STATISTICS AND ITS INTERFACE Volume 8 (2015) 331-345

Distance-weighted Support Vector Machine

XINGYE QIa0*! AND LINGSONG ZHANG!

A novel linear classification method that possesses the
merits of both the Support Vector Machine (SVM) and
the Distance-weighted Discrimination (DWD) is proposed in
this article. The proposed Distance-weighted Support Vec-
tor Machine method can be viewed as a hybrid of SVM and
DWD that finds the classification direction by minimizing
mainly the DWD loss, and determines the intercept term
in the SVM manner. We show that our method inheres
the merit of DWD, and hence, overcomes the data-piling
and overfitting issue of SVM. On the other hand, the new
method is not subject to the imbalanced data issue which
was a main advantage of SVM over DWD. It uses an unusual
loss which combines the Hinge loss (of SVM) and the DWD
loss through a trick of axillary hyperplane. Several theoreti-
cal properties, including Fisher consistency and asymptotic
normality of the DWSVM solution are developed. We use
some simulated examples to show that the new method can
compete DWD and SVM on both classification performance
and interpretability. A real data application further estab-
lishes the usefulness of our approach.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H30.
KEYWORDS AND PHRASES: Discriminant analysis, Fisher
consistency, Imbalanced data, High-dimensional, low-
sample size data, Support Vector Machine.

1. INTRODUCTION

Classification is a very important research topic in statis-
tical machine learning, and has many useful applications in
various scientific and social research areas. In this article, we
focus on the binary linear classification problem, in which a
classification rule is to be found that maps a point in X to
a class label chosen from Y, ¢ : X — ) where X = R% and
Y = {+1,—-1}. We focus on linear classification methods
instead of nonlinear ones because they are easy to inter-
pret due to simple formulations. In particular, each linear
classification rule is associated with a linear discriminant
function f(x) = x’w + B, where the coefficient direction
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vector w € R has unit Ly norm, and 8 € R is the intercept
term. The classification rule is then ¢(x) = sign(f(x)), that
is, the sample space R is divided into halves by the separat-
ing hyperplane defined by {az D fle)=2Tw+ = 0}. The
coefficient direction vector w determines the orientation of
the hyperplane (as a matter of fact, it is the normal vector
of this hyperplane), and the intercept term J determines its
location.

There is a large body of literature on linear classification.
See Duda, Hart and Stork (2001) and Hastie, Tibshirani and
Friedman (2009) for comprehensive introductions. Among
many linear classification methods, the Support Vector Ma-
chine (SVM; Cortes and Vapnik, 1995; Vapnik, 1998; Cris-
tianini and Shawe-Taylor, 2000) and the Distance-weighted
Discrimination (DWD; Marron, Todd and Ahn, 2007; Qiao
et al., 2010) are two state-of-the-art instances and have re-
ceived a lot of attention. A brief review of these two methods
will be given in Section 2.

In the high-dimensional, low-sample size (HDLSS) data
setting, a so-called “data-piling” phenomenon has been ob-
served for SVM (Marron, Todd and Ahn, 2007) and some
other classifiers (for example, Ahn and Marron, 2010). Data-
piling is referred to the phenomenon that after projected to
the direction vector w given by a linear classifier, a large
portion of the data vectors pile upon each other and con-
centrate on two points. Data-piling reflects severe overfit-
ting in the HDLSS data setting and is an indicator that
the direction is driven by artifacts in the data, and hence
the direction as well as the classification performance can
be stochastically volatile. Moreover, it turns out that the
directions from these linear classification methods are much
deviated from the Bayes rule direction (when the Bayes rule
exists and is linear). To this end, DWD was proposed largely
to overcome the data-piling issue in the HDLSS setting and
has been quite successful on that.

While DWD overcomes the data-piling and mitigates the
overfitting effect, it is sensitive to the imbalanced sample
sizes between the two classes (Qiao et al., 2010). In particu-
lar, when the sample size of one class is much greater than
the other one, the classification boundary would be pushed
towards the minority class and consequently, all future data
vectors will be classified into the majority class.

Qiao and Zhang (2013) have thoroughly studied the high-
dimensional overfitting issue of SVM and the imbalanced
data issue of DWD. Moreover, they proposed a new family
of classifiers called FLAME which both SVM and DWD
belong to. To illustrate the main points of the data-piling
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Figure 1. Plots of projections to: (a) the true mean difference (Bayes rule) direction, (b) the SVM direction, (c) the DWD
direction and (d) the proposed DWSVM direction. The angles (in degree) between the last three directions and the first
direction are shown in the titles. Projections of the separating hyperplanes of different methods are depicted by the magenta
vertical lines. Panel (a) shows the Bayes direction and the separating hyperplane to be compared with. SVM in Panel (b)
demonstrates a very good separation between the two classes, but a severe data-piling phenomenon also appears. The
projected data vectors are nowhere near Gaussian, which suggests that the direction is too much deviated from the Bayes
direction (Panel (a)). For SVM, the 25% and 75% quantiles and the median of the angles for 15 different tuning parameter
values are reported in the subtitle of Panel (b) as well. Panel (c) shows that DWD has no data-piling issue, and the projection
plot preserves the Gaussian pattern. However, the separating hyperplane is pushed towards the red class because of its
relatively small sample size. Our proposed DWSVM approach (Panel (d)) combines the merits of SVM and DWD. It preserves
a good direction by showing the Gaussian pattern in the projections while finds a good intercept term which is not subject to
imbalanced sample sizes. Note that the SVM classifier in Panel (b) is tuned based on the misclassification rate for a large test
set, while the tuning parameters for DWD and DWSVM are fixed.

and imbalanced issues, we show projection plots of a toy
example to four different discriminant direction vectors in
Figure 1. In this example, the data vectors from the two
classes are generated from multivariate normal distributions
Ng(p14,14), where the dimension d = 300, = 1.35/v/d =
0.07794229, 1, is a d-dimensional vector of all 1’s and I is
the d x d identity matrix. The Bayes rule in this example
has direction wg = 1d/\/8 and the Bayes intercept g = 0.
Here the sample size of the positive class (with Y = +1) is
ny = 200 and the negative class sample size is n_ = 50.
Panel (a) in Figure 1 shows the true mean difference di-
rection (which in fact is the Bayes direction) and the projec-
tions of the data vectors therein. They serve as the bench-
mark to be compared with. Panel (b) is for the SVM direc-
tion (whose corresponding tuning parameter has been se-
lected based on misclassification errors for a large test set)
and it demonstrates a very dramatic separation between the
two classes. This could be an alarming bell for overfitting.
Indeed, severe data-piling is visible. The projected data vec-
tors are nowhere near Gaussian, which suggests that the
direction is too much deviated from the true direction in
Panel (a). This deviation is also measured by the angle be-
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tween the SVM direction and the Bayes direction (53.42
degrees, shown in the subtitle). We also report the 25% and
75% quantiles and the median of the angles between the
Bayes direction and the SVM directions for 15 different tun-
ing parameter values in the subtitle of Panel (b). Panel (c)
shows that DWD has no data-piling issue, and the projection
plot preserves the Gaussian pattern, which means that there
is some potential to interpret the data using the DWD di-
rection. However, because the blue class (positive class with
Y = +1) has four times the sample size as the red class,
the separating hyperplane is therefore pushed towards the
red class. Expectedly, its classification performance is not
good.

