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Variable selection in strong hierarchical
semiparametric models for longitudinal data
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In this paper, we consider the variable selection problem
in semiparametric additive partially linear models for lon-
gitudinal data. Our goal is to identify relevant main effects
and corresponding interactions associated with the response
variable. Meanwhile, we enforce the strong hierarchical re-
striction on the model, that is, an interaction can be in-
cluded in the model only if both the associated main effects
are included. Based on B-splines basis approximation for the
nonparametric components, we propose an iterative estima-
tion procedure for the model by penalizing the likelihood
with a partial group minimax concave penalty (MCP), and
use BIC to select the tuning parameter. To further improve
the estimation efficiency, we specify the working covariance
matrix by maximum likelihood estimation. Simulation stud-
ies indicate that the proposed method tends to consistently
select the true model and works efficiently in estimation
and prediction with finite samples, especially when the true
model obeys the strong hierarchy. Finally, the China Stock
Market data are fitted with the proposed model to illustrate
its effectiveness.

Keywords and phrases: Variable selection, Interaction,
Semiparametric additive partially linear model, Strong hi-
erarchy, Longitudinal data.

1. INTRODUCTION

Longitudinal data arise frequently in many research ar-
eas such as biology, medicine, economics, and social science.
The common feature of these kinds of studies is the re-
peated measurements on the same subjects. Various para-
metric models have been developed for longitudinal data
analysis [20, 10], but they may have the risk of introducing
biases when the relationship between the response and co-
variates is complex and cannot be featured adequately by
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parametric forms [12]. To relax the assumptions on paramet-
ric forms, we consider the semiparametric additive partially
linear model (APLM) in this paper, which combines the par-
simony of parametric regression and flexibility of nonpara-
metric regression, and thus provides a nice trade-off between
model interpretability and flexibility. Estimation for APLMs
has been receiving increasing attention, and there is a con-
siderable amount of relevant studies (see, e.g., [7, 22, 2, 8]).

With the emerging of high-dimensional longitudinal data,
variable selection for longitudinal data becomes a funda-
mental issue. Including only the relevant covariates in the
model will often enhance predictability and give a parsimo-
nious and interpretable model. Different penalization-based
variable selection methods have been proposed in linear re-
gression analysis, such as the Lasso [25, 26], Bridge [18],
SCAD [11], Elastic Net [35], Adaptive Lasso [36], MCP [32]
and Group Lasso [31, 19], etc. However, variable selection
for APLMs with longitudinal data is rather challenging due
to the semiparametric relationship and the within-subject
correlation structure among the repeated observations of the
same subjects, and thus has not received sufficient attention.
Taking account of the within-subject correlation correctly
is essential for obtaining efficient estimators for longitudinal
data [27, 7].

In addition, in many practical problems, significant joint
effects, or interactions, may exist among the covariates. In
modern genetic association studies, for example, the risks
of multifactorial traits, such as cancer, are often determined
by complex interactions between genetic and environmental
exposures. In order to discover the underlying susceptibil-
ity genes, the heterogeneity in genetic effects due to the
gene-environment or gene-gene interactions cannot be ig-
nored [23]. When interactions exist, it is generally assumed
that there is a natural hierarchy among the covariates, that
is, an interaction cannot be chosen until a split has been
made on its associated main effects [21]. A general vari-
able selection approach ignoring the hierarchical constraints
may select an interaction without the corresponding main
effects. Such models can be difficult to interpret in practice.
Some recent studies have extended the penalized variable
selection methods to regression models with pairwise inter-
actions terms [33, 9, 24, 4, 5, 21]. However, all of these stud-
ies are concentrated on purely parametric or nonparametric
models for sectional data. In this paper, we consider the
APLM of longitudinal data with all possible two-way inter-
actions between parametric terms and between parametric
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and nonparametric terms, and study its variable selection
problem.

The rest of the paper is organized as follows. In Section 2
we introduce the APLM with strong hierarchical interac-
tions, which we call Strong Hierarchical APLM (SHAPLM)
in this paper, and provide the B-splines basis approximation
of the nonparametric components. We propose the penal-
ized likelihood criterion and iterative estimation approach
for SHAPLM in Section 3 to select the relevant main effects
and interactions while simultaneously enforcing the strong
hierarchy. A set of simulation studies with the truth obey-
ing or disobeying the strong hierarchy are surveyed to assess
performance of the proposed method in Section 4. An appli-
cation example is presented in Section 5. We conclude the
paper with a discussion in Section 6.

2. STRONG HIERARCHICAL APLM

Suppose that the data consist of m subjects, with
each subject i(i = 1, . . . ,m) having ni observations. Let
{(yij ,Xij ,U ij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni} be the jth observa-
tion for subject i, where yij is the response variable, Xij =
(xij1, . . . , xijp)

′ is a p× 1 covariate vector corresponding to
the parametric components, and U ij = (uij1, . . . , uijq)

′ is a
q × 1 covariate vector corresponding to the nonparametric
components. Then the APLM is of the form

(1) yij = μ+

p∑
k=1

xijkβk +

q∑
l=1

fl(uijl) + εij

where fl(·), l = 1, . . . , q are unknown smooth functions and
represent the nonlinear effects of U ij . We assume that the
errors εi = (εi1, . . . , εini)

′ are independently normally dis-
tributed as N(0,Σi).

