0.1614 0.1581 0.952

0.2 0.05 0.0273 0.3492 0.3400 0.956 -0.0007 0.1574 0.1590 0.948
0.25 0.0199 0.3691 0.3632 0.964 -0.0002 0.1568 0.1589 0.960
0.50 0.0160 0.4550 0.4227 0.960 -0.0012 0.1594 0.1590 0.946

0.4 0.05 0.0263 0.3439 0.3292 0.956 0.0007 0.1583 0.1598 0.962
0.25 0.0164 0.3529 0.3477 0.966 -0.0008 0.1590 0.1596 0.952
0.50 -0.0114 0.3891 0.3860 0.972 -0.0015 0.1612 0.1597 0.944

40% 0.0 0.05 0.0264 0.3748 0.3740 0.964 0.0281 0.1772 0.1835 0.956
0.25 0.0416 0.4244 0.4193 0.972 0.0199 0.1765 0.1833 0.964
0.50 0.0403 0.5041 0.4816 0.976 0.0217 0.1819 0.1830 0.962

0.2 0.05 0.0184 0.3609 0.3650 0.968 0.0336 0.1810 0.1839 0.952
0.25 0.0134 0.3917 0.4005 0.970 0.0215 0.1782 0.1838 0.958
0.50 0.0143 0.4785 0.4620 0.976 0.0142 0.1824 0.1837 0.950

0.4 0.05 0.0106 0.3621 0.3575 0.964 0.0391 0.1787 0.1853 0.964
0.25 0.0103 0.3947 0.3872 0.966 0.0293 0.1900 0.1853 0.954
0.50 -0.0208 0.4211 0.4348 0.972 0.0128 0.1834 0.1848 0.952

Table 3. Results on estimation of regression parameters based on the simulated data under the Frank model and with β0 = 0

β̂n γ̂n
PRC γ0 τ Bias SSE SEE CP Bias SSE SEE CP

20% 0.0 -0.50 0.0303 0.2444 0.2232 0.936 -0.0207 0.1437 0.1535 0.956
-0.25 0.0148 0.2786 0.2583 0.952 -0.0190 0.1485 0.1570 0.964
0.25 0.0021 0.3450 0.3246 0.948 -0.0078 0.1587 0.1592 0.952
0.50 -0.0124 0.3848 0.3688 0.966 -0.0054 0.1604 0.1589 0.944

0.2 -0.50 0.0360 0.2401 0.2212 0.924 -0.0166 0.1432 0.1531 0.964
-0.25 0.0178 0.2734 0.2555 0.950 -0.0144 0.1500 0.1570 0.962
0.25 -0.0144 0.3217 0.3123 0.962 -0.0112 0.1577 0.1596 0.950
0.50 -0.0408 0.3829 0.3535 0.970 -0.0114 0.1619 0.1593 0.946

0.4 -0.50 0.0417 0.2477 0.2202 0.918 -0.0102 0.1448 0.1534 0.962
-0.25 0.0167 0.2695 0.2524 0.956 -0.0090 0.1503 0.1578 0.962
0.25 -0.0261 0.3223 0.3031 0.954 -0.0085 0.1608 0.1605 0.952
0.50 -0.0366 0.3576 0.3290 0.958 -0.0077 0.1654 0.1602 0.944

40% 0.0 -0.50 0.0405 0.2435 0.2325 0.944 -0.0267 0.1684 0.1748 0.952
-0.25 0.0169 0.2823 0.2705 0.954 -0.0209 0.1744 0.1804 0.966
0.25 -0.0022 0.3700 0.3579 0.946 -0.0042 0.1777 0.1841 0.966
0.50 -0.0061 0.4195 0.4181 0.974 0.0018 0.1816 0.1831 0.954

0.2 -0.50 0.0464 0.2425 0.2314 0.946 -0.0136 0.1648 0.1739 0.954
-0.25 0.0179 0.2847 0.2686 0.954 -0.0071 0.1719 0.1801 0.966
0.25 -0.0151 0.3557 0.3490 0.944 -0.0131 0.1828 0.1847 0.952
0.50 -0.0443 0.4154 0.3995 0.976 -0.0147 0.1829 0.1833 0.950