In this article, we propose a new method which integrates
the merits of SVM and DWD, and thus can address the data-
piling issue and the imbalanced data issue at the same time.
Our proposed method is named Distance-weighted Support
Vector Machine (DWSVM) to salute the above two classi-
cal methods. As shown in Panel (d) of Figure 1, DWSVM
preserves a good direction by showing the Gaussian pattern
in the projections while finds a good intercept term which
is not subject to the imbalanced sample sizes. In addition,



we prove in theory that the DWSVM is Fisher consistent
and asymptotically normal, and that its intercept term is
not sensitive to imbalanced sample size as DWD is.

The rest of the article is organized as follows. Section 2
gives a brief introduction to the SVM and the DWD meth-
ods. Our DWSVM method is proposed in Section 3. Sim-
ulated examples and a real application are studied in Sec-
tions 4 and 5. Several theoretical results are given in Sec-
tion 6. Some concluding remarks are made in Section 7.
Technical proofs and details of computational algorithms
are included in the appendix.

2. CLASSICAL METHODS

In this section, we give a brief introduction to SVM and
DWD, their formulations and the discussion on the roles of
different terms.

2.1 Classification and loss functions

In classification, one is given a training data set, D =
{(zi,y;)) e X ®@Y,i=1,...,n} and the goal is to find a rule,
¢(x) = sign(f(x)), depending on D, so that the classifi-
cation error E(¢(X) # Y) is minimized. A natural esti-
mate of the classification error is %Z?:l Lisign(f(@:))#yi] =
%Z?:l Ly, f(@;)<0)- However, even in the simple case of
linear classification where f(x) is assumed to have the
form f(x) = xzTw + B, searching for (w,3) to minimize
o1 Ly, f(ai)<o) is intractable due to the discontinuity and
nonconvexity of the objective function. In statistical learn-
ing, a common practice to avoid these issues is to use a
convex surrogate function to approximate/upper-bound the
0-1 loss function 1, (z)<g)- For any discriminant function
f(x), let us define u = yf(x) the functional margin which
can be viewed as the signed distance (up to a constant) from
data point x to the separating hyperplane {x : f(x) = 0}.
A convex surrogate 1(u) : R — R can be used in the place
of 1[,<0)- For example, a classification rule can be obtained
by minimizing over (w, 3)

S (el + 8) + el

i=1

Here, the first term in the objective function bounds the
empirical classification error and the ||w||? term in the sec-
ond term measures the complexity of the model. The choice
of the tuning parameter A balances the two main con-
cerns. Equivalently, this optimization problem can be cast
to minw g > iy Y(yi(xlw + B)), st. |w|? < C due to
standard optimization theory. Many classification methods
fall into this category, such as Support Vector Machine, Ad-
aBoost (Freund and Schapire, 1997), and logistic regression
(Friedman, Hastie and Tibshirani, 2000). See Bartlett, Jor-
dan and McAuliffe (2006) and the references therein for
more sophisticated discussions on convex loss functions and
their implications for risk bounds.

2.2 Support Vector Machine (SVM)

By choosing the Hinge loss function (1 —u)4 as the con-
vex surrogate, where (a); = max(a,0) is the positive part
of a, the SVM method is defined to maximize the smallest
distances of all observations to the separating hyperplane.
Mathematically, for some positive A, the optimization prob-
lem of SVM can be written as ming, 5 S (l—yi(xlfo+

B))+ + 2|l@|]?. Here, in addition to measuring the model
complexity, ||@||? also defines a notion of gap between the
two classes for SVM. In particular, 2/||@|| is the distance
between the classes (up to a constant). Hence, to minimize
|©]|? is the same as to maximize the gap between classes.
The notion of gap will play a central role in the derivation
of methods in this article.

The formulation above can be equivalently written as
ming 5 > (1— yi(xT& + B)) 4, s.t. [|@]|? < C. Here the
coefficient vector @ does not necessarily have unit norm.
We let w = @/v/C and § = 3/v/C. Then the SVM solu-
tion is given by argming, 5 >.i (VO — Cy;(xTw + B))+,
s.t. |w|*> < 1. In this formulation, a modified Hinge loss
function,

VC —Cu ifu< %,
0 otherwise,

(1) He(u) = {

is used, such that SVM can be viewed as to minimize
Sor He(u;), subject to [|w||? < 1, where the functional
margin u; for the ith data is u; = y;(zfw + 3). In order
to align this formulation with that of DWD, we introduce a
slack variable &; and rewrite SVM as,

n
argmin Z &
w;ﬁ)fi i=1

st. Cyi(alw + B)+ & >VC, & >0,
Jw|? < 1.

(2)

(3)
(4)

2.3 Distance-weighted Discrimination
(DWD)

DWD method was proposed by Marron, Todd and Ahn
(2007) to improve the performance of SVM in the HDLSS
setting. It also maximizes a notion of gap between classes:
the harmonic mean of the distances of all data vectors to
the separating hyperplane. Let r; = y;(z] w + 3) +n; be the
(adjusted) distance of the ith data vector to the separating
hyperplane. Mathematically, the solution of DWD is

0 g 2 (5en)
©) 3
(7)

When 7; =0 and y; (27w + ) > 0, r; = yi(z] w + B) is the
positive distance from each data vector to the separating

s.t. 1= yi(sciTw +8)+mn;, ri >0and n; >0,
Jwll? < 1.
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hyperplane, due to (6). Thus ., 1/r; defines a different
notion of gap between classes from that by SVM (which was
2/|wll.)

If a positive distance y;(xlw + ) is not achievable for
a data vector, then a positive slack variable n; is added to
make r; positive. Note that the value of correction 7; cor-
responds to the amount of misclassification for the ith vec-
tor, and hence in order to minimize the misclassification, we
must control Y .-, n; in the objective function.

We will use this formulation and combine it with that of
the SVM method in (2)—(4). Here, in order to understand
the underlying DWD loss function for later use, we mod-
ify (5)—(7) as follows. For each i, the term in the objective
function (TL +Cn;) can be minimized over 7;. Some algebraic
manipulations reveal that the optimization problem (about
w and B) becomes

argmin Z Ve (yi(xfw+ 8)) ,
w.p i=1

lwll* <1,

(8)
9)

where the DWD loss function is defined as

Vo (u) = {

One key observation is to be made here. There are two
main tasks in a binary linear classification method:

s.t.

2V/C - Cu ifu< o,

(10) 1/u

otherwise.

1) a notion of gap which is to be maximized so as to make
the two classes more separated; and

2) a measure of misclassification which is to be mini-
mized.

