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Application of structured low-rank approximation
methods for imputing missing values in time series

Jonathan Gillard
∗
and Anatoly Zhigljavsky

In this paper we consider an important statistical prob-
lem of imputing missing values into a time series data. We
formulate this problem as a problem of structured low-rank
approximation (SLRA), which is a problem of matrix anal-
ysis. One of the main difficulties in this SLRA problem is
related to the fact that the norm which defines the quality
of low-rank approximations is different from the Frobenius
norm. We argue that the arising SLRA problem is a very dif-
ficult optimization problem and then consider and compare
a number of algorithms for its solution.
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1. INTRODUCTION

In this paper, we consider the problem of imputing miss-
ing values into a time series data. This is a very important
problem of statistics, which as a special case includes the
problem of forecasting, when the missing values are located
at the end of the series. We formulate the problem of imput-
ing missing values in time series as a problem of structured
low-rank approximation (SLRA), which is a problem of lin-
ear algebra and matrix analysis.

Let us introduce some notation and define the main
problem. Let L, K and r be given positive integers such
that 1 ≤ r < L ≤ K, and set N = L + K − 1. By
R

L×K we denote the set of all real-valued L × K matri-
ces X = (xl,k)

L,K
l,k=1. Let H be the subset of R

L×K con-
taining matrices of a specified structure and Mr be the
subset of RL×K containing all matrices of rank ≤ r; that
is, Mr = {X ∈ R

L×K s. t. rank(X) ≤ r}. We thus define
Sr = Mr ∩H to be the set of structured L×K matrices of
rank ≤ r.

Assume we are given a matrix X� ∈ H. The general prob-
lem of structured low-rank approximation (SLRA) can be
stated as the following constrained minimization problem:

(1) min
X∈Sr

||X−X�|| .

where || · || is some pre-defined norm. If H = R
L×K , so that

no structure is specified, then (1) defines the standard (un-
structured) low-rank approximation problem abbreviated as
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LRA. We will only consider the case where || · || in (1) is a
weighted Frobenius norm (or semi-norm) defined by

(2) ||X||2
W

=

L,K∑
l,k=1

wl,kx
2
l,k ,

where W = (wl,k)
L,K
l,k=1 is a matrix of non-negative numbers

(weights). If wl,k = 1 for all l and k, then (2) defines the
standard Frobenius norm.

Our main interest in this paper lies in matrices of Hankel
structure and a special choice of the weight matrix W in
(2). Recall that a matrix X = (xl,k) ∈ R

L×K is Hankel if
xl,k=const for all pairs (l, k) with l + k =const; this means
that all elements on the anti-diagonals of X are equal. The
weight matrix W = (wl,k) will be chosen so that wl,k =
Wl+k−1, where {W1, . . . ,WN} is a set of 0-1 numbers: Wi ∈
{0, 1} for i = 1, . . . , N . Note that the weight matrix W is
Hankel and that since some of the weights wl,k are equal to
zero then (2) defines a semi-norm rather than a norm.

The following is our main problem of interest:

The main problem. Given a Hankel matrix X� ∈ H,
some integer r and a set of 0 − 1 numbers {W1, . . . ,WN},
find an approximation to the solution of (1), where || · || is
the weighted Frobenius semi-norm (2) with wl,k = Wl+k−1.

This problem belongs to the family of weighted SLRA
problems and, as discussed in Section 2, can be considered
as a problem of optimal imputation of missing values in time
series.

SLRA is an important problem, which has applications
in a number of different areas including signal processing,
speech and audio processing, modal and spectral analysis,
modelling dynamical systems, time series analysis, amongst
others. For a list of references, see [14]. Behind many data
modelling problems there is an equivalent low rank approxi-
mation problem [14], and thus the implication of developing
methodology for (1) is wide-bearing.

Existing methods for the imputation of missing values in
time series assume that the correct model for the observed
data is known, or that the data closely follow a particular
model. It is then desired to estimate the parameters of the
model based on incomplete data. These model-based meth-
ods can be divided broadly into two groups; those that use
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the EM algorithm, and those which use so-called multiple
imputation.