0.4 -0.50 0.0428 0.2514 0.2315 0.946 0.0115 0.1819 0.1744 0.940
-0.25 0.0180 0.2854 0.2681 0.950 0.0083 0.1731 0.1812 0.970
0.25 -0.0446 0.3483 0.3436 0.954 -0.0193 0.1837 0.1860 0.954
0.50 -0.0554 0.3935 0.3861 0.960 -0.0305 0.1884 0.1845 0.952

kn = 1, 2, 3, 4 and 5 and used the same method as in the
previous section for the knot selection. Table 6 gives the
estimated treatment effects with kn = 3 and 4 along with
the estimated standard errors and the p-values for testing

no treatment effect for various values of τ . They suggest
that there seems no significant treatment effect no matter
the correlation between the failure time of interest and the
censoring interval.
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Table 4. Results on estimation of regression parameters based on the simulated data under the Frank model and with β0 = 0.4

β̂n γ̂n
PRC γ0 τ Bias SSE SEE CP Bias SSE SEE CP

20% 0.0 -0.50 0.0224 0.2636 0.2593 0.948 -0.0120 0.1563 0.1541 0.944
-0.25 0.0313 0.3205 0.3033 0.952 -0.0040 0.1713 0.1576 0.928
0.25 0.0259 0.4043 0.3887 0.962 0.0028 0.1544 0.1588 0.948
0.50 0.0150 0.5172 0.4772 0.980 0.0072 0.1669 0.1585 0.934

0.2 -0.50 0.0222 0.2783 0.2587 0.944 0.0046 0.1545 0.1541 0.940
-0.25 0.0367 0.3142 0.2972 0.960 -0.0093 0.1495 0.1574 0.966
0.25 0.0373 0.3898 0.3769 0.964 0.0049 0.1593 0.1594 0.952
0.50 0.0012 0.4463 0.4301 0.956 0.0050 0.1625 0.1591 0.944

0.4 -0.50 0.0301 0.2701 0.2561 0.948 0.0019 0.1574 0.1546 0.956
-0.25 0.0428 0.3174 0.2937 0.944 -0.0035 0.1516 0.1581 0.954
0.25 0.0085 0.3680 0.3570 0.958 0.0064 0.1622 0.1604 0.946
0.50 -0.0217 0.4420 0.3949 0.948 -0.0002 0.1668 0.1599 0.934

40% 0.0 -0.50 0.0285 0.2881 0.2713 0.944 0.0185 0.1802 0.1762 0.940
-0.25 0.0408 0.3285 0.3143 0.946 0.0055 0.1721 0.1808 0.962
0.25 0.0439 0.4496 0.4310 0.964 0.0286 0.1763 0.1839 0.956
0.50 0.0414 0.5732 0.5271 0.966 0.0065 0.1885 0.1830 0.954

0.2 -0.50 0.0333 0.2798 0.2684 0.940 0.0340 0.1810 0.1759 0.936
-0.25 0.0368 0.3211 0.3091 0.964 0.0227 0.1750 0.1812 0.958
0.25 0.0097 0.4237 0.4113 0.968 0.0260 0.1845 0.1846 0.954
0.50 -0.0153 0.4820 0.4808 0.974 0.0110 0.1828 0.1835 0.956

0.4 -0.50 0.0469 0.2891 0.2670 0.934 0.0470 0.1765 0.1766 0.940
-0.25 0.0415 0.3281 0.3069 0.954 0.0432 0.1792 0.1826 0.948
0.25 -0.0251 0.3956 0.3953 0.960 0.0237 0.1816 0.1862 0.956
0.50 -0.0402 0.4724 0.4481 0.962 -0.0120 0.1925 0.1843 0.934

Table 5. Results on estimation of regression parameters based on the simulated data under the Gumbel but estimated under
the Frank model and with β0 = 0.4

β̂n γ̂n
PRC γ0 τ Bias SSE SEE CP Bias SSE SEE CP

20% 0.0 0.05 0.0499 0.3758 0.3625 0.956 -0.0052 0.1561 0.1588 0.948
0.25 0.0836 0.4521 0.4220 0.962 0.0080 0.1623 0.1587 0.950
0.50 0.0538 0.5182 0.4744 0.960 0.0073 0.1617 0.1580 0.952