Furthermore, by including all possible pairwise interac-
tions between parametric terms and between parametric and
nonparametric terms in the APLM (1), we get the following
model:

yij = μ+

p∑
k=1

xijkβk +

q∑
l=1

fl(uijl)(2)

+

p−1∑
k=1

p∑
k′=k+1

xijkxijk′αkk′

+

p∑
k=1

q∑
l=1

xijkfl(uijl)πkl + εij

In model (2), the interactions between the parametric and
nonparametric terms are also assumed to be in linear prod-
uct forms. It is the same as the interaction terms in Maity
et al. [23] which are linear products of the parametric ge-
netic effects and nonparametric environmental effects. In-
teractions among the nonparametric terms are of complex
and unintelligible nonparametric forms. For example, the
interaction between f1(u1) and f2(u2) is f12(u1, u2), which
is an unknown two-dimensional nonparametric function and
would also cause “curse of dimensionality”. Therefore such
interactions are not considered in our model.

Our goal here is to fit model (2) while simultaneously en-
force the strong hierarchy, which means that an interaction
can be present only if both of its associated main effects are
present in the model. Another type of hierarchy is weak hi-
erarchy, which is obeyed as long as either associated main
effects of the selected interaction are present [21], and is not
investigated in this paper.

To impose the strong hierarchical constraints on the in-
teractions in model (2), we reparameterize their coefficients
αkk′ and πkl as αkk′ = γkk′βkβk′ and πkl = ηklβk, and thus
produce the Strong Hierarchical APLM (SHAPLM):

yij = μ+

p∑
k=1

xijkβk +

q∑
l=1

fl(uijl)(3)

+

p−1∑
k=1

p∑
k′=k+1

xijkxijk′γkk′βkβk′

+

p∑
k=1

q∑
l=1

xijkfl(uijl)ηklβk + εij

By expressing the interaction coefficient αkk′ or πkl as
the product of a separate parameter (γkk′ or ηkl) and
the associated main effects coefficients, model (3) natu-
rally enforces the strong hierarchy. The separate parame-
ters γ = (γ12, . . . , γp−1,p)

′ or η = (η′
1, . . . ,η

′
q)

′ are used
to capture interactions, where ηl = (η1l, . . . , ηpl)

′, l =
1, . . . , q. It is obvious that if a main effect X(k) = (x11k, . . . ,
x1n1k, . . . , xm1k, . . . , xmnmk)

′ or U (l) = (u11l, . . . , u1n1l, . . . ,
um1l, . . . , umnml)

′ is excluded from the model, that is
βk = 0 or fl(·) ≡ 0, then all the associated inter-
actions, X(k) :: X(k′) = (x11kx11k′ , . . . , xmnmkxmnmk′)′

(∀k′ �= k) or X(k) :: fl(U (l)) = (x11kfl(u11l), . . . ,
xmnmkfl(umnml))

′ (∀k), are certainly excluded from the
model. Identical forms of the interactions between paramet-
ric components and between parametric and nonparametric
components in model (3) are proposed in Choi, Li and Zhu
[9] and Maity et al. [23], respectively.

The continuous covariate uijl in model (3) is often as-
sumed to be distributed on a compact interval [al, bl]. With-
out loss of generality, we take all [al, bl] = [a, b] for l =

1, . . . , q. For identifiability, we assume
∫ b

a
fl(u)du = 0 for

each l. Under the smoothness assumptions of fl(·), we can
approximate fl(·) by a basis expansion [15, 16], i.e.,

(4) fl(u) ≈
Dl∑
d=1

φ
(d)
l B

(d)
l (u) = B′

l(u)φl

where Dl is the number of basis functions in approximating

fl(·), Bl(·) = (B
(1)
l (·), . . . , B(Dl)

l (·))′ is the vector of known

basis functions, and φl = (φ
(1)
l , . . . , φ

(Dl)
l )′ is the vector of

regression coefficients, l = 1, . . . , q. For simplicity, we apply
the same number of basis functions for each nonparamet-
ric component with Dl = D for l = 1, . . . , q. With this
expansion, one nonparametric covariate effect corresponds
to a group of multiple regression coefficients for the basis
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functions. In this paper, cubic B-splines basis functions are
used to estimate the nonparametric components for their
good approximation properties and desirable computational
speed [1, 28].

We further define some matrix notations for convenience.
For subject i, let Y i = (yi1, . . . , yini)

′ be the ni×1 response,
Xi = (Xi1, . . . ,Xini)

′ be the ni × p covariates matrix, and
F i = (f i1, . . . ,f iq) be the ni × q smooth functions matrix,
where f il = (fl(ui1l), . . . , fl(uinil))

′, l = 1, . . . , q. We denote
the interactions matrices as

Xi :: Xi =

⎛
⎜⎝

xi11xi12 · · · xi1,p−1xi1p

...
. . .

...
xini1xini2 · · · xini,p−1xinip

⎞
⎟⎠ and

Xi :: F i =

⎛
⎜⎝

xi11f1(ui11) · · · xi1pfq(ui1q)
...