Recall that in the SVM formulation, the notion of gap is
2/||w||, and the misclassification is measured by the Hinge
loss function. SVM jointly minimizes the sum of these two
components to search for a solution. In contrast, the DWD
loss function in (10) (derived from the objective function
(5)) has two functionalities: the first term 3, 7; " in (5), the
sum of inverse distance, is a notion of gap, and the second
term >, 7; in (5) measures misclassification. Unlike its
counterpart in SVM, the constraint ||w||? < 1 in DWD (7)
merely serves as a regulator but it does not maximize the
gap. This appears to be a reason that DWD fails to provide
a sensible intercept term for classification cutoff point: it
cannot accomplish both tasks at the same time!

The main motivation of our DWSVM approach is to ex-
tract the role of misclassification controller from the DWD
loss, and assign this role to a SVM component. As will be
shown in the next section, we carefully design our formula-
tion to allow a DWD component to define a notion of gap
between the two classes, which helps to find a good direction
vector. Meanwhile, we let an SVM component control the
misclassification, which helps to search for a better intercept
term.
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3. DISTANCE-WEIGHTED SUPPORT
VECTOR MACHINE

In Section 3.1, we first introduce a method which can
be intuitively viewed as the prototype of the hybridization
between SVM and DWD. Our proposed main method will be
discussed in Section 3.2. Some explanations to our method
are given in Section 3.3.

3.1 Simple prototype: Naive DWSVM

Before we introduce the DWSVM method, we discuss an
intuitive hybridization between SVM and DWD, which is
called the naive DWSWD method (nDWSVM). Based on
the previous discussion and other results in the literature,
a linear classifier with a direction given by DWD and an
intercept term found by SVM is desirable. However, naively
matching a DWD direction and an SVM intercept together
would be problematic because the intercept would lose its
context without the corresponding discriminant direction.
Instead, we could train a DWD classifier on the data set,
discard the DWD intercept, keep the DWD direction, and
project all the data vectors to the 1-dimensional DWD di-
rection to obtain a set of 1-dimensional data points. Lastly,
find an intercept (a cutoff) by applying SVM to this 1-
dimensional data set. Following this paradigm, we can get
a DWD direction, which is thought to be better than an
SVM direction in overcoming overfitting, and then given this
DWD direction, search for an intercept in an SVM manner
so as to mitigate the imbalanced data issue. We name this
two-step procedure as nDWSVM. The two-step nDWSVM
method is a simple prototype of DWSVM, where the DWD
component and the SVM component are trained at the same
time.

3.2 DWSVM

In this subsection, we formally define the Distance-
weighted Support Vector Machine (DWSVM). DWSVM si-
multaneously minimizes both the SVM loss function and the
DWD loss function, to identify a common discriminant di-
rection. The less-imbalance-sensitive SVM-driven intercept
term will be used to identify the location of the optimal sep-
arating hyperplane. Mathematically, the optimization prob-
lem can be written as follows: Let Cypg > 0, Cypn, > 0 and
a € [0,1). The DWSVM solution is given by

(11)

. . 1
argmin Z {a <r_ + Cawad - 77i> +(1- Oé)&} )
30,51‘,771 i=1 ‘

(12) s.b. 1o =yi(®] w+ Bo) +ni, i >0 and ;> 0,
(13) Csvmyz(w?w + ﬁ) + 51 Z V Csvma g’t 2 07
(14) w]* < 1.



Importantly, in the end, we let f(z) = 7w + B and use
sign(f(z)) = sign(xTw + B) as the classification rule in-
stead of sign(x’w + By). Thus w and B are the only two
variables that really participate in classifying future data
vectors, while 5y is not involved. However, it does not mean
that By is of no significance. We will elaborate this point
later.

Comparing (11)-(14) with (2)—(4) and (5)—(7), we can
see that the first term in (11) and the constraint (12) are
similar to (5) and (6), while the second term in (11) and
the constraint (13) are similar to (2) and (3). Thus we may
write the DWSVM formulation (11)—(14) as

(15) aurjggnﬁm; {aVey. (vi(z!w + Bo))
+(1—a)Hc,,, (yi(@xlw+pB))},
(16) st fwl* <1

One might think that our DWSWM is just an opti-
mization problem with the objective function equaling to
a weighted average of the DWD loss and the SVM loss.
However, it is more sophisticated than that. In the next
subsection, we give some explanations to different compo-
nents and parameters in DWSVM to help understand the
new method.

3.3 Understanding DWSVM

Below we review some important aspects of the one-step
DWSVM classifier.

Two hyperplanes

First of all, the most significant difference of DWSVM
from previous methods is that there are two intercept
terms [y and [ and only one direction vector w in
the DWSVM method, that is, there are two hyperplanes
that are parallel to each other, {a:: xTw+ B = O} and
{a:: xTw+ By = 0}. For convenience, we call them the
main hyperplane and the axillary hyperplane, respectively,
and their corresponding discriminant functions f = 7w+
and fo = 7w + By. See Figure 2 for an illustration using a
two-dimensional toy example. In the plot, the magenta solid
line is the main hyperplane and the magenta dashed line is
the axillary hyperplane.

The axillary hyperplane

Note that r;’s are the adjusted distances of data vec-
tors to the axillary hyperplane {z : fo(x) = 0}, shown as
dot-dashed line segments in Figure 2. Similar to its role in
DWD, > ,(1/r;) controls the gap between the two classes.
In particular, the smaller Y " | (1/r;) is, the more separated
the two classes are.

In words, the purpose of the axillary hyperplane is not for
classifying data vectors, but to make it possible to define a
number of distances (from data vectors to itself) so that we

3l o
[e]
N
2t
1+ O positive class
A negative class
N | | = main hyperplane
X = = = axillary hyperplane
1+ distance to main HP
1k - = distance to axillary HP
-2t
-3t
-4 .
45 4 5

Figure 2. The main separating hyperplane (magenta solid
line) and the axillary hyperplane (magenta dashed line) for
DWSVM applied to a two-dimensional toy example. The
distance from each data vector to the main hyperplane is
depicted as a dotted line segment while the distance to the
axillary hyperplane is depicted as a dotted-dashed line
segment. Although the data vectors #22 and #25 are on the
wrong side of the axillary hyperplane, they are not treated as
misclassified by this method as they are both on the correct
side of the main hyperplane. A positive n; is added to each
negative functional margin y;(xlw + Bo), i = 22,25, to
make the sum positive.

can minimize the sum of the inverse distances, which leads
to a notion of gap. In contrast, in the ordinary DWD, this
axillary hyperplane has to coincide with the hyperplane that
is actually used for classification.

Slack variables n; v.s. &;

There are two slack variables in this optimization prob-
lem: n; is with respect to the axillary hyperplane, and &; is
with respect to the main hyperplane. Since the axillary hy-
perplane does not actually classify any future data vector,
the slack variable 7; does not measure misclassification.

On the other hand, it is the variable &; that measures
the misclassification of the ith data vector. In particular,
& serves as a proxy of the modified Hinge loss (v/Csym —
Csvmui)+'

Necessity of the slack variable 7);

In DWSVM, the slack variable n; is used to adjust the
sign of y; fo(x;). When y; fo(x;) < 0, the (signed) distance
from the data vector to the axillary hyperplane is negative.
In this case, a positive 7; is added to y; fo(x;) to make their
sum r; positive. For example, in Figure 2, the functional
margins y; fo(x;) for data vectors #22 and #25 are negative.
The DWSVM optimization adds some positive 7;’s to make
the sum r; = y; fo(x;) + n; positive. It is the sum of 1/r;
that we minimize, instead of the sum of 1/(y; fo(x;)).