0.2 0.05 0.0437 0.3607 0.3482 0.954 0.0002 0.1579 0.1591 0.948
0.25 0.0734 0.4099 0.4012 0.964 0.0019 0.1582 0.1592 0.952
0.50 0.0444 0.4838 0.4487 0.964 -0.0035 0.1592 0.1584 0.950

0.4 0.05 0.0442 0.3559 0.3370 0.950 0.0020 0.1590 0.1600 0.962
0.25 0.0853 0.3916 0.3839 0.954 0.0018 0.1608 0.1600 0.952
0.50 0.0497 0.4317 0.4148 0.966 -0.0048 0.1620 0.1593 0.944

40% 0.0 0.05 0.0374 0.3849 0.3797 0.964 0.0295 0.1776 0.1837 0.954
0.25 0.0781 0.4683 0.4456 0.960 0.0252 0.1779 0.1838 0.964
0.50 0.0463 0.5176 0.4850 0.968 0.0263 0.1820 0.1823 0.952

0.2 0.05 0.0319 0.3706 0.3697 0.964 0.0352 0.1817 0.1842 0.952
0.25 0.0592 0.4293 0.4209 0.954 0.0263 0.1796 0.1844 0.956
0.50 0.0269 0.4919 0.4612 0.980 0.0141 0.1826 0.1833 0.954

0.4 0.05 0.0256 0.3712 0.3615 0.956 0.0409 0.1795 0.1856 0.964
0.25 0.0720 0.4266 0.4001 0.944 0.0334 0.1918 0.1860 0.946
0.50 0.0143 0.4394 0.4319 0.974 0.0089 0.1843 0.1843 0.948

6. CONCLUDING REMARKS

In the previous sections, we discussed regression anal-
ysis of interval-censored failure time data in the presence
of informative censoring and a sieve maximum likelihood

estimation procedure was developed. As discussed before,
interval-censored data occur in many fields and also many
procedures have been developed for their analysis. But most
of them are for the case of noninformative censoring, espe-
cially for regression analysis. The proposed procedure can
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Table 6. Estimated treatment effects for the breast cancer data

Model τ β̂n SEE p-value γ̂n SEE p-value

kn = 3

Gumbel 0 0.01289 0.00730 0.078 0.6993 0.2769 0.0116
0.25 0.00931 0.00723 0.198 0.6232 0.2817 0.0270
0.50 0.00568 0.00643 0.377 0.4859 0.2838 0.0869
0.61 0.00450 0.00600 0.452 0.4294 0.2870 0.1346
0.65 0.00421 0.00582 0.470 0.4135 0.2880 0.1511

Frank 0 0.01289 0.00730 0.078 0.6993 0.2769 0.0116
0.25 0.00889 0.00653 0.174 0.6135 0.2727 0.0244
0.50 0.00587 0.00557 0.292 0.4594 0.2693 0.0880
0.62 0.00427 0.00505 0.397 0.3676 0.2708 0.1747
0.65 0.00385 0.00491 0.432 0.3437 0.2724 0.2070

kn = 4

Gumbel 0 0.01286 0.00745 0.084 0.7093 0.2772 0.0105
0.25 0.00897 0.00731 0.220 0.6281 0.2820 0.0259
0.50 0.00492 0.00645 0.446 0.4748 0.2852 0.0959
0.62 0.00360 0.00599 0.548 0.4084 0.2875 0.1555
0.65 0.00329 0.00588 0.575 0.3894 0.2881 0.1765

Frank 0 0.01286 0.00745 0.084 0.7093 0.2772 0.0105
0.25 0.00854 0.00658 0.194 0.6185 0.2724 0.0232
0.50 0.00540 0.00559 0.334 0.4580 0.2693 0.0890
0.63 0.00380 0.00505 0.451 0.3620 0.2709 0.1815
0.65 0.00339 0.00491 0.490 0.3323 0.2709 0.2200

apply to various types of informative censoring as the cop-
ula model is very flexible and includes many choices. On
the other hand, one may ask if there exists a method to
determine which specific copula model is appropriate for a
given problem. The same can be asked about the association
parameter α. As mentioned above, in general, they are not
identifiable unless there exists some extra information and
similar situations exist in many contexts. A simple example
is how to choose a proper regression model among a class of
models such as linear transformation models for a given set
of failure time data.