. . .
...

xini1f1(uini1) · · · xinipfq(uiniq)

⎞
⎟⎠

(5)

respectively. Let β = (β1, . . . , βp)
′, α = (γ12β1β2, . . . ,

γp−1,pβp−1βp)
′, πl = (η1lβ1, . . . , ηplβp)

′ and π = (π′
1, . . . ,

π′
q)

′, then model (3) can be written in matrix form as

Y i = μ1ni +Xiβ + F i1q + (Xi :: Xi)α(6)

+ (Xi :: F i)π + εi

where 1q denotes a column vector of length q with all ele-
ments 1. It follows from (4) that

f il = (B′
l(ui1l)φl, . . . ,B

′
l(uinil)φl)

′ = Zilφl

and F i1q = Ziφ
(7)

where Zil = (Bl(ui1l), . . . ,Bl(uinil))
′ is the ni × D B-

splines basis matrix corresponding to the lth expansion,
l = 1, . . . , q, Zi = (Zi1, . . . ,Ziq) is a ni × qD matrix, and
φ = (φ′

1, . . . ,φ
′
q)

′.
For a prespecified B-splines basis matrix Zi, estimating

the main effects and interactions coefficients β, α and π
and the nonparametric components F i are converted to es-
timating the parameters θ = (β′,φ′,γ′,η′)′.

Before presenting the optimization and estimation proce-
dure, we provide some basic assumptions for the SHAPLM
as follows:

(A1) The covariates uijl are uniformly bound with uijl ∈
[a, b] for i = 1, . . . ,m, j = 1, . . . , ni and l = 1, . . . , q.

(A2) The marginal density function pijl(·) of uijl is
bounded away from 0 and ∞ on its support [a, b] for
i = 1, . . . ,m, j = 1, . . . , ni and l = 1, . . . , q.

(A3) The joint density function of any pair of uijl and uij′l′ ,
pijj′ll′(·, ·), is bounded away from 0 and ∞ on its sup-
port [a, b]2 and has continuous partial derivatives for
i = 1, . . . ,m, j, j′ = 1, . . . , ni and l, l′ = 1, . . . , q.

(A4) The nonparametric functions fl(·) are twice contin-

uously differentiable, and
∫ b

a
{f ′′

l (u)}2du is finite and

Efl(uijl) =
∫ b

a
fl(u)du = 0 for i = 1, . . . ,m, j = 1, . . . ,

ni and l = 1, . . . , q.

(A5) The eigenvalues of the true covariance matrices Σi

are uniformly bounded away from 0 and ∞ for i =
1, . . . ,m.

Similar assumptions have been made in Huang, Zhang
and Zhou [16] and Cheng, Zhou and Huang [8] when con-
sidering the (additive) partially linear model for longitudinal
data. AssumptionsA1−A4 are standard smoothness condi-
tions for the B-splines basis approximation and ensure iden-
tifiability of the additive nonparametric components. A5
is a practical condition for the within-subject correlation
structure of longitudinal data.

3. OPTIMIZATION AND ESTIMATION

3.1 Penalized likelihood

Denote the norm ‖v‖2 = (v′v)1/2 and ‖v‖R = (v′Rv)1/2

for a column vector v ∈ Rd with d ≥ 1 and a positive
definite matrix R. To achieve the purpose of variable se-
lection for SHAPLM (6), we consider the penalized like-
lihood criterion of minimizing the penalized log-likelihood
function

m∑
i=1

‖Y i − μ1ni −Xiβ − F i1q − (Xi :: Xi)α(8)

− (Xi :: F i)π‖2W i
+ Pλ(β,φ,γ,η)

where W i = V −1
i with V i being the working covariance

matrix, a substitute of the true unknown covariance matrix
Σi, and Pλ(β,φ,γ,η) =

∑
k pλβ ,r(|βk|)+

∑
l pλφ,r(‖φl‖2)+∑

k<k′ pλγ ,r(|γk,k′ |) +
∑

k,l pλη,r(|ηk,l|) is the summation of
penalties with the tuning parameters λ = (λβ , λφ, λγ , λη)

′.
In theory, different data-dependent tunings for β, φ, γ and
η can be applied, but for computational simplicity, we set
the tuning parameters equal and select a single λ = λβ =
λφ = λγ = λη. Note that there is a grouping structure in
φl because fl(·) ≡ 0 is equivalent to all elements in φl are
0, l = 1, . . . , q. In this paper we use the minimax concave
penalty, or MCP [32, 6], for β, γ, η and Group MCP [13]
for φ, resulting (8) to be a partial group MCP problem. The
MCP penalty function is defined on [0,+∞) by

(9) pλ,r(θ) =

⎧⎪⎨
⎪⎩

λθ − θ2

2r
, if θ ≤ rλ

1

2
rλ2, if θ > rλ

with the tuning parameter λ ≥ 0 and regularization param-
eter r > 1 which is used to control the concavity of pλ,r(θ).
We use r = 3 for simplicity in our simulation studies as sug-
gested in Breheny and Huang [6]. The Group MCP for φ is
actually imposing the MCP on the norm ‖φl‖2, l = 1, . . . , q,
which selects the relevant groups of B-splines bases, and
thus identifies the relevant nonparametric components. The
MCP and group MCP problems can be well solved by the
coordinate descent and group coordinate descent algorithms
[6, 13, 14].
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3.2 Iterative estimation procedures

Choi, Li and Zhu [9] considered a purely parametric re-
gression model with main effects and all two-way interac-
tions, and proposed an iterative estimation approach be-
tween the parameters βk and γkk′ . Similarly, we proposed
to iteratively estimate the parameters β, φ, γ and η for
SHAPLM (6) based on the B-splines basis approximation of
the nonparametric components. For a given W i and the
prespecified B-splines basis matrix Zi, the algorithm for
solving the penalized likelihood problem (8) is described as
follows:

Step 1: Initialization. Set γ̂(0) = 0 and η̂(0) = 0, and then

estimate β̂
(0)

and φ̂
(0)

using the ordinary least square.
The intercept is estimated as μ̂(0) = 1

N

∑m
i=1 ‖Y i −

Xiβ̂
(0)−Ziφ̂

(0)‖1 with N =
∑m

i=1 ni. Let the iteration
index t = 1.