The EM algorithm is a well-known algorithm often used
to maximise the likelihood function when only incomplete
data is available. The method has been demonstrated to
be useful for many applications, and there is much liter-
ature detailing these applications (see [15], and the refer-
ences therein for example). For the likelihood function to be
fully specified one needs to assume a fixed model. The EM
algorithm then maximises the likelihood function based on
incomplete data. Each iteration of the EM algorithm yields
parameter estimates that incrementally maximise the likeli-
hood function. It has been demonstrated however that the
EM algorithm may converge to a spurious local maximizer,
or may not converge at all [16]. Despite slow numerical con-
vergence being observed in practise, the algorithm remains
popular [20].

The general principle of multiple imputation can be de-
scribed briefly as follows [17]. The missing data are initially
imputed using some (often straightforward) method. Ex-
amples of methods include setting all missing values to a
constant (such as the mean, or 0) or randomly imputing
the missing data. The parameters of the assumed model are
then estimated based on this data. This model is then used
to re-impute the missing data, and this process is iterated
until some pre-specified convergence criteria is met e.g. when
there is little change in the estimated parameters and/or the
imputed data.

Other possible methods described in the literature are
based on considering the time series in the frequency do-
main. Again the EM algorithm provides a popular method
of estimating the frequencies based on incomplete data, and
other possible estimators and methods, such as those us-
ing the Fourier transform are described in [4]. Many of
these methods however assume that the time series is sta-
tionary, to avoid complications with the spectral estima-
tion.

The structure of the rest of the paper is as follows. Sec-
tion 2 gives formal details as to how the Hankel SLRA prob-
lem is directly connected to the analysis of time series, and
details of imputing missing values in time series is also pro-
vided. In Section 3 we describe some properties of problem
(1) in the case when H = R

L×K and show how these prop-
erties can be used to develop algorithms to approximate a
solution of (1). These algorithms are built upon to develop
algorithms specifically for the case where H is the space of
Hankel matrices and describe how these can be used for the
imputation of missing data in time series. Examples and dis-
cussion of these algorithms are included in Section 4 before
the paper is concluded in Section 5. The main contribution
of this paper is to adapt algorithms of weighted low rank
approximation to the case where the approximation is also
required to be of some structure. We are thus able to discuss
the potential of these adapted algorithms for the problem of
imputing missing values in time series.

2. THE MAIN PROBLEM AS A PROBLEM
OF TIME SERIES ANALYSIS

In the discussions below H will mostly be assumed to be
the set of Hankel matrices. There is a one-to-one correspon-
dence between L × K Hankel matrices and vectors of size
N = L + K − 1. Indeed, for a vector Y = (y1, . . . , yN )T ,
the matrix X = H(Y ) = (xl,k) ∈ R

L×K with elements
xl,k = yl+k−1 is Hankel and vise versa. In the statistical
applications, which are dealt with in this paper, the vector
Y = (y1, . . . , yN )T is a time series.

In the signal processing literature (see e.g. [1, 11, 19]) the
SLRA problem with Hankel structure is often interpreted
as a problem of estimating frequencies in sums of damped
sinusoids. Indeed, solving the Hankel SLRA problem (1) is
equivalent to finding a parametric representation of a vector
(time series) whose elements can be represented as sums of
exponentially damped sinusoids. This is motivated by the
fact that if r is even and a vector Y = (y1, . . . , yN )T is such
that yj = yj(θ), where

(3) yj(θ) =

r/2∑
l=1

al exp(dlj) sin(2πωlj + φj), j = 1, . . . , N ,

then the associated Hankel matrix X belongs to the set Sr

(here θ denote the set of unknown parameters).
We assume that we are given a time series Y =

(y1, . . . , yN )T so that some number m of the values yi are
missing and we need to impute these missing values. Let us
insert arbitrary numbers in place of the missing values and
denote the resulting series Y� = (y1�, . . . , yN�). Define the
corresponding L×K matrix X� = H(Y�).

As we assume that there is an observational error in-
volved, we are allowed to make some small changes to the
existing values yi� and any changes to the inserted values
yi� to ensure that the resulting matrix X̃ = (x̃i,j) = H(Ỹ )
with x̃i,j = ỹi+j−1 has rank ≤ r, where r is given. The

series Ỹ = (ỹ1, . . . , ỹN ) is an approximation to the series
Y� and we assume that it satisfies ‘the sums of damped si-
nusoids’ model (3); that is, the resulting matrix X̃ has to
belong to the space Sr = Mr ∩ H, where Mr and H are
respectively the sets of matrices of rank ≤ r and Hankel
matrices.