Note that in the proposed approach, we have assumed
the additive hazards model and the proportional hazards
model for the Ti and Wi, respectively. It should be straight-
forward to apply the idea discussed above to the situation
where the Ti or Wi may follow some other models such as
the linear transformation model. However, the implementa-
tion or the maximization may be quite different depending
on the model and the same is true for the derivation of the
asymptotic properties of the resulting estimators of regres-
sion parameters.

It is easy to see that compared to the existing regression
methods that base the analysis on frailty models or latent
variables, the proposed approach has an advantage that it
applies to more general situations. In addition, the determi-
nation of the proposed estimators is relatively easy as most
of the frailty models-based procedures have to rely on EM or
some iterative algorithms. Note that among three variables
Li, Ri and Wi, one only needs to deal with two of them
to address informative censoring. Also note that in the pro-

posed approach, it has been assumed that the informative
censoring can be described by the correlation between the
failure time of interest and the length of censoring intervals.
Although this could cover many situations such as medi-
cal follow-up studies, sometimes the informative censoring
may involve both Li and Ri instead of just Wi. It is ap-
parent that this latter situation is much more complicated
than that considered in this paper and a new estimation
procedure is thus needed.
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APPENDIX A. PROOFS OF THEOREMS 1–3

This appendix will sketch the proofs for the asymptotic
properties of the proposed estimators. For this, we need the
following regularity conditions.

(A1) The covariate Zi’s have a bounded support.
(A2) The copula function C(·, ·) has a bounded first order
partial derivatives and both partial derivatives are Lipschitz.
(A3) For θj = (βj , γj ,Λj

1,Λ
j
2), j = 1, 2, define the distance

d2(θ1, θ2) = ‖β1−β2‖22+‖γ1−γ2‖22+‖Λ1
1−Λ2

1‖22+‖Λ1
2−Λ2

2‖22 .
Then we have that infd(θ,θ0)<ε Pl(θ,X) > Pl(θ0, X).
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(A4) The mth derivative of Λk(·), denoted by Λ
(m)
k (·), is

Holder continuous with the exponent η, i.e., |Λ(m)
k (t1) −

Λ
(m)
k (t2)| ≤ M |t1 − t2|η for some η ∈ (0, 1] and for all

t1, t2 ∈ (l, u), k = 1, 2 and M is some constant. Denote
r = m+ η.
(A5) The matrix E(SϑS

′
ϑ) is finite and positive definite,

where ϑ = (β′, γ′)′ and Sϑ is defined in the proof of Theo-
rem 3.

Proof of Theorem 1
To establish the consistency using the empirical process

theory (van der Vaart and Wellner, 1996), we consider a
class of functions Ln defined by

{l(θ,X) : θ ∈ Θn}.

For any θ1 = (β1, γ1,Λ1
1,Λ

1
2), θ

2 = (β2, γ2,Λ2
1,Λ

2
2) ∈ Θn, we

can easily obtain

|l(θ1, X)− l(θ2, X)|
≤ K

(
‖β1 − β2‖+ ‖γ1 − γ2‖+ ‖Λ1

1 − Λ2
1‖∞

+ ‖Λ1
2 − Λ2

2‖∞
)

using Taylor’s series expansion under conditions (A1) and
(A2).

Denote pm = 2p + 2(m + kn). By the calculation of van
der Vart and Wellner(1996)(p.94), we have

N
(
ε,Ln, L1(Pn)

)

≤ N
( ε

3M
,B, ‖ · ‖

)
·N

( ε

3Mn
,M1

n, L∞
)

×N
( ε

3Mn
,M2

n, L∞
)

≤
(9M

ε

)2p

·
(9M2

n

ε

)m+kn

·
(9M2

n

ε

)m+kn

≤ KM2pM4(m+kn)
n ε−pm .

Applying the inequality (31) in Pollard (1984) (p.31), in
probability, we have

sup
θ∈Θn

∣∣Pnl(θ,X)− Pl(θ,X)
∣∣ → 0.(A.1)

Let M(θ,X) = −l(θ,X) and

ζ1n = sup
θ∈Θn

|PnM(θ,X)− PM(θ,X)|,

ζ2n = PnM(θ0, X)− PM(θ0, X).