Recall that in the ordinary DWD, we control the sum
of the slack variables, since they measures misclassification.
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Now that in DWSVM, 7; does not measure misclassifica-
tion (see the discussion in the previous part above), does it
mean that the slack variable 7; is no longer needed? The
answer is no. If not for the 7n;, one can always make Gy to
be infinity, that is, the axillary hyperplane is infinitely far
from the data so that all the distances y; fo(x;)’s are infinity
(whether positive or negative), and hence 1/(y; fo(x;)) = 0.
This is certainly not a desired situation because it would
make the direction vector trivial (because the minimal of
the objective function would always be 0 regardless of the
choice of the direction). For these reasons, the addition of
n; and the inclusion of Y. | ; in the objective function are
necessary to make the optimization problem meaningful.

Summary

In summary, the hyperplane defined by w and [y is an
axillary hyperplane which is useful for finding the best direc-
tion, and the one defined by w and § is the main hyperplane
that is useful for minimizing the Hinge loss for classification.
By the trick of allowing two intercept terms, we gain some
flexibility and manage to get two hyperplanes to do their
own jobs.

Empirically, nDWSVM can be used to mimic the idea of
DWSVM. As a matter of fact, nDWSVM is very easy to
implement, so long as the user has accessible implementa-
tions for both SVM and DWD (both are now available in R
and MATLAB). The differences between DWSVM and nD-
WSVM are that in the two-step prototype nDWSVM, the
direction is determined only by the DWD algorithm, and the
intercept is found by SVM based on the projections given
by the DWD direction. However, in DWSVM, the optimiza-
tion is done all at once in DWSVM and both the SVM and
DWD components jointly optimize the direction.

Between DWD and DWSVM, the latter inherits the di-
rection of the former, and adopts a more effective intercept
term from its SVM component. Compared with SVM, the
DWSVM method has a direction that is much improved due
to the DWD component.

4. SIMULATIONS

In this section, we first compare the classification and
the interpretability performance between the DWSVM ap-
proaches and the original SVM and DWD. The classifica-
tion performance is measured by the misclassification rate
for a large test data set with 4,000 observations. The in-
terpretability is a concept that is more or less vague. We
partially measure it by the angle between the discriminant
direction vector for the classifier under investigation and for
the Bayes classifier. We believe the closer to the Bayes rule
direction, the better the interpretability of the linear classi-
fier is.

4.1 Performance comparison

We consider two different simulation settings. In each set-
ting, samples from the two classes are generated from mul-
tivariate normal distributions Ng(£p, ).
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1. Example 1: Constant mean difference, identity covari-
ance matrix example. u = clg, and ¥ = I, where
¢ > 0 is a scaling factor which makes 2¢||14|2 = 2.7.
This corresponds to the Mahalanobis distance between
the two classes and represents a reasonable difficulty of
classification using the Bayes rule.

2. Example 2: Decreasing mean difference, block-
diagonal interchangeable covariance matrix example.
Here we let p = cvg, where vg = (v/50,v/49,...,v/1,0,
0,...,0)7 € R% and ¥ = Block-Diag {%,%,..., 3},
where each % is an 50 x 50 interchangeable sub-
covariance matrix whose diagonal entries are all 1
and off-diagonal entries are 0.8. The scaling fac-
tor ¢ is chosen to make the Mahalanobis distance
{2cvg) =" 2cwy)TY/2 = 2.7,

In both simulation settings, we let the positive class sample
size be 200 and the negative class sample size be 50. We
vary the dimensions d among 100,200, 300,500 and 1,000,
thus the last three cases correspond to the HDLSS data
settings.

4.1.1 Example 1

In the top-left panel of Figure 3, we report the misclassi-
fication error of DWSVM, nDWSVM, DWD and SVM ap-
plied to a test data set with 2,000 data points in each class
which are generated according to the Constant mean differ-
ence, identity covariance matrix example. We conduct the
simulation for 100 times and report the averages of the mea-
surements. The standard error of the mean measurement is
shown as error bars. Our DWSVM approach gives the best
classification results in most cases. The two-step alternative
nDWSVM has very similar performance for dimensions 100,
200 and 500, but its performance is downgraded for higher
dimensions. For all dimensions, unsurprisingly, the original
DWD has misclassification rate close to almost 50%, which
is largely due to its intercept term which is subject to the
imbalanced data.

In the bottom-left panel of Figure 3, we calculate the an-
gles between the directions from different classifiers and the
Bayes direction (for both simulation settings in this article,
the Bayes classifiers are linear and the Bayes directions are
well defined.) It shows that all the DWD related classifiers
give very similar angles. As a matter of fact, the angles from
DWSVM, DWSVM and DWD almost overlap with each
other in this plot, except for low dimensional case where
the DWSVM angle is a bit larger than the other two. On
the other hand, the SVM directions are significantly more
different from the Bayes direction than the DWD family
directions are.

The observations so far verify the conjecture that DWD
is worse at misclassification rate and SVM is worse at giv-
ing interpretable classification direction. DWSVM and nD-
WSVM appear to be able to address both issues simultane-
ously.
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Figure 3. Comparison between four methods for Example 1
(the left panel) and Example 2 (the right panel). The
misclassification error rates are shown on the top row and the
angles between the classification directions and the Bayes
direction are shown on the bottom. For Example 1 (left), for
smaller dimensions, the two DWSVM approaches are better
than SVM and DWD in terms of classification. For a large
dimension, SVM outperforms the nDWSVM approach. The
one-step DWSVM approach dominates all the other
approaches in terms of classification performance. In terms of
the interpretability (bottom) in Example 1, the two DWSVM
approaches and the DWD approach all give similar and better
results than the SVM approach. For Example 2 (right),
DWSVM has similarly good classification performance to
SVM and similarly good interpretability performance to DWD
and nDWSVM. For small and moderate dimensions, the
classification performance of DWSVM is significantly better
than SVM.

In the simulations, we tune the parameter Cj,,, for
SVM from a grid of possible values 27°,274 ... 211 212 and
choose the one which gives rise to the smallest misclassi-
fication rate for a tuning data set that is identical to the
training data set in terms of sample size and underlying
distributions. For the DWD family of classifiers (DWSVM,
nDWSVM and DWD), we let Cy,q be 100 divided by a
scaling factor that counts for the scale of the data, which
was recommended by Marron, Todd and Ahn (2007). We
fix Cspp = 100 for DWSVM and nDWSVM. Lastly, we let
a = 0.5 for DWSVM in our simulation study. Thus, the
tuning parameter for SVM has been optimized while tun-
ing parameters for our DWSVM methods are not tuned.
Yet, our DWSVM method can achieve the performance as
good as, sometimes even much better than, the other meth-
ods, for multiple criteria (classification and interpretability).
This suggests a great potential of the DWSVM method.