Step 2: Update γ̂ and η̂. Obtain F̂
(t)

i from φ̂
(t)

and (7),
and let

Ỹ i = Y i − μ̂(t)1ni −Xiβ̂
(t) −Ziφ̂

(t)
,

X̃i = (Xi :: Xi)diag(β̂1

(t)
β̂2

(t)
, . . . , β̂p−1

(t)
β̂p

(t)
),

Z̃i = (Xi :: F̂
(t)

i )diag(β̂
(t)′

, . . . , β̂
(t)′

),

where diag(a1, . . . , an) represents a n×n diagonal ma-
trix with the diagonal elements a1, . . . , an. Then we ob-
tain γ̂(t+1) and η̂(t+1) by minimizing

m∑
i=1

‖Ỹ i − X̃iγ − Z̃iη‖2W i
+

∑
k<k′

pλ,r(|γk,k′ |)

+
∑
k,l

pλ,r(|ηk,l|),

which is a general penalized least square problem with
response Ỹ i and covariates (X̃i, Z̃i) and can be solved
by MCP.

Step 3: Update φ̂. Let

Ỹ i = Y i − μ̂(t)1ni −Xiβ̂
(t)

− (Xi ::Xi)(γ̂1,2
(t)
β̂1

(t)
β̂2

(t)
, . . . , γ̂p−1,p

(t)
β̂p−1

(t)
β̂p

(t)
)′

and rearrange (Xi :: F i)π as (Xi :: F i)π = (Xi ::
Zi1φ1, . . . ,Xi :: Ziqφq)(π

′
1, . . . ,π

′
q)

′ = Aiφ where
Ai = Ai(Xi,Zi,β,γ) is a ni×D matrix and the func-

tion of Xi, Zi, β and γ. Then we obtain φ(t+1) by
minimizing

m∑
i=1

‖Ỹ i −Ziφ−Ai(Xi,Zi, β̂
(t)
, γ̂(t+1))φ‖2W i

+
∑
l

pλ,r(‖φl‖2)

which is a general group variable selection prob-
lem with response Ỹ i and covariates (Zi,Ai(Xi,Zi,

β̂
(t)
, γ̂(t+1))) and can be solved by Group MCP.

Step 4: Update β̂. We get f̂
(t+1)

il , l = 1, . . . , q and F̂
(t+1)

i

from φ̂
(t+1)

, and let β̂
(t+1)

= β̂
(t)
. For each k ∈ {1, . . . ,

p}, let

Ỹ i = Y i − μ̂(t)1ni −
∑
k′ �=k

Xi(k′)β̂k′
(t+1)

−Ziφ̂
(t+1)

−
∑

k′<k′′,k′,k′′ �=k

(Xi(k′) ::Xi(k′′))γ̂k′,k′′
(t+1)

β̂k′
(t+1)

β̂k′′
(t+1)

− (Xi(−k) :: F̂
(t+1)

i )π̃,

X̃i = Xi(k) +
∑
k′<k

(Xi(k′) :: Xi(k))γ̂k′,k
(t+1)

β̂k′
(t+1)

+
∑
k′>k

(Xi(k) :: Xi(k′))γ̂k,k′
(t+1)

β̂k′
(t+1)

+

q∑
l=1

(Xi(k) :: f̂
(t+1)

il )η̂
(t+1)
kl

where (a1, . . . , an)
′ :: (b1, . . . , bn)

′ = (a1b1, . . . , anbn)
′,

Xi(k) represents the kth column of Xi, Xi(−k)

represents the matrix of removing the kth column
of Xi, and π̃ = (π̃′

1, . . . , π̃
′
q)

′ with π̃l repre-
senting the vector of removing the kth element of

(η̂
(t+1)
1l β̂1

(t+1)
, . . . , η̂

(t+1)
pl β̂p

(t+1)
)′, l = 1, . . . , q. Then we

have

β̂k

(t+1)
= argminβk

m∑
i=1

‖Ỹ i − X̃iβk‖2W i
+ pλ,r(|βk|),

which is a simple MCP problem with only one param-
eter βk.

Step 5: Update μ̂.

μ̂(t+1) =
1

N

m∑
i=1

‖Y i −Xiβ̂
(t+1) −Ziφ̂

(t+1)

− (Xi :: Xi)α̂
(t+1) − (Xi :: F̂

(t+1)

i )π̂(t+1)‖1

Step 6: Let t = t+1, and iterate Step 2 through Step 5 un-

til convergence to obtain the final estimate θ̂ = (β̂
′
, φ̂

′
,

γ̂′, η̂′)′. The convergence criterion is ‖θ̂(t+1) − θ̂
(t)‖2 <

10−3.

The convergence of the iterative processes is guaranteed as
discussed in Choi, Li and Zhu [9].