Let I = {i1, . . . , im} be the set of indices such that the
values yi with i ∈ I are missing. The values yi ∈ Ī =
{1, 2, . . . , N} \ I are assumed known but evaluated with
an observation error. Let us also define the set of weights
{W1, . . . ,WN} so that Wi = 0 for i ∈ I and Wi ≥ 0
for i /∈ I. Values Wi for i /∈ I may be chosen to be in-
versely proportional to the measurement errors in the cor-
responding values of yi; for example, Wj = ∞ would indi-
cate that the value yj is known exactly, with no observa-
tion error. For simplicity, we assume Wi = 1 for i /∈ I so
that

Wi =

{
0, if i ∈ I
1, if i /∈ I .

(4)
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Since we need to change values yi� as little as possible,
a very natural norm in (1) is the weighted Frobenius semi-
norm (2) with wi,j = Wi+j−1, where the values W1, . . . ,WN

are as above. We thus have arrived to the formulation of the
problem of imputing missing values as stated in the intro-
duction.

The underlying statistical model used for fitting missing
values in this approach assumes that the observations fol-
low the ‘signal plus noise’ scheme, where the signal has a
structure described by the damped sinusoids model (3). Ad-
ditional details about this model are given in Appendix A.

3. ALGORITHMS

In this section we first describe properties of the opti-
mization problem (1) defined by the distance (2), where we
define the space H to be H = R

L×K ; that is, we consider
the weighted unstructured LRA problem. We discuss how
one can use these properties to develop the algorithms of
solving the weighted unstructured LRA problem and then
formulate some algorithms. The second part of this section
uses these algorithms of solving the weighted unstructured
LRA problem as part of the methodologies which are de-
signed to the the main problem formulated in Introduction;
that is, the problem of imputing missing data in time series.

Once the algorithms have been run, there are two poten-
tial uses of the output, which will be a vector Y such that
the matrix H(Y ) has rank r:

1. The vector Y can be viewed as a ‘model-fit’ of rank r
to Y� where the algorithms to be proposed have simul-
taneously imputed the missing values and found a rank
r fit.

2. Elements of Y corresponding to the missing elements
of Y� can be inserted into Y�, thus filling in the missing
elements of the original series.

In this paper we focus on the former use.

3.1 Algorithms for solving (1) with
H = R

L×K

In this section we describe two properties of the opti-
mization problem (1) defined by the distance (2) where we
define the space H to be H = R

L×K . These properties can
be viewed as two approaches to representing low-rank ma-
trices; which have been called the image and kernel repre-
sentation respectively [14]. We then suggest how these rep-
resentations can lead to elementary algorithms for solving
(1) with H = R

L×K .

3.1.1 Image representation and the alternating projections
algorithm

If X ∈ Mr, then there exists matrices U = ||ui,k||L,r
l,i=1 ∈

R
L×r and V = ||vk,j ||r,Ki,k=1 ∈ R

r×K such that X = UV.

Hence it is possible to define the LRA problem (1) as an
unconstrained optimization over U and V:

(5) g(U,V) → min
U∈RL×r,V∈Rr×K

.

The equivalent weighted Frobenius norm to (2), can be
written
(6)

g(U,V)= ||UV−X∗||2W =
L∑

l=1

K∑
k=1

wl,k

(
r∑

i=1

ul,ivi,k − x∗
l,k

)2

There are some disadvantages with the image represen-
tation rank r matrices. The decomposition X = UV is
not unique. Additionally, it is possible to find matrices
M ∈ R

r×r such that g(UM,M−1V) = g(U,V). In this
sense it can be claimed that the image representation leads
to an overparameterized representation of low-rank matri-
ces. Despite this, it is relatively straightforward to develop
algorithms to approximate solutions of (1) based on this
representation. The most common algorithm, known as al-
ternating projections, is given below.

3.1.1.1. Algorithm: alternating projections (AP) AP uses
the image representation of the rank constraint as follows.
Start from initial U0, compute for n = 0, 1, . . .:

Vn = arg min
V∈Rr×K

||Un−1V −X∗||2W

Un = arg min
U∈RL×r

||UVn −X∗||2W .