4.1.2 Example 2

We have conducted the same comparison for the Decreas-
ing mean difference, block-diagonal interchangeable covari-
ance matrix example (Example 2) and the results are shown
in the right panel of Figure 3. This time, the classifica-
tion performance of DWSVM and SVM are closely com-
peting with each other. For dimensions d = 100,200, 300,
the DWSVM misclassification rates are smaller than SVM.
But for dimensions d = 500 and 1,000, its classification er-
ror rates are slightly greater than SVM (not visually sig-
nificant). In terms of the angles between the classification
direction vectors and the Bayes direction, the DWSVM di-
rection are similar to those from nDWSVM and DWD; all
three are better than SVM for dimensions 100, 200, 300,
500 and DWSVM is better than SVM in all cases (with an
insignificant margin when d = 1000). For the highest di-
mension case, all four directions are much different from the
Bayes direction. However, the DWSVM direction may be
the best in this situation (with an insignificant margin).

4.2 Sensitivity to parameter values

In this subsection, we investigate the impacts of different
parameter values on DWSVM. Note that there are three
tuning parameters in DWSVM, namely, a, Cgpq and Csym .
We have the following strategy for each parameter.

a) For Cgyq: Marron, Todd and Ahn (2007) suggested that
the tuning parameter in DWD (the counterpart of Cyypq
in DWSVM) should be 100 divided by a typical distance
measure to count for the scale of the data. Qiao et al.
(2010) verified this for the weighted DWD classifier. In
particular, they suggested 100 divided by the median
of the pairwise distances among data vectors. Here we
consider 100 divided by the 25% quantile, the median
and the 75% quantile of the pairwise distances in the
training data set for Cgyq (shown in the left, middle
and right columns in Figures 4 and 5.)

b) For Cgpm: We use a fine grid of 35 values Cgpp =
275, 274.5, 274, 273.5 el 211’ 211‘57 212.

c) For a: We use a grid of 19 values, namely, o =
0.05,0,1,...,0.95.

Overall, we have tried 3 x 19 x 35 parameter triplets in each
simulation replication. We apply DWSVM to 100 replica-
tions from the simulated examples defined in the last sub-
section (Example 1 and Example 2) respectively. The per-
formance of the resulting DWSVM is measured by (1) the
misclassification rate for a large test data with 4,000 obser-
vations (2,000 in each class), and (2) the angle (in degree)
between the DWSVM direction and the Bayes rule direction.

Figures 4 and 5 report the average error rates and average
angles over 100 replications for the two examples. The left,
middle and right columns in each figure are for the three
different Cg,q values. The grayscale images in the top pan-
els show the misclassification rates. The darker the pixel,
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Figure 4. Sensitivity analysis for Example 1. The left, middle, right columns are for different Cy,,q values. The grayscale
images in the first row show misclassification rates and those in the second row indicate the angles between the DWSVM
directions and the Bayes direction. Darker pixels correspond to high values (color bars for the images are shown aside). The
analysis suggests that the o and Cy,,q parameters have much smaller impacts on the performance of DWSVM than the Cyyp,
parameter does.

the higher the error rate. Similarly, the grayscale images in
the bottom panels show the angles. The darker the pixel is,
the more deviated the DWSVM direction is from the Bayes
direction.

Firstly, one can easily have the impression that the im-
ages in the left, middle and right columns are almost identi-
cal; hence the Cy,q value seems to have very little influence.
Given any Cy,,q value, between the parameter o and the pa-
rameter Cy,p,, one can see that change of the overall pattern
of the image depends more on Cl,,, than on «. In partic-
ular, in Example 1 (Figure 4), the grayscale image for the
error rate almost does not change as o changes; in Example
2 (Figure 5), it does not change much except when « is very
close to 1, at which point, the error rate corresponding to
logy(Csym) = 1 seems to increase. As far as the angle is con-
cerned, in both examples, it does appear that for logs (Cisym)
between —5 and 1, the patterns change as a changes; how-
ever, such changes are clearly not as drastic as those caused
by the change of Cyym.

One may wonder about the ideal choice of parameter val-
ues in each case. For Example 1 (Figure 4), a Cg,y, value
greater than 23 (with almost any a value) is easily the win-
ner, since it leads to a small error and a small angle. For
Example 2 (Figure 5), it seems that a “small Cj,,,-large
«” combination can lead to a better direction, but a worse
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classification error. What complicates even more is that the
best Cgym, values for the error, namely, log, (Csyrm ) between
1 and 3, may also correspond to the worst angles. Nonethe-
less, one can still choose a Cy,,, value greater than 23 (with
almost any « value) to achieve a balance between the clas-
sification performance and the interpretability (with slight
compromises on both ends). Note that in reality, the angle
images cannot be obtained and the error images are based
on a much smaller tuning set or by a cross-validated error.

With this sensitivity analysis in mind, we have recom-
mended that the Cy,q be fixed at the value suggested by
Marron, Todd and Ahn (2007). Moreover, although the «
does change the angle (hence the direction) a little bit in
some situations, the difference it makes is quite small so
that the additional effort to tune it may not be needed. In
the article, we have used a noninformative choice of @ = 1/2,
indicating that we have no a priori preference between the
two components. More discussion on the parameter a will
be given in Section 7.

5. REAL APPLICATION

In this section, we compare DWSVM with the competing
classifiers by applying them to the Golub data set (Golub
et al., 1999). This gene expression data has 3,051 genes



[Left,Middle,Right] Columns = [Large, Medium, Small] Scale ded values

Example 2: Error Rate

0.5
0.45
0.4
0.35
0.3
"-5-3-1 1357 91+5-3-1 1 3 5 7 91+5-3-1 1 3 5 7 9 11
IOQZ (Csvm)
[Left,Middle,Right] Columns = [Large, Medium, Small] Scale ded values
Example 2: Angle
0.95 i T i
0.85 / ] ] 54
n n
0.75 . x 53
0.65 ] ] 52
. 0.55 3 3
51
0.45 ' ;
0.35 " 1 50
| ] ]
0.25 ] ]
49
0.15 ] s
0.05 ] ] 48
-5-3-11 357 915-3-1 1 3 57 91+5-3-1 1 3 5 7 9 11

Iog2 (C

svm

)

Figure 5. Sensitivity analysis for Example 2. The left, middle, right columns are for different Cy,,q values. The grayscale
images in the first row show misclassification rates and those in the second row indicate the angles between the DWSVM
directions and the Bayes direction. Darker pixels correspond to high values (color bars for the images are shown aside). A
similar conclusion to that in Figure 4 may be drawn, although a subtle change of pattern in the angle due to change of a

seems to be visible.

and 38 tumor mRNA samples from the leukemia microar-
ray study of Golub et al. (1999). Pre-processing was done
as described in Dudoit, Fridlyand and Speed (2002).