Denote Kε = {θ : d(θ, θ0) ≥ ε, θ ∈ Θn}. Then we have that

inf
Kε

PM(θ,X)

= inf
Kε

{
PM(θ,X)− PnM(θ,X) + PnM(θ,X)

}

≤ ζ1n + inf
Kε

PnM(θ,X).(A.2)

If θ̂n ∈ Kε, we have

inf
Kε

PnM(θ,X) = PnM(θ̂n, X)

≤ PnM(θ0, X) = ζ2n + PM(θ0, X).(A.3)

By condition (A3), we obtain that infKε PM(θ,X) −
PM(θ0, X) = δε > 0.

By (A.2) and (A.3), we have

inf
Kε

PM(θ,X) ≤ ζ1n + ζ2n + PM(θ0, X) = ζn + PM(θ0, X)

with ζn = ζ1n + ζ2n. Hence, we can get that ζn ≥ δε.
Furthermore, we have {θ̂n ∈ Kε} ⊆ {ζn ≥ δε}. By (A.1)
and Strong Law of Large Numbers, we have ζ1n = o(1)
almost surely, ζ2n = o(1) almost surely. Therefore, by

∪∞
k=1 ∩∞

n=k {θ̂n ∈ Kε} ⊆ ∪∞
k=1 ∩∞

n=k {ζn ≥ δε}, we complete
the proof.

Proof of Theorem 2
To show the convergence rate, for any η > 0, define the

class Fη = {l(θn0, X) − l(θ,X) : θ ∈ Θn, d(θ, θn0) ≤ η}
with θn0 = (β0, γ0,Λ1n0,Λ2n0). Following the calculation
of Shen and Wong (1994) (p.597), we can establish that
logN[](ε,Fη, ‖ · ‖2) ≤ CN log(η/ε) with N = 2(m + kn).
Moreover, some algebraic calculations lead to ‖l(θn0, X) −
l(θ,X)‖22 ≤ Cη2 for any l(θn0, X)− l(θ,X) ∈ Fη. Therefore,
by Lemma 3.4.2 of van der Vaart and Wellner (1996), we
obtain

EP ‖n1/2(Pn − P )‖Fη

≤ CJη(ε,Fη, ‖ · ‖2)
{
1 +

Jη(ε,Fη, ‖ · ‖2)
η2n1/2

}
,(A.4)

where Jη(ε,Fη, ‖ · ‖2) =
∫ η

0
{1+ logN[](ε,Fη, ‖ · ‖2)}1/2dε ≤

CN1/2η. The right-hand side of (A.4) yields φn(η) =
C(N1/2η +N/n1/2). It is easy to see that φn(η)/η decreas-
ing in η, and r2nφn(1/rn) = rnN

1/2 + r2nN/n1/2 < 2n1/2,
where rn = N−1/2n1/2 = n(1−ν)/2 with 0 < ν < 0.5.
Hence n(1−ν)/2d(θ̂, θn0) = OP (1) by Theorem 3.2.5 of
van der Vaart and Wellner (1996). This, together with
d(θn0, θ0) = Op(n

−rν) (Lemma A1 in Lu et al. 2007)

yields that d(θ̂, θ0) = Op(n
−(1−ν)/2 + n−rν). The choice of

ν = 1/(1 + 2r) yields the rate of convergence of d(θ̂n, θ0) =
Op(n

− r
1+2r ).

Proof of Theorem 3
Denote V as the linear span of Θ0 − θ0, where θ0 de-

notes the true value of θ = (θ, γ, ψ) and Θ0 denote the
true parameter space. Let l(θ,W ) be the log-likelihood for
a sample of size one and δn = (n−(1−ν)/2 + n−rν). For any
θ ∈ {θ ∈ Θ0 : ‖θ − θ0‖ = O(δn)}, define the first order
directional derivative of l(θ,X) at the direction v ∈ V as

l̇(θ,X)[v] =
dl(θ + sv,X)

ds

∣∣∣
s=0

,(A.5)
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and the second order directional derivative as

l̈(θ,X)[v, ṽ] =
d2l(θ + sv + s̃ṽ, X)

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

=
dl̇(θ + s̃ṽ, X)

ds̃

∣∣∣
s̃=0

.