3.3 Choice of tuning parameter

To implement the proposed approach, we need to choose
the tuning parameter λ = λβ = λφ = λγ = λη appro-
priately. Various criterions such as AIC, BIC, Generalized
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Cross-Validation (GCV), and K-fold Cross-Validation have
been proposed to select the tuning parameter. It is known
that under general conditions, BIC is consistent for model
selection while AIC is not when the true model belongs to
the class of models considered [17, 29]. In this paper, we use
the BIC criterion defined as

(10) BIC(λ) = Nlog(RSSλ) + logN × (dfλ)

where RSSλ is the residual sum of squares of the selected
model and dfλ is the degrees of freedom for a given tuning
parameter λ, and N =

∑m
i=1 ni is the total sample size. dfλ

is often taken as the number of nonzero coefficients of the
fitted model, and in our approach, it is the total numbers of
nonzero coefficients in β, α and π. We search in a grid of
λ’s and obtain the solution of (8) for each λ, and then we
select the λ minimizing the BIC criterion (10) and get the
corresponding solution.

3.4 Specification of working covariance
matrix

In (8), the most efficient estimation of the working co-
variance matrix V i is the true covariance matrix Σi, which
is usually unknown in practice. When the working covari-
ance matrix is misspecified, the resulting estimate is still
consistent, but not efficient [20, 12]. In order to improve
the estimation efficiency of the regression parameters and
reduce the bias of the semiparametric estimate for longitu-
dinal data, it’s essential to specify the working covariance
matrix correctly [27, 7]. Here we first assume balanced data
with ni = n for all i and propose the maximum likelihood es-
timation for V i, and then present the implementation with
unbalanced data later.

3.4.1 Balanced data

Under the assumption of balanced data, we assume Σi =
Σ0 for i = 1, 2, . . . ,m. The log-likelihood function is given
by

− m

2
log|V 0| −

1

2

m∑
i=1

‖Y i − μ1ni −Xiβ − F i1q(11)

− (Xi :: Xi)α− (Xi :: F i)π‖2V −1
0

after dropping constant terms. Then from Anderson [3], the
maximum likelihood estimation of V i = V 0 is obtained by
maximizing (11) as

1

m

m∑
i=1

(Y i − μ̂1ni −Xiβ̂ − F̂1q − (Xi :: Xi)α̂(12)

− (Xi :: F̂ i)π̂)(Y i − μ̂1ni −Xiβ̂ − F̂1q

− (Xi :: Xi)α̂− (Xi :: F̂ i)π̂)
′

To gradually improve the estimation efficiency, we iter-
ate the penalized likelihood estimation procedure (8) of pa-
rameters and the maximum likelihood estimation procedure

(12) of the working covariance matrix until convergence. The
working independence covariance matrix is used as the ini-

tial estimate of V i, that is, V̂
(0)

i = Ini .

3.4.2 Unbalanced data

In practice, longitudinal data may be highly unbalanced
or irregular due to missing observations. We assume the
completely observed time is n, and define the n× ni trans-
formation matrix T i for the ith subject by removing the
columns corresponding to the missing observations of the
identity matrix In. Let Y ∗

i = T iY i, X∗
i = T iXi and

F ∗
i = T iF i, thus the unbalanced data can be transformed

to balanced data. Then we can estimate the working covari-
ance matrix corresponding to the fully observed subjects,
V 0, from (12), and let V̂ i = T ′

iV̂ 0T i. A similar solution for
implementation with unbalanced data can be seen in Zhou
and Qu [34].

4. SIMULATION STUDIES

In this section, we conduct simulation studies to inves-
tigate the finite sample performance of our proposed esti-
mation process for SHAPLM. Similar to Bien, Taylor and
Tibshirani [5] and Lim and Hastie [21], we consider the fol-
lowing four different setups:

Case I: Truth is hierarchical and has both main effects and
interactions: βk = 0 → αkk′ = 0, πkl = 0 for all k, k′

and l.
Case II: Truth is hierarchical and has only main effects:

αkk′ = 0 and πkl = 0 for all k, k′ and l.
Case III: Truth is anti-hierarchical and has both main ef-

fects and interactions: βk = 0 → αkk′ �= 0, πkl �= 0 for
some k, k′ and l.

Case IV: Truth is anti-hierarchical and has only interac-
tions: βk = 0 and fl(·) ≡ 0 for all k and l.

In all cases, we assumed there are p = 15 parametric covari-
ates and q = 10 nonparametric covariates, and the last 10
parametric covariates and last 7 nonparametric covariates
have no effects on the response in the true model, that is,
βk = 0 for 6 ≤ k ≤ 15 and fl(·) ≡ 0 for 4 ≤ l ≤ 10. The
covariates xijk, k = 1, . . . , 15 were generated independently
from a normal distribution N(0, 3). uijl, l = 1, . . . , 10 were
generated from a uniform distribution on [−3, 3]. Several
forms of Gaussian processes of εij were considered for mod-
eling various within-subject correlation in previous stud-
ies, and we generated εij from a normal distribution with
mean 0, variance 1 and exponentially decaying correlation
corr(εij1 , εij2) = exp(−|j1−j2|) as suggested in Diggle et al.
[10] and Fan and Li [12]. Particularly, for the nonparametric
part, we define three smooth functions on [−3, 3] as g1(u) =
−3sin(πu−π), g2(u) = 8.85(u3 +0.2)2−exp(−2

3u+0.6) and

g3(u) = −(u−2)2+2u+7 which satisfy
∫ 3

−3
gi(u)du = 0, i =

1, 2, 3. Cubic B-splines were used to approximate the non-
parametric functions with the number of basis functions D
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Table 1. Simulation study: coefficients and nonparametric components of the true model

β1 β2 β3 β4 β5 f1 f2 f3 α12 α13 α14 α23 α24 π31 π41 π22 π42 π52

Case I 2 3 3 4 4 g1 g2 g3 0.8 1 2 1 1 1 2 0.8 1 1
Case II 2 3 3 4 4 g1 g2 g3 0 0 0 0 0 0 0 0 0 0

β1 β2 β3 β4 β5 f1 f2 f3 α12 α15 α23 α25 π11 π21 π31 π51 π33 π43

Case III 0 3 3 4 0 g1 g2 0 1 0.8 1 0.6 1 0.8 0.5 1 0.6 1
Case IV 0 0 0 0 0 0 0 0 1 0.8 1 0.6 1 0.8 0.5 1 0.6 1

chosen from 8, 10, 12, . . . , 20, and we selected the one giving
the minimal prediction error (PE). The main effects and in-
teractions coefficients and the nonparametric components of
the 4 cases are shown in Table 1, and the effects excluded
from Table 1 are exactly zeros.