As there are 11 and 27 observations from both classes,
we expect the SVM and the DWSVM classifiers will give
better result than DWD because the latter is subject to the
imbalanced sample size. Moreover, because the dimension is
much higher than the sample size, we expect severe over-
fitting in this data. We apply SVM, DWD, DWSVM and
nDWSVM to the data set and use 3-fold cross validation to
find the best Cyyy, tuning parameter value. The Cyyq and «
values are fixed. In the left panel of Figure 6, we report the
average cross-validated (CV) number of misclassified obser-
vations and the standard error over 100 random foldings.
Both SVM and DWSVM give very good results (CV error
almost zero), although the DWSVM method is a little bet-
ter. The nDWSVM error is almost twice that of the SVM
and the DWD error is almost four times.

In order to see the extent to which our DWSVM avoids
overfitting, we perturb the original data set as follows. We
randomly switch the class labels of k pairs of observations
(k observations from each class) (k = 1,2). Then we con-
duct parameter tuning (via cross-validation) and training
based on the perturbed data. Then, we calculate the cross-
validated error for the resulting classifier: we use two folds

(2/3) of the perturbed data to training a classifier, and eval-
uate the number of misclassified observation for the remain-
ing fold using the true class labels (the label before pertur-
bation). Because we randomly add in noise into such set-
tings, the CV errors increases. However, a classifier which is
subject to overfitting would have a greater CV error in this
setting. In the middle and the right panels of Figure 6, we
report the CV error for the perturbed data where one pair
and two pairs of data vectors are mislabeled respectively. As
we can see, although all classifiers perform worse here than
for the original data, the DWSVM classifier gives the lowest
CV errors for the perturbed data. Even the performance of
the two-step nDWSVM is on the par with SVM. The per-
formance of DWD is always the worse in all three setting
because of the imbalanced data issue.

6. THEORETICAL PROPERTIES

We will show some theoretical properties of DWSVM in
three different favors. First, we derive the Fisher consistency
of the DWSVM loss function. Note that the loss function of
DWSVM is not a typical large-margin loss function. Second,
we derive the asymptotic normality of the DWSVM coeffi-
cient vector. Third, we show that the intercept of DWSVM
does not diverge, even in an extremely imbalanced setting.
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Figure 6. Cross-validated number of misclassified observations for SVM, DWD, DWSVM and nDWSVM for the original Golub
data set, the Golub data with a pair of mislabeled observations, and the data with 2 pairs of mislabeled observations. For the
original data, both the SVM and the DWSVM methods have CV error almost 0, with DWSVM being a little better. When
there are mislabeled observations, the advantage of DWSVM becomes more obvious: it can be seen that DWSVM has the
smallest CV errors while nDWSVM is on a par with SVM. The DWD classifier is always worse than the others in terms of the
classification performance.

6.1 Fisher consistency

The DWSVM method can be estimated from equa-
tions (15)—(16). Thus the underlying loss function can
be written as L(y/(x),yfo(x)) = aVey,.(yfo()) + (1 —
a)He,,, (yf(x)). Because there are two functions involved,
the underlying loss function is not a traditional margin-
based loss function which involves only one function, such
as that considered in Lin (2004). Moreover, the two hyper-
planes implied by f and fy in our methods are parallel to
each other. In general cases (beyond linear functions), this
can be interpreted as the difference of these two functions is
a constant, that is, f(x) — fo(x) is independent of x. The-
orem 1 below shows the Fisher consistency of the DWSVM
loss function.

Theorem 1. For any given Csym,Cawqg > 0 and a €
[0,1), if E[L{Y f(X),Y fo(X)}] has a global minimizer
(f*(x), f§(x)) subject to f(x) — fo(z) is a constant, then
sign[f*(x)] = sign[g(x) — 1/2], where g(x) = P(Y = +1 |
X ==x).

Fisher consistency of the DWSVM loss function ensures
that the sign of the minimizer of the expected loss function
(subject to the parallel condition) coincides with the Bayes
rule.

6.2 Asymptotic normality

Koo et al. (2008) has studied the asymptotic normality of
the coefficient vector for the SVM classifier. We follow the
same direction and prove the corresponding results for the
DWSVM classifier.

For ease of presentation of the theorem, we let w denote
the augmented parameter vector (3o, 3,w?)? € R¥*+2,
x: and x4 the augmented data vectors (0,1,2T7)T € R4+2,
(1,0,27)T € R¥*2 and (1,1,27)T € R4*2. Consequently,
the main discriminant function f(x;w,) = x,Tw, =
xTw+ B, and the axillary discriminant function fo(z;w, ) =
ziTwt = 2Tw + fo.
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We cast DWSVM to an optimization problem with an
unconstrained objective function.

1< A
(17) @rn(wy) = " ZL(ﬂBi,yianr) + 5”‘*’”2
i=1

(18)

% > AaVe, i folwiswy))
=1

(1= a)He, (i (@i )} + 5 o

The solution to the optimization problem can be scaled by
the norm of w so as to make it have unit norm.

The population version of (18) without the penalty term
is defined as

Qwi) =E{aVe, (Y fo(X;w)) + (1 —a)He, (Y f(X;wy))},
whose minimizer is defined as w? = argming,, Q(w+).

For easy presentation, let

g(®,y,wy) = (*l{yfo(w;wgsum}cd

- ﬂ{yfo(az;w+)>1/\/(]_d}1/[yf0(w;w+)]2) )

i) = (=) (<1, . ca/ver) )
o(@,y,wi) = o (:ﬂ'{yfo(m;w+)>1/m}1/[yf0(w;w+)]3) ;
w(a,y.wi) = (1- )3 (1/v/C, — yf(@iws)) C.,

where §(-) denotes the Dirac delta function. Furthermore,
let

S(w-‘r) = ]E{g(X,Y7w+)YXT + h(X7}/aw+)YX+} and
Uwy)=E {U(X,KWHXTXTT + w(ﬁcvy’w+)X+X£} :



Let Q(X13K7wi) = dlag{g(Xz,Y;,Wj_),h(X“Y;,(Ji),
[9(X, Y5, wh )+ h(X;, Y, w’)]1g}, where 1 is d x d identity
matrix.

Then, define

n

7, =3 {00 ViV + X Vi X |,

i=1

:in{mxi,n,w:)(m}-

Lastly, define G(w*) = E[(X,):Q%(X,, Y, ) (X))t ).

Some regularity conditions are needed. We state the con-
ditions in the appendix. Note that conditions (A1), (A2) and
(A4) are the same as in Koo et al. (2008). Our new (A3) is
tailored for DWSVM and incorporates the DWD compo-
nent. In particular, (A1) ensures that U(w™) is well-defined
and is continuous in w4 while (A1) and (A2) ensure that the
minimizer w? exists. (A3) is a sufficient condition to that
w?_ is not zero. (A4) guarantees the positive-definiteness of
U(w4) around w? .

Under these regularity conditions, we obtain a Bahadur
representation of wy ,, 4 in Theorem 2, the asymptotic nor-
mality in Theorem 3, and consequently, the asymptotic nor-
mality of the discriminant function f(z;wy, ) at x in
Corollary 4.

Theorem 2. Suppose that (A1)-(A4) are met. For A =
o(n=1/?), we have

1
Vvn
Theorem 3. Suppose that (A1)-(A4) are met. For \ =
o(n=?), we have

Vi@, — wh) = ——=U(w}) " Ty + op(1).