This algorithm is run until some stopping criteria has been
satisfied. At iteration n, the approximation to X∗ is given
by Xn = UnVn.

3.1.2 Kernel representation and the steepest descent algo-
rithm

Let 0L×(L−r) be an L × (L − r) matrix with all entries

set to zero. If X ∈ Mr, then there exists R ∈ R
K×(L−r)

such that XR = 0L×(L−r). Hence it is possible to define the
LRA problem (1) as the double minimization

(7) min
R∈RK×(L−r), RTR=I

(
min

X∈ RL×K , XR=0
||X−X∗||2W

)
.

The inner minimization has a unique, closed form solution
[12]. Consequently (7) can be written

(8) min
R∈RK×(K−r), RTR=I

f(R) ,

f(R) is some function, its expression though is a little bit
complicated and can be found in [12]. The kernel represen-
tation of low-rank matrices as described above yields a one-
to-one parameterization, and so there is no problem of non-
uniqueness as in the image representation in the previous
section.
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Note that it is also possible to set-up a Lagrangean func-
tion corresponding to the double minimization (7). Let Γ
be an L × (L − r) matrix of Lagrange multipliers. The La-
grangean is given by

(9) Φ(X,R,Γ) =
1

2
||X−X∗||2W + trΓTXR .

The derivatives of Φ can be computed as

∂Φ

∂X
= W � (X−X∗) + ΓRT ,(10)

∂Φ

∂R
= ΓTX,

∂Φ

∂Γ
= XR,

where � is the element-wise or so-called Hadamard product.
Setting the derivatives to matrices containing zeroes, one
obtains conditions on the matrices X and R to be at a local
minimizer of (7). Additionally, postmultipliying (10) byXT ,
one obtains the so-called orthogonality condition that any
solution X of (7) needs to satisfy to be at a local minimizer
of (7). This is given by

(11) {W � (X−X∗)}XT = 0L×L .

This orthogonality condition (11) was discussed in [2] and
more recently, for the SLRA problem in [7]. Note that one
may also write a Lagrangean function corresponding to the
image representation as given in Section 3.1.1.

3.1.2.1. Algorithm: steepest descent (SD) One may opti-
mise the function f(R) directly using an appropriate nu-
merical optimization procedure. The steepest descent algo-
rithm will be used to minimize f(R) in this paper. Technical
details and more information as to its implementation can
be found in Algorithm 11 as described in [12].

3.2 Algorithms for imputing missing data in
time series

Before describing algorithms for solving the main prob-
lem as stated in the Introduction, we need to introduce two
projections.

Projection to the rank space The celebrated Eckart-
Young theorem [5] states that the closest rank r matrix to
X ∈ R

L×K , for the Frobenius norm, can be computed using
the singular value decomposition (SVD) of X as follows. Let
σi = σi(X), the singular values of X, be ordered such that
σ1 ≥ σ2 ≥ . . . ≥ σL. Denote ΣL = diag(σ1, σ2, . . . , σL) and
Σr = diag(σ1, σ2, . . . , σr, 0, . . . , 0). Then the SVD of X can
be written as X = UΣLV

T and the matrix

(12) π(r)(X) = UΣrV
T

belongs to Mr and minimizes the value ||X − A||2
F

over

A ∈ Mr; that is, π(r)(X) is a projection of X onto Mr.

The distance ||X− π(r)(X)||2
F
is given by

∑L
j=r+1 σ

2
j .

Projection to the space of Hankel matrices The
space H is a linear subspace of RL×K and the closest Hankel
matrix to any given matrix is obtained by using the simple
diagonal averaging procedure. We thus define πH(X) to be
projection of the matrix X ∈ R

L×K onto the space H as
follows. The element x̃ij of πH(X) is given by

x̃i,j = s−1
i+j−1

∑
l+k=i+j

xl,k ,

where

(13) sn =

⎧⎨
⎩

n for n = 1, . . . , L−1 ,
L for n = L, . . . ,K−1,

N−n+1 for n = K, . . . , N .

The value sn is equal to the number of times the element yn
of the vector Y is repeated in the Hankel matrix H(Y ).