For each simulation setup, we generated K = 100
datasets consisting of both balanced and unbalanced situa-
tions with m = 100 or 300 subjects and n = 6 observations
for the fully observed subjects. The unbalanced datasets
were created from the balanced ones by keeping 30% of the
subjects with complete observations and the other 70% sub-
jects with a probability of 0.3 to be missing in each obser-
vation.

4.1 Variable selection performance

To assess the variable selection performance of our pro-
posed method, we consider sensitivity, which is the propor-
tion of number of selected relevant terms to total number
of relevant terms, and specificity, which is the proportion
of number of unselected irrelevant terms to total number of
irrelevant terms.

The average sensitivity and specificity computed based
on the 100 datasets corresponding to the parametric main
effects, the nonparametric main effects, the interactions
between parametric terms, the interactions between para-
metric and nonparametric terms, and the overall effects,
respectively, represented by “Main. X”, “Main. U”, “In-
ter. X”, “Inter. X&U” and “Overall”, are presented in Ta-
ble 2.

We can see from Table 2 that our approach has a fairly
good variable selection performance for each case, and the
unbalanced situation is a little less effective but almost
comparable since over 20% of the observations are missing.
When the sample size increases, such as when m = 300, the
proposed approach shows a consistent model selection trend,
especially when the truth satisfies the strong hierarchy. Even
when the true model does not obey the hierarchical con-
straint, the sensitivity and specificity are still considerably
high even though the selected model is always wrong. Under
this circumstance, our approach either estimates some irrel-
evant main effects with small nonzero coefficients in order to
include the significant interactions, or estimates the relevant
interactions with zero coefficients in order to exclude the as-
sociated irrelevant main effects, resulting in some reduction
of sensitivity of the interactions and specificity of the main

effects, but sensitivity of the main effects and specificity of
the interactions are still quite high.

4.2 Prediction and estimation performance

The overall prediction accuracy is measured by the pre-
diction error (PE), which is defined as

PE =
1

N

m∑
i=1

‖Ŷ i − Y i‖22

We assess performance of the estimators of main effects coef-
ficients β and and interactions coefficients α and π by mean
squares error (MSE). The MSE of β̂ based on the K = 100
simulated datasets is estimated by

MSE(β̂) = E‖β̂ − β‖22 =
1

K

K∑
k=1

‖β̂ − β‖22

and MSE(α̂) and MSE(π̂) defined similarly. The finite
sample performance of the estimators of nonparametric
components is evaluated by the square root of average
squared errors (RASE)

RASE(f̂) =

√√√√ 1

N

q∑
l=1

m∑
i=1

ni∑
j=1

‖f̂l(uijl)− fl(uijl)‖22

as suggested in Fan and Li [12] and Ai, You and Zhou [2].

The MSE(β̂), MSE(α̂), MSE(π̂), and means and stan-

dard deviations of PE and RASE(f̂) computed based on
the 100 datasets are shown in Table 3.

Table 3 shows that in case I and II where the truth
obeys the strong hierarchy, the overall prediction accu-
racy is pretty high, and the estimations for both main ef-
fect and interaction coefficients and nonparametric compo-
nents are really efficient, especially when the sample size
is comparatively large. However, when the true model is
anti-hierarchical, the prediction and estimation accuracy re-
duces. We can find that MSE(β̂), MSE(α̂) and RASE(f̂)
in case III and IV are still low even though much bigger
compared to case I and II, but MSE(π̂) is extremely high,
which contributes the most to the high PE. As shown in
Table 2, the sensitivity of interactions between parametric
and nonparametric terms is relatively low in case III and
IV, thus the underestimate of π and strong effects of the

360 X. Zeng et al.



Table 2. Simulation results: sensitivity and specificity of the fitted models in each case

Balance Unbalance
Case m Overall Main. X Main. U Inter. X Inter. X&U Overall Main. X Main. U Inter. X Inter. X&U

I 100 Sensitivity 0.998 1 0.997 1 0.996 0.995 1 0.990 1 0.988
Specificity 0.987 0.988 1 1 0.978 0.981 0.970 0.999 1 0.968

300 Sensitivity 1 1 1 1 1 1 1 1 1 1
Specificity 1 0.993 1 1 1 0.999 0.990 1 1 0.998

II 100 Sensitivity 1 1 1 - - 1 1 1 - -
Specificity 0.955 0.779 1 0.964 0.957 0.959 0.795 1 0.965 0.964

300 Sensitivity 1 1 1 - - 1 1 1 - -
Specificity 0.968 0.780 1 0.969 0.978 0.968 0.772 1 0.968 0.979

III 100 Sensitivity 0.847 1 0.985 0.678 0.838 0.820 1 0.955 0.653 0.797
Specificity 0.961 0.826 0.875 1 0.950 0.966 0.840 0.875 1 0.958