Vi@, —wi) = N (0,U(w}) ' Glwl)U(w}) )
This will lead to the following corollary.

Corollary 4. Under the same conditions as in Theorem 3,
for X =o(n"12) and any = € R?,

Vi (f@@nn,) — fl@,wl))
4 N (0,270 (W) W)U (W) ey )

6.3 Extremely imbalanced data

Owen (2007) discussed the behavior of the intercept term
in the logistic regression when the sample size of one class is
extremely large while that of the other class is fixed. More-
over, Qiao and Zhang (2013) also showed that the intercept
term of DWD diverges. In this subsection, we prove that the
intercept term for the DWSVM classifier does not diverge.
Without loss of generality, we assume that n_ > n, that
is, the negative class is the majority class.

Lemma 5. Suppose that the negative majority class is sam-
pled from a distribution with compact support S. Then the
intercept term 3 in SVM does not diverge to negative infinity
when n_ — oo.

Corollary 6. Suppose that the negative majority class is
sampled from a distribution with compact support S. Then
the intercept term B in DWSVM does not diverge to negative
infinity when n_ — oco.

The assumption of compact support S is essential here,
but it is fairly weak and is true in many real applications.
Note that this result does not ensure that the sensitivity
issue is completely overcome by SVM or DWSVM. Instead,
it suggests that in the n_ — oo asymptotics, the impact of
the imbalanced sample size is limited to some extent.

7. CONCLUSION

Both SVM and DWD are subject to certain disadvantages
and enjoy certain advantages. The DWSVM combines the
merits of both methods by creatively deploying an axillary
intercept term. We have shown standard asymptotic results
for the DWSVM classifier. The simulations and real data ap-
plication establish the superiority of the DWSVM method
over SVM and DWD in some situations. In particular, the
DWSVM method can lead to a discriminant direction vec-
tor that, like the DWD direction, preserve important fea-
tures of the data set. More importantly, the DWSVM also
performs very well in terms of classification. As a bottom
line, its performance is just as good as the SVM. In special
settings such as the perturbed data, we have demonstrated
that DWSVM can overcome overfitting and is more robust
against perturbation/mislabeling of the data.

We have shown some asymptotic properties of DWSVM
in this article. More work can be done to investigate its
statistical properties, for example, in the line of Blanchard,
Bousquet and Massart (2008).

In DWSVM, the direction is jointly optimized by both
the DWD component and the SVM component. The relative
contributions of both are controlled by the tuning parame-
ter . When a = 0, DWSVM is exactly identical to SVM.
On the other hand, one would not want to have a = 1,
since that would make the Hinge loss equal to zero and the
choice of the main intercept term / meaningless (since it
will disappear from the objective function). A sensitivity
analysis in Section 4.2 suggests that, within a large range
between 0 and 1, the impact of the value of o on the clas-
sification performance and interpretability of the resulting
DWSVM classifier is very small. One may notice from Fig-
ures 4 and 5 that, ideally, an a value quite close to 1 (but
not too close so as to cause the problem as above) can po-
tentially produce improved interpretability (smaller angle)
over a range of Clg,,, values, while maintaining classification
performance. However, as the potential improvement seems
to be limited, and since a wise tuning of Cl,,, can poten-
tially find a DWSVM classifier almost as good, the effort
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of pursuing the direction of tuning a may not be justified.
This is the reason we have used @ = 1/2 in the paper, which
turns out to be quite useful.

An instant extension of the DWSVM classifier is mul-
ticlass classification. For example, for a multiclass classifi-
cation problem with K classes, the following optimization
problem accomplishes such an extension.

n
; 1 )
argmin Z Z {a (TZ— + Cawd W;'k>
5;‘0,5,7’] i=1y;=j, k#j Jk

+(1- )i},
i = yi{®] (wj — wi) + (Bjo — Bro)} + Nk,
r;:k >0 and n;:k >0,

Osvmyi{mf(wj - (-dk) + (ﬂj - Bk)} + S;k Z V Csvma

s.t.

e >0,

K

> lwsll® <1,
j=1

K K K
ij:O, Zﬁjzo, Zﬁj():o.
j=1 j=1 j=1

Other extensions such as kernel DWSVM or sparse DWSVM
are also readily in order.

In summary, DWSVM integrates the merits of classical
classification methods. Its numerical performance is very
good and it is theoretically justified. These show evidence
that it is a very promising linear learner which has great
potential in many applications.

The DWSVM classifier has been implemented in MAT-
LAB. We have used the second order cone programming
to implement it, whose computational cost is comparable to
that of DWD. See the appendix for details on the implemen-
tation of this algorithm. Future work will also concentrate
on developing more efficient implementations of DWSVM.

APPENDICES

Proof of Theorem 1

For any @, denote ¢(x) = P(Y = +1|X = ). The condi-
tional risk is
R(f, fo) = BIL{Y f(X),Y fo(X)} | X = ]

={aVe,,q(fo) + (1 —a)He,,,, ()} q(@)
+{aVe,,u(=fo) + (1 =) He,,,. (=)} {1-q(2)},

where for simplicity we write f(x) and fo(x) as f and fo.

For the global minimizer (f*, f), since f* — f§ = A* is
independent of &, we can consider another feasible (but not
optimal) solution (—f*,—f* — A*). Due to the optimality
of (f*, )= (f*, f*— A*), we can show that

0=R(f* f* = A") = R(=f",—f" = A7)
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={2¢(x) -1} {aVe,,.(f* = A") + (1 —a)He,,,,. (f)}
—{aVeu (=" =A%) + (1 - a)He,,,. (= f)}]
={24¢(x) = 1} [V, (f" = A7) = Vo, (=" =A%)}

+ (1 - a){Hc.,,.(f") - He,,,. (=)}

Thus if ¢(x) > 1/2, then

O‘{Vded(f* - A*) - Vcdwd<_f* - A*)}
+ (1 -a){He,,, (f*) — He,,, (=)} 0.

Because Vg, (-) is strictly decreasing everywhere, and
He,,, (-) is strictly decreasing around 0, we have that
Veuwa (J* — AY) = Ve, (=f" — AY) and Hc,,,, (") —
He,,, (—f*) have the same sign, and hence f* > 0. By
a similar argument, if g(x) < 1/2, then f* < 0. Lastly, it
is easy to show that f* # 0. Hence we have sign(f*) =
sign(g(z) — 1/2).

Regularity conditions

We state the regularity conditions for the asymptotics
below. We use Cq, (5, ...to denote positive constants inde-
pendent of n.

A1 The densities p; and p_ are continuous and have finite
second moments.

A2 There exists B(xg, dy), a ball centered at &y with radius
dp such that pi(x) > C; and pa(x) > Cy for every
x € B(xg,dp).