General structure of algorithms The general struc-
ture of all the algorithms considered in the remainder of the
paper is as follows

(14) X0 = X�, Xn+1 = πH
[
A(Xn)

]
for n = 0, 1, . . . .

where A(Xn) denotes the result of performing some pre-
defined algorithm starting at the matrix Xn. We consider
the following two forms of Xn:

(15) Xn = Xn ,

and

(16) Xn = X� �W +Xn � (1−W) ,

where � is the element-wise or so-called Hadamard product
and 1 is the matrix of ones. In (15), all elements of the
matrix Xn are updated at each iteration of an algorithm.
However, if (16) is used then only the missing elements of
X� are replaced by the corresponding elements of Xn. We
shall refer to (15) and (16) as the updating rules and now
introduce the following algorithms.

In this paper we do not discuss in detail selection of the
parameters L and r. Typically in the literature on SLRA,
one finds arguments for selecting L = r+1 [13] and one can
also find arguments for selecting L so that the initial Hankel
matrix X� is as ‘square’ as possible. A useful discussion as
to the selection of L and r for a number of subspace-based
methods is included in [9].

3.2.1 SVD-based algorithms

We define the following SVD-based algorithm

(17) X0 = X�, Xn+1 = πH
[
π(r)(Xn)

]
for n = 0, 1, . . .

Algorithm (17) with Xn defined by (15), that is Xn =
Xn, is analagous to the so-called Cadzow iterations, see [6].
Cadzow iterations are the repeated alternating projections
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of the matrices, starting at X�, to the set of matrices of
rank r (by performing a singular value decomposition) and
to the set of Hankel matrices (by diagonal averaging). De-
spite the fact that Cadzow iterations guarantee convergence
to a point in the intersection of the spaces of matrices of
Hankel structure and those of rank r, they can easily be
shown to be sub-optimal in many examples, see [7, 3]. How-
ever, they remain popular due to their simplicity. Note also
that one iteration of Cadzow iterations for Hankel SLRA
corresponds to the basic version of the technique of time se-
ries analysis known as singular spectrum analysis (SSA), see
[10]; for further details regarding the link between Cadzow
iterations and SSA; see, for example, [6].

Algorithm (17) with Xn defined by (16), is analogous to
the EM algorithm as introduced in [18]. In [18], the prob-
lem (1) is considered with H = R

L×K ; the corresponding
algorithm was shown to be effective in many examples, but
it was noticed that this algorithm often converges to a local
minimum which is not global.

3.2.2 AP-based algorithm

Let AAP (Xn) denote the result of performing the alter-
nating projections (AP) algorithm defined in Section 3.1.1
for a pre-defined number of iterations, or until some con-
vergence criteria is met, starting at the matrix Xn. We can
then introduce the following algorithm for imputing missing
data in X�:

(18) X0 = X�, Xn+1 = πH
[
AAP (Xn)

]
.

3.2.3 SD-based algorithm

Let ASD(Xn) denote the result of performing the steep-
est descent (SD) algorithm defined in Section 3.1.2 for a
pre-defined number of iterations, or until some convergence
criteria is met, starting at the matrix Xn. We can then in-
troduce the following algorithm for imputing missing data
in X�:

(19) X0 = X�, Xn+1 = πH
[
ASD(Xn)

]
.

3.2.4 Algorithms based on the ‘sums of damped sinusoids’
representation

The optimization algorithms directed to solving the main
problem formulated above work directly in the space of Han-
kel matrices. Alternative algorithms may be developed based
on the parametric representation (3). In this representation
the feasible domain are the parameters included in θ instead
of the space of Hankel matrices.

In general optimization problems using the representa-
tion (3) have less variables to be optimized and these op-
timization problems may seem to be more straightforward
than those using a feasible domain of Hankel matrices. How-
ever, the objective functions obtained using (3) are severely
multimodal and the associated global optimization problems

can be very complex with the objective function possess-
ing a large number of local minimizers and large Lipschitz
constant, which make conventional optimization methods
unsuitable. This has been demonstrated by the authors in
recent papers [7, 8]. A summary of this work and an exam-
ple is included in Appendix A. Objective functions arising
using the space of Hankel matrices as a feasible domain also
suffer some multi-extremality issues although these are not
as severe as those described earlier. We thus restrict our at-
tention in this paper to algorithms which use the space of
Hankel matrices as a feasible domain.