300 Sensitivity 0.901 1 1 0.820 0.872 0.895 1 1 0.790 0.878
Specificity 0.969 0.832 0.875 1 0.965 0.964 0.832 0.875 1 0.954

IV 100 Sensitivity 0.719 - - 0.733 0.710 0.708 - - 0.745 0.683
Specificity 0.940 0.669 0.838 1 0.933 0.943 0.671 0.843 1 0.939

300 Sensitivity 0.789 - - 0.805 0.778 0.808 - - 0.818 0.802
Specificity 0.950 0.666 0.821 1 0.953 0.944 0.661 0.818 1 0.944

Table 3. Simulation results: PE, MSE and RASE in each case

Balance Unbalance

Case m PE MSE(β̂) MSE(α̂) MSE(π̂) RASE(f̂) PE MSE(β̂) MSE(α̂) MSE(π̂) RASE(f̂)

I 100 5.625(2.376) 0.535 0.049 1.006 1.569(0.438) 6.285(2.389) 0.776 0.075 0.980 1.689(0.439)
300 2.105(0.382) 0.141 0.008 0.342 0.871(0.166) 2.239(0.500) 0.183 0.010 0.372 0.893(0.151)

II 100 1.160(0.361) 0.009 0.001 0.039 0.554(0.195) 1.166(0.470) 0.011 0.002 0.051 0.615(0.221)
300 1.042(0.126) 0.003 0.000 0.026 0.307(0.115) 1.060(0.164) 0.003 0.001 0.010 0.356(0.135)

III 100 38.58(11.11) 1.257 1.565 16.09 3.949(0.736) 41.61(13.33) 1.314 1.641 16.24 4.108(0.748)
300 32.51(7.077) 1.014 1.091 13.25 3.472(0.742) 34.09(7.436) 1.090 1.134 12.11 3.710(0.689)

IV 100 75.18(14.75) 1.245 1.416 17.61 3.185(0.655) 75.96(14.39) 1.208 1.408 19.52 2.998(0.699)
300 67.77(11.31) 1.142 1.125 15.08 3.107(0.637) 67.16(11.86) 1.183 1.134 18.09 3.024(0.524)
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Table 4. Details of the predictors

Aspect Variable Definition Aspect Variable Definition

Cash flow
capacity

CF1 the cash flow ratio Short-term
debt-paying
ability

SD1 the current ratio

CF2 the revenue cash ratio SD2 the quick ratio
CF3 the sales receive cash ratio SD3 the working capital ratio
CF4 the surplus cash coverage ratio SD4 the working capital
CF5 the net cash flow per share

Operation
capacity

OP1 the accounts receivable turnover Profitability PR1 the operating margin

OP2 the inventory turnover PR2 the net profit to sales ratio
OP3 the accounts payable turnover PR3 the assets return rate
OP4 the working capital turnover PR4 the return on assets (ROA)
OP5 the current assets turnover PR5 the return on current assets
OP6 the fixed assets turnover PR6 the return on fixed assets
OP7 the long-term asset turnover PR7 the return on equity (ROE)
OP8 the total assets turnover PR8 the earnings before interest and

tax
OP9 the stockholders equity turnover PR9 the earnings per share (EPS)
OP10 the operating income per share

Development
ability

DE1 the rate of capital accumulation Share
structure

SS1 the top five shareholding ratio

DE2 the growth rate of fixed assets SS2 the gap between the first and
the second shareholding ratios

DE3 the growth rate of total assets
DE4 the growth rate of operating income SS3 the supervisor shareholding

ratio

Long-term
debt-paying
ability

LD1 the asset-liability ratio Board
structure

BS1 the total number of directors

LD2 the current assets ratio BS2 the CEO duality
LD3 the fixed assets ratio BS3 the proportion of independent

directors
LD4 the current debt ratio Risk factor RK1 the consolidated leverage
LD5 the long-term debt ratio
LD6 the equity to debt ratio
LD7 the tangible net debt ratio
LD8 the debt to equity price ratio

nonparametric components due to their high variances work
together and lead to a high PE. It demonstrates that our
proposed method for SHAPLM is to be improved in estimat-
ing the interactions between parametric and nonparametric
terms when they dissatisfy the hierarchical constraint and
the nonparametric effects are strong.

5. APPLICATION

To illustrate the effectiveness of proposed approach on
real longitudinal data, we considered the financial indi-
cator data of the China Stock Market from the China
Stock Market and Accounting Research Database (CS-
MAR), published by GTA Information Technology Com-
pany (http://www.gtarsc.com/). We aim to explore which
financial indicators and interactions have influential effects
on the price-to-earnings ratio (P/E ratio), which is defined

as the market price per share divided by annual earnings
per share. After excluding those abnormal stocks with P/E
ratios exceeding 500, we obtain the dataset containing 149
stocks of the mechanical listed companies from 2009 to 2011.
We have 47 predictors of 9 aspects detailed in Table 4, and
consider the natural logarithm of P/E ratio as the response.
Among the 47 predictors, BS2 is binary and the others are
continuous, so BS2 is not suitable to be modelled nonpara-
metricly. The predictors in the first 6 aspects in Table 4 re-
flect the financial statements of a listed company and are of-
ten considered linearly correlated with the logarithmic P/E
ratio, and thus are modelled as parametric components. The
effects of share structure and board structure on P/E ratio
were rarely studied and unclear, so we modeled SS1, SS2,
SS3, BS1 and BS3 as nonparametric components. The Risk
factor was often considered to affect logarithmic P/E ratio
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Table 5. Selected main effects and interactions in the application