A3 For some 1 <[ <d,

E(E{XLZF,L}X Y = —1) <E(1{X1§FE}X | Y:-l-l)

or
E(Lfxepoy X 1V ==1) >E (L opmy X | Y =+1),

where Ff andFZ (FY and FUY, respectively) are the
lower bounds (upper bounds, respectively) for the pos-
itive and negative classes. They are defined as

P(X, > Ff|Y =+41)

. m{aCy+ (1 —a)Cs}

_m1n<1, + T (1= a)C, ),
P (X, > FX Y =+1)

— min m_{aCq+ (1 — a)Cs}

B (1’ (- a)C, ) |
P(X; < FY|Y =+1)

— min (1 —a)Cs

=i (1 e )
P(X; <FY|Y =+1)

~ win m_(1— a)Cy

=i (1 T i)



A4 For an orthogonal transformation A; that maps
w*/||w*|| to the Ith unit basis vector e; for some 1 <
I < d, there exist rectangles

Dt ={weM":I
< (Ajx)s < wvs with Iy < v, for s # 1}

and

D™ = {xEM_ :ls
< (Ajx)s < ws with Iy < v, for s # 1}

such that py (z) > Cy >0 on Dt and p_(x) > C3 >0
on D, where M™ = {z:a"w* +=1/y/C,} and
- = {ac cxTw* + 8 = 71/\/05}.

Proof of Theorems 2 and 3 and Corollary 4
For fixed 6 € R¥*2, define

A (0) = n{gan(wh +60/vn) — gan(w?i)}, and
I'.(0) =EA,(0).

Observe that
) =n {Q(w} +8/vn) — Q(w})}
A *
t3 <||03:(d+2)H2 +2v/nw T03:(d+2))

By Taylor series expansion of @ around w? , we obtain, for
some 0 <t <1,

() (t/\/m)0) 6

A *
T3 (“03:(d+2)”2 + 2v/nw T03:(d+2)) :

1 *
:EBTU (w+ +

Because U(w+ ) is continuous in w, due to condition (A1),
we have

SOTU (w4 (1/v)0) 0 = 267U (w}) 0+ 0(1).

This, combined with A = o(n~'/2), results in

T,(60) = %OTU (@) 6+ o(1).

Now, observe that ET,, = nS(w?) = 0 and E(T,,T})) =
S E[(X):03(X,, Vi, w0 )(Xa)s '] = nG(w?). Hence,
ﬁTn follows N (0, G(w? )) asymptotically by central limit
theorem.

Next, we define

ELGw++0/\/_

e

LZ'I’L

) o1

where  L; ,(wy) =
o) He, (Yi(X:)Tw.).
We continue by splitting R; ,, to two parts R; ,, = aRd
(1 = a)R;,,, where the first term concerns the DWD com-
ponent and the second term concerns the SVM component.
For the DWD component,

R, (0) =V (Yi(X:){ (W} +8/vn)) = V(Y.
ov

T
- (m(‘*@) o w*) 8/vn

Because the DWD loss V has first order continuous deriva-
tive, R;{n(e) =0(n71).
For the SVM component,

Ve, (Vi(X)Twy) + (1 -

(X )$w+)

R}, (0) EH[Y(X) (W} +6/v/n)] — H[Y;(X; )+""+}
+\/_s]l{yi(x,i)§rw1<1/\/c—3}3€( i)+9/\/ﬁ

Following the argument by Koo et al. (2008) and com-
bining the fact that R{, (0) = O(n™!), we can show that
Z?:l E(|Rz,n(0) - ERz,n(0)|2) - Oa asn — 0

We note that A,,(0) =T, (0)+T70//n+>" 1 (
ER; ,(0)). Thus

R; ,(0)—

A, (0) = %BTU (wh)0+T760/v/n+op(1).

By the Convexity Lemma in Pollard (1991), we have for
any fixed 6,

1 *
1
+ §CZU (wj—) Cn + rn(e)’
where ¢, = —U(w?) T, /y/n, and for each compact set
K € RY,

sup |rn(8)] 2 0.
Ock

We then follow the argument in Koo et al. (2008) and

have for each & > 0 and ), = Vi(@xn, —wh),
P (00— Cull > £) B0,
which completes the proof. O

Proof of Lemma 5

We prove the result for the simpler and more intuitive
case of d = 1. In this case w € R does not need to be
optimized. We can simply assume that w = 1. Moreover, we
can consider the worst case scenario where ny = 1. This is
the worse case because this represents the most imbalanced
sample sizes. We let xy denote the sole data vector in the
positive minority class.
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Since the negative class is extremely large compared to
the positive, we can assume that the functional margin with
respect to the main hyperplane u = yo(zg + 8) = 2o+ § for
the data vectors from the positive minority class are always

less than 1/4/Cy, that is 8 < 1/4/Cs — xo.
Write the objective function of SVM as

L£5(8) = (v/Cs — Csag — C)
+ Z {]1{%:—1}(\/0_3 + Cszi + Cs/B)+}
=1

~ (\/a — Csxp — Csﬁ)
+1 B{(VC +CX + )y |V = -1}

Note that

oL
55 (B)=Cotn CE [Lverroxrcpso | Y =1

== Cyt+n CP [V +CX +Cp >0y =-1].

This leads to that limg_, %—Lﬁs(ﬁ) =—-(C, <0, and

2 (ar-11ve)

— —C.+n_C.P [«/CS L O.X
FO(-M—1//C)>0]Y = -1
=—Cs+n_CPX>M|Y=-1]=-Cs<0

Thus if 1/v/Cs —xo < —M — 1/3/C, then

orLe
S5 (VG )
== Cotn CP V0, +C,X
+C,(1/y/Cy — 1) > 0] Y = —1}
=—Cy+n_C,P [X >20—2/\/C, | Y = 71]
=—0,<0,
and f = 1/v/Cs — x¢ is the minimizer of £5. On the other
hand, if 1/4/C5 — 29 > —M —1/4/C5, then the minimizer *
will be greater than —M — 1/+/C; but less than or equal to

1/4/Cs — xo. This means that the intercept term 8 in SVM
does not diverge to —oo. ([

Implementation of the DWSVM method

In this subsection, we describe how to implement the
DWSVM by using the second-order cone programming. Let
x = (v1,22,...,74)7 be a d-dimensional vector. We call

that « lies in a d-dimensional second-order cone &y, if

344 X. Qiao and L. Zhang

x>\ JTi 4+ + :1:3. Similar to the DWD implementation,
we will introduce triplets (p;, 0;,7;) so that

1
pitoi=—,

%

Pi — 03 = T5.

Thus, p? = 02+41. Then if we let 7, = 1, we have (p;, 04, 7;) €
S3. Thus, Equations (11-14) will be

argmin Y {a(p; + 0i + Cawani) + (1 — )&},
ﬁoﬁum i=1

st yi(@iw+Po) +ni —pi+ ;=0
Csvmyi(w;rw + ﬂ) + gi Y/ Csvm 2 0

T=land ;=1
(T,W) € Sd+17 (pivo—ivT’i) S 837 i Z 07 51 2 0

Standard second order cone programming packages can be
used to implement this optimization problem. In our im-
plementation, we used CVX, a package for specifying and
solving convex programs (Grant and Boyd, 2008, 2013). For
high-dimensional, low-sample size data, the computing cost
of the optimization above is in the same order as that of
DWD. In particular, the number of variable is d + 2 + 2n
compared to d + 1 + n. When d > n, the increment is rel-
atively small. The number of constraints doubles compared
to DWD.
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