4. EXAMPLES

4.1 Example 1

This is a very simple example where the true solution
to the optimization problem (1) gives zero distance to the
target matrix X�. All examples selected in this Section are
taken from a wider selection; these specific examples were
chosen for their simplicity.

4.1.1 One missing value (m = 1)

Set L = 5, r = 2 and assume that we are given the time
series Y = (0, 1, 0,−1, 0,×, 0,−1, 0, 1, 0), where × denotes
a missing value. Let us insert some number α in place of
the missing observation × and denote the resulting series
Y� = (0, 1, 0,−1, 0, α, 0,−1, 0, 1, 0). Define the matrix X� to
be such that X� = H(Y�). When α = 1 then rank(X�) = 2.

Table 1 contains the value of the weighted norm (2) ob-
tained using the algorithms described in Section 3.2; namely
the SVD-based algorithm (17), the AP-based algorithm (18)
and the SD-based algorithm (19) using the two updating
rules (15) and (16). At each iteration of (18) and (19) the
AP and SD components of the algorithm were run for 1000
iterations. Each algorithm was allowed to continue until it
converged to a feasible solution. Each algorithm was initial-
ized at different values of Y� with α as given in the table.

The SVD-based algorithm (17) with updating rule (15)
performs least favourably, apart from the case when α = 1.
Remember however that when α = 1 then rank(X�) = 2
and so the starting value of the algorithm is already at a
feasible solution. This algorithm performs more favourably
for values of α close to 1.

The AP-based algorithm (18) with updating rule (15)
performs well for values of α > −0.5, and although it per-
forms better than SVD-based algorithm (17) with updating
rule (15) for α = −0.75 and α = −1, has noticeably poorer
performance when Y� is initially imputed with these values
of α.

The SD-based algorithm (19) with updating rule (15) per-
forms well for many values of α, but gives particularly poor
solutions for α = −0.5, α = 1.5 and α = 2. This implies that
on occasion the SD-based algorithm with updating rule (15)
may get stuck in regions close to a local minima. It can be
seen that all of the algorithms perform better across the
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Table 1. Weighted norms (2) obtained using the algorithms
described in Section (3.2); namely the SVD-based algorithm

(17), the AP-based algorithm (18) and the SD-based
algorithm (19) using the two updating rules (15) and (16).
Here (1) denotes that the algorithm has been run using

updating rule (15); (2) denotes that the algorithm has been
run using updating rule (16)

α SVD(1) AP(1) SD(1) SVD(2) AP(2) SD(2)

-1 9.124 2.710 0 0 0 0
-0.75 9.382 1.313 0 0 0 0
-0.5 4.064 0 11.841 0 0 0.655
-0.25 1.622 0 0 0 0 0
0 1.038 0 0 0 0 0

0.25 0.584 0 0 0 0 0
0.50 0.600 0 0 0 0 0
0.75 0.065 0 0 0 0 0
1 0 0 0 0 0 0

1.25 0.065 0 0 0 0 0
1.50 0.260 0 10.335 0 0 0
1.75 0.584 0 0 0 0 0
2 1.038 0 12.111 0 0 0

entire range of α using updating rule (16). However the SD-
based algorithm with this updating rule has been trapped
at a local minima when α = −0.5.

Figure 1 contains plots of the original time series Y� with
three approximations for selected values of α. The three ap-
proximations have rank r = 2 and are obtained using the
SVD-based algorithm (17), AP-based algorithm (18) and
SD-based algorithm (19) using updating rule (15). The par-
ticular updating rule and values of α were selected in order
to see differences between the algorithms more clearly. The
missing value (imputed with initial guess α) is highlighted
with a +. For α = −1 it can be seen that the SVD-based
algorithm (17) has converged to a rank 2 solution far away
from the observed data Y�. As explained in Section 3.2, the
SVD-based algorithm (17) with updating rule (15) is guar-
anteed to converge to the space of rank 2 Hankel matrices
(assuming that it is run for a sufficient number of iterations)
but it is not guaranteed to converge to the optimal solution.
Recall that when α = 1 then rank(X�) = 2. The SD-based
algorithm converged to this solution, whilst the AP-based
algorithm converged to a different rank 2 solution. These
observations for α = −1 also hold for the cases α = −0.5
and α = 2.