Selected terms based on all data Selected terms based on 100 bootstrap samples

Main
effects

Coefficients Interactions Coefficients Main
effects

Frequency (%) Interactions Frequency (%)

CF5 0.065 CF5 :: BS2 0.230 LD8 100 PR9 :: LD8 82
OP5 -0.139 OP5 :: PR7 0.137 LD7 92 LD8 :: BS2 74
PR7 -0.481 PR7 :: BS2 0.067 PR9 91 CF5 :: BS2 57
PR9 -0.307 PR9 :: LD8 0.172 DE4 86 LD7 :: BS2 51
LD7 0.315 LD7 :: BS2 0.195 BS2 76 PR9 :: BS2 43
LD8 -0.563 LD8 :: BS2 -0.443 CF5 69 PR5 :: LD8 41
DE4 0.115 PR9 :: SS3 -1.392 PR7 67 OP5 :: PR7 40
BS2 -0.121 LD8 :: SS3 2.964 OP8 52 PR7 :: BS2 33
SS3 - OP5 :: RK1 0.991 CF4 49 LD8 :: SS3 77
RK1 - PR7 :: RK1 -2.444 OP5 48 PR9 :: SS3 64

PR5 40 PR9 :: RK1 58
SS3 100 LD8 :: RK1 53
RK1 100 PR7 :: RK1 44

OP5 :: RK1 35

nonlinearly, so RK1 is also modeled nonparametricly. Thus
we have m = 149, ni = n = 3 for all 1 ≤ i ≤ m, p = 41 and
q = 6 in our application.

Before fitting the model, we standardize the response and
all continuous predictors in the parametric parts to have
mean 0 and variance 1, and rescale all predictors in the
nonparametric parts to range between 0 and 1. As in the
simulation, cubic B-splines are used. The number of ba-
sis functions D is chosen from {8, 10, 12, . . . , 20} by mini-
mizing PE. The selected number of basis functions is 10.
The normalized mean square error (NMSE) is NMSE =∑N

i=1(yi − ŷi)
2/

∑N
i=1(yi − ȳ)2 = 0.162. Thus the goodness-

of-fit measure R2 = 1 − NMSE = 0.838, indicating that
the model fits fairly well.

The selected main effects and interactions and their coef-
ficients are as shown in the left part of Table 5. We can see
that the most important financial indicators include the net
cash flow per share, current assets turnover, ROE, EPS, tan-
gible net debt ratio, debt to equity price ratio, growth rate of
operating income, CEO duality, supervisor shareholding ra-
tio, and consolidated leverage, and some interactions among
these indicators.

To further assess the stability of variable selection results,
we carried out bootstrap analysis on the stock level, that is,
either none or all three years’ data of a stock will appear in a
bootstrap sample, and thus the within-subject correlation is
preserved. Based on 100 bootstrap samples, the main effects
with selection frequency higher than 40% and interactions
with selection frequency higher than 30% are summarized
in the right part of Table 5. The mean of R2s of bootstrap
samples is 0.859 with a standard deviation of 0.034. We
can see that the terms we select based on all data (i.e.,
terms appear in the left part of Table 5) have high selection
frequencies (in right part of Table 5), demonstrating that
our variable selection results are fairly stable.

6. DISCUSSION

In this paper, we have extended the penalization vari-
able selection methods to fit the semiparametric additive
partially linear model with strong hierarchical interactions
(SHAPLM) for longitudinal data. By reparameterizing the
interaction coefficients, the strong hierarchy is naturally
guaranteed in our model. However, this reparameterization
formulates a nonconvex optimization problem, which may
lead to heavy computational burdens and cannot guaran-
tee convergence to the global maximum, especially when
the dimension of covariates is high [9]. Yuan, Joseph and
Zou [30] and Bien, Taylor and Tibshirani [5] proposed to
enforce hierarchy by adding linear inequality constraints in
the penalties, and other studies have used nested or over-
lapped group penalties to achieve hierarchical sparsity, such
as Zhao, Rocha and Yu [33], Radchenko and James [24] and
Lim and Hastie [21]. These approaches lead to convex opti-
mization problems, and therefore are computationally effi-
cient, but their penalty structures are severely constrained,
and their optimization processes are extremely complicated
for our semiparametric models. In this paper, our penalty
structure and optimization procedures are straightforward,
and simulation studies indicate that our approach achieves
satisfactory variable selection performance and seldom gets
stuck in local maximums, similar to Choi, Li and Zhu [9].

In addition, to improve estimation efficiency which is con-
siderably affected by the within-subject correlation in the
longitudinal data, we specify the working covariance matrix
using the maximum likelihood estimation rather than as-
suming a certain correlation structure, such as working inde-
pendent, exchangeable, or autoregressive correlation struc-
ture, as in most previous studies. The working covariance
matrix is adjusted gradually through the iterative estima-
tion procedure. So our approach is data-driven and more
flexible in practice.
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Finally, the simulations show that when the true model
seriously violates the strong hierarchy, our method still per-
forms excellently in variable selection. However, the predic-
tion accuracy is relatively low. It is mainly caused by un-
derestimating the interactions between parametric and non-
parametric terms and also by the high variances of nonpara-
metric components. This may be improved by a better ba-
sis approximation for the nonparametric components. More
preferable solutions are left to future work.
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