Also define the Fisher inner product on the space V as

< v, ṽ >= P
{
l̇(θ,X)[v]l̇(θ,X)[ṽ]

}

and the Fisher norm for v ∈ V as ‖v‖1/2 =< v, v >. Let V̄
be the closed linear span of V under the Fisher norm. Then
(V̄ , ‖ · ‖) is a Hilbert space.

Define the smooth functional of θ as

γ(θ) = b′1β + b′2γ,

where b = (b′1, b
′
2)

′ is any vector of 2p dimension with ‖b‖ ≤
1. For any v ∈ V , we denote

γ̇(θ0)[v] =
dγ(θ0 + sv)

ds

∣∣∣
s=0

= r(v)

whenever the right hand-side limit is well defined. Note that
γ(θ) − γ(θ0) = γ̇(θ0)[θ − θ0]. It follows by the Riesz rep-
resentation theorem that, there exists v∗ ∈ V̄ such that
γ̇(θ0)[v] =< v∗, v > for all v ∈ V̄ and ‖v∗‖2 = ‖γ̇(θ0)‖.

Let εn be any positive sequence satisfying εn = o(n−1/2).
For any v∗ ∈ Θ0, by (A4), Corollary 6.21 of Schumaker
(1981) (p.227), there exists Πnv

∗ ∈ Θn such that ‖Πnv
∗ −

v∗‖ = o(1) and δn‖Πnv
∗−v∗‖ = o(n−1/2). Also define g[θ−

θ0, X] = l(θ,X)−l(θ0, X)−l̇(θ,X)[θ−θ0]. Then by definition

of θ̂, we have

0 ≤ Pn[l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )]

= (Pn − P )[l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )]

+ P [l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )]

= ±εnPn l̇(θ,W )[Πnv
∗]

+ (Pn − P )
{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

+ P
{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

= ∓εnPn l̇(θ;W )[v∗]± εnPn l̇(θ,W )[Πnv
∗ − v∗]

+ (Pn − P )
{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

+ P
{
g[θ̂ − θ0,W ]− g[θ̂ ± εnΠnv

∗ − θ0,W ]
}

:= ∓εnPn l̇(θ,W )[v∗] + I1 + I2 + I3.

For I1, it follows from Conditions (A1)–(A2), Chebyshev
inequality and ‖Πnv

∗−v∗‖ = o(1) that I1 = εn×op(n
−1/2).

For I2, we have

I2 = (Pn − P )
{
l(θ̂,W )

− l(θ̂ ± εnΠnv
∗,W )± εn l̇(θ0,W )[Πnv

∗]
}

= ∓εn(Pn − P )
{
l̇(θ̃,W )− l̇(θ0,W )[Πnv

∗]
}
,

where θ̃ lies between θ̂ and θ̂ ± εnΠnv
∗. By Theorem 2.8.3

in of van der Vaart and Wellner (1996), we know that
{l̇(θ;W )[Πnv

∗] : ‖θ− θ0‖ = O(δn)} is Donsker class. There-
fore, by Theorem 2.11.23 of van der Vaart and Wellner
(1996), we have I2 = εn × op(n

−1/2).
For I3, note that

P (g[θ − θ0,W ]) = P{l(θ,W )− l(θ0,W )− l̇(θ0,W [θ − θ0])}
= 2−1P{l̈(θ̃,W )[θ − θ0, θ − θ0]− l̈(θ0,W )[θ − θ0, θ − θ0]}
+ 2−1P{l̈(θ0,W )[θ − θ0, θ − θ0]}

= 2−1P{l̈(θ0,W )[θ − θ0, θ − θ0]}+ εn × op(n
−1/2)

where θ̃ lies between θ0 and θ and the last equation is due
to Taylor expansion, (A1)–(A2) and r > 2. Therefore,

I3 = −2−1{‖θ̂ − θ0‖2 − ‖θ̂ ± εnΠnv
∗ − θ0‖2}

+ εn × op(n
−1/2)

= ±εn < θ̂ − θ0,Πnv
∗ > +2−1‖εnΠnv

∗‖2

+ εn × op(n
−1/2)