4.1.2 Four missing values (m = 4)

We now reconsider the example above, but assume that
there are additional missing values. Set L = 5, r =
2 and assume that we are given the time series Y =
(×, 1, 0,−1, 0,×,×,−1, 0, 1,×), where × denotes a miss-
ing value. We insert a number α in place of the miss-
ing observations × and denote the resulting series Y� =
(α, 1, 0,−1, 0, α, α,−1, 0, 1, α). Define the matrix X� to be
such that X� = H(Y�).

Figure 1. Plots of the original time series Y� (solid line) with
r = 2 approximations obtained using the SVD-based
algorithm (17) (dotted line), AP-based algorithm (18)

(dashed line) and SD-based algorithm (19) using updating
rule (15) (dot-dashed line). The missing value (imputed with

initial guess α) is highlighted with a +.

Table 2 contains the value of the weighted norms (2)
obtained using the algorithms described in Section (3.2);
namely the SVD-based algorithm (17), the AP-based algo-
rithm (18) and the SD-based algorithm (19) using the two
updating rules (15) and (16). The AP and SD components
of the algorithms were run for 1000 iterations. Each algo-
rithm was allowed to continue until it converged to a feasible
solution. Each algorithm initiated at different values of Y�

with α as given in the table.

As this is a more difficult example, with just under half of
the observations missing, it is not surprising that the algo-
rithms display a poorer performance for this example. Here
it can be seen more clearly that updating rule (16) is prefer-
able for all algorithms considered. This time it can be seen
that the SD-based algorithms under both updating rules
(15) and (16) have problems, on occasion, converging to the
optimal solution. The SVD-based algorithm with updating
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Table 2. Weighted norms (2) obtained using the algorithms
described in Section (3.2); namely the SVD-based algorithm

(17), the AP-based algorithm (18) and the SD-based
algorithm (19) using the two updating rules (15) and (16).
Here (1) denotes that the algorithm has been run using

updating rule (15); (2) denotes that the algorithm has been
run using updating rule (16)

α SVD(1) AP(1) SD(1) SVD(2) AP(2) SD(2)

-1 9.463 6.204 0 4.672 2.537 0
-0.75 10.337 7.294 0 0 1.548 0
-0.5 9.986 11.336 12.000 0 0 1.653
-0.25 1.705 0.001 10.346 0 0 0
0 1.038 0 9.991 0 0 0

0.25 0.668 0.001 6.858 0 0 1.442
0.50 0.613 0.001 0 0 0 0
0.75 0.886 0.002 1.381 0 0 0
1 1.489 0.005 10.982 0 0 0

1.25 2.406 0.008 11.942 0 0 0
1.50 3.616 0.013 10.335 0 0 2.183
1.75 5.090 0.019 0 0 0 0
2 6.794 0.026 0 0 0 0

rule (16) performed poorly for α = −1, as did the AP-based
algorithm with the same updating rule (which also found a
poor solution when α = −0.75).

4.2 Example 2: fortified wine

To demonstrate the methods of filling in missing data
practically, we now consider a ‘real-life’ time series. The
time series to be considered is the monthly volumes of for-
tified wine sales observed in Australia from January 1980
until January 1990. A plot of the time series is given in
Figure 2(a). In this example we removed 12 known val-
ues, starting at the 61st point, that is, we assume that
the values for one year (January 1985 – December 1985)
are unknown. The data with missing section is shown in
Figure 2(b). This time series was also studied in [10] us-
ing the method of SSA as described following equation
(17). In [10] they recommend the selection of the param-
eters L = 60 and r = 11, and hence these are the pa-
rameters that will be used in this example. To impute the
missing data, in [10] they use the method of multiple im-
putation (described in Section 1) with the technique of
SSA.

Due to the sometimes erratic behaviour observed with the
SD-based algorithms under both updating rules (15) and
(16), we will concentrate our attention on the SVD-based
algorithm (17) and AP-based algorithm (18) under what
appears to be the preferable updating rule (16). We initially
set all missing values of the time series to 0 (note that, for
this example, similar results were found if the missing values
were set to the mean of the series). The AP components
of the algorithm (18) were run for 1000 iterations. Each
algorithm was allowed to continue until it converged to a
feasible solution.