= ±εn < θ̂ − θ0, v
∗ > +2−1‖εnΠnv

∗‖2 + εn × op(n
−1/2)

= ±εn < θ̂ − θ0, v
∗ > +εn × op(n

−1/2)

where the last equality holds since δn‖Πnv
∗ − v∗‖ =

o(n−1/2), Cauchy-Schwartz inequality, and ‖Πnv
∗‖2 →

‖v∗‖2. Combing the above facts, together with
P l̇(θ0,W [v∗]) = 0, we can establish that

0 ≤ Pn{l(θ̂,W )− l(θ̂ ± εnΠnv
∗,W )}

= ∓εnPn l̇(θ0,W )[v∗]± εn < θ̂ − θ0, v
∗ >

+ εn × op(n
−1/2)

= ∓εn(Pn − P ){l̇(θ0,W )[v∗]} ± εn < θ̂

− θ0, v
∗ > +εn × op(n

−1/2).

Therefore, we obtain
√
n < θ̂ − θ0, v

∗ >=
√
n(Pn −

P ){l̇(θ0,W )[v∗]} + op(1) → N(0, ‖v∗‖2), where the asymp-
totic normality is guaranteed by Central limits Theorem
and the the asymptotic variance being equal to ‖v∗‖2 =

‖l̇(θ0,W )[v∗]‖2. This implies n1/2(γ(θ̂) − γ(θ0)) = n1/2 <

θ̂−θ0, v
∗ > +op(1) → N(0, ‖v∗‖2) in distribution. The semi-

parametric efficiency can be established by applying Theo-
rem 4 in Shen (1997).

For each component ϑq, q = 1, 2, · · · , 2p, we denote by
ψ∗
q = (b∗1q, b

∗
2q) the solution to

inf
ψ∗

q

E
{
lϑ · eq − lb∗1 [b

∗
1q]− lb∗2 [b

∗
2q]

}2

.
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where lϑ = (l′β , l
′
γ)

′, lb∗1 [b
∗
1q] and lb∗2 [b

∗
1q] are defined simi-

lar to (A.5). Now let ψ∗ = (ψ∗
1 , · · · , ψ∗

q ). By the calcula-
tions of Chen et al. (2006), we have ‖v∗‖2 = ‖γ̇(θ0)‖ =

supv∈V̄ :‖v‖>0
|γ̇(θ0)[v]|

‖v‖ = b′Σb, where Σ = E(SϑS
′
ϑ), Sϑ =

{lϑ − lb∗1b
∗
1 − lb∗2b

∗
2}. Now, since b′((β̂ − β0)

′, (γ̂ − γ0)
′) =<

θ̂ − θ0, v
∗ >, the conclusion of the theorem follows by the

Cramér-Wold device.

APPENDIX B. THE DERIVATION OF THE
LIKELIHOOD FUNCTION

L(θ)

To derive the likelihood function L(θ), note that given
covariates, if δ = 1, we have

P [L < T < R,W ∈ (w,w + dw)]

= P [L < T < R|W ∈ (w,w + dw)]P [W ∈ (w,w + dw)]

= P [L < T < R|W ∈ (w,w + dw)]fW (w)dw

= [mα(FT (R), FW (w))−mα(FT (L), FW (w))]fW (w)dw.

Furthermore, for δ = 0, we have R = ∞ and P (T > L,W >
ζ − L) = 1− FW (ζ − L)− FT (L) +Cα(FT (L), FW (ζ − L)).
It then follows that the likelihood function of θ based on a
single observation (δ, L,W,Z) has the form

{
[mα(FT (R), FW (W ))−mα(FT (L), FW (W ))]fW (W )

}δ

×
{
1− FW (ζ − L)− FT (L) + Cα(FT (L), FW (ζ − L))

}1−δ

.

Hence the likelihood function of θ based on an i.i.d. sample
(δi, Li,Wi, Zi) has the form

L(θ)

=

n∏
i=1

{
[mα(FT (Ri), FW (Wi))

−mα(FT (Li), FW (Wi))]fW (Wi)
}δi

×
{
1− FW (ζ − Li)− FT (Li)

+ Cα(FT (Li), FW (ζ − Li))
}1−δi

.
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