Figure 2. Monthly volumes of fortified wine sales in Australia
from January 1980 until January 1990.

Figure 3 contains plots of the monthly volumes of forti-
fied wine sales in Australia from January 1980 until January
1990 with rank 11 approximations obtained by the SVD-
based algorithm (17) and the AP-based algorithm (18) us-
ing updating rule (16). The missing values have also been
imputed by both of these algorithms. There appears to be
little difference between the two approximations. The square
root of the average mean square deviations (MSD) compar-
ing the imputed missing values with their observed (but not
used) values were computed to be 214.01 and 215.51 for
the SVD-based algorithm (17) and the AP-based algorithm
(18) using updating rule (16) respectively. These results are
comparable to the best MSD given in [10], using SSA and
multiple imputation, which was reported to be 216.2, see
[10], page 103.

5. CONCLUSION

In this paper we have considered the application of the
structured low-rank approximation methods for imputing
missing values in time series. After introducing the general
problem of structured low-rank approximation we restricted
our attention to defining the closeness of our approximation
by a weighted Frobenius norm with each weight taking a sin-
gle value in the set {0, 1}. We related the main problem of
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Figure 3. Monthly volumes of fortified wine sales in Australia
from January 1980 until January 1990 (black) with rank 11
approximations (grey) obtained by the SVD-based algorithm
(17) and the AP-based algorithm (18) using updating rule

(16).

the paper with the problem of Hankel SLRA and described
how this is equivalent to finding a parametric representation
of a time series whose elements can be represented as sums
of exponentially damped sinusoids. We then described al-
gorithms to solve the unstructured low-rank approximation
problem and developed these for the purpose of imputing
missing data in time series. Algorithms based on the use
of the SVD, or the so-called alternating projections (AP)
seemed more reliable, and both algorithms gave satisfactory
results in the examples considered.

APPENDIX A. REPRESENTATION BY THE
SUMS OF DAMPED

SINUSOIDS

In the signal processing literature on Hankel SLRA (see
e.g. [19]), a common approach often used is to seek a solution
in the parametric form (3). To do this, one assumes that
the observations yj are yj(θ) + εj where ε1, . . . εN is noise
and yj(θ) follow the model (3), where parameters are θ =
(a, d, ω, φ) with a, d, ω and φ vectors.

Figure 4. Plots of the function f(ω1, ω2) with σ2 = 0 and
ω(0) = (0.3, 0.45).

The following simpler representation is also often used:

(20) yj(θ) =

r/2∑
l=1

al sin(2πωlj + φj), j = 1, . . . , N .

For complex-valued series, the analogue of the series (3)
is a sum of complex damped exponentials:
(21)

yj(θ) =

r∑
l=1

al exp(iφl) exp[(i2πωl + dl)j], j = 1, . . . , N .

The case of signal poles co-inciding is usually omitted, as
this would induce additional polynomial terms in j into (21).
For an explanation, see for example [11]. In this section, we
shall use the form (20). Some of the parameters may be
omitted if they are assumed known.

If we assume that there is a true signal represented in the
form (3) or (20), such as in the standard ‘signal plus noise’
model, then we denote the true values of parameters by a(0),
d(0), ω(0) and φ(0). The associated true signal values will be

y
(0)
j , j = 1, . . . , N .
If the observations are noise-free, then the vector of ob-

servations Y = (y1, . . . , yN )T coincides with the signal vec-

tor Y (0) = (y
(0)
1 , . . . , y

(0)
N )T . Otherwise Y is different from

Y (0). In the signal plus noise model, yj = y
(0)
j + nj , where

{nj , j = 1, . . . , N} is the series of noise terms (not necessar-
ily random).

If we use the weighted semi-norm (2) for defining the
objective function with weights wl,k = Wl+k−1 then, given
an observed vector Y = (y1, . . . , yN )T , we can write the
objective function explicitly as

(22) f(θ) =

N∑
j=1

Wjε
2
j (θ)

where

(23) εj(θ) = yj −
r/2∑
i=1

ai exp(dij) sin(2πωij + φi)
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Figure 5. Contour plots of f(ω1, ω2) with ω(0) = (0.3, 0.45)
(marked +) and the global minimizer ω∗ (marked 	), for
different values of σ2. Values of f at ω(0) and ω∗ are

provided.

for the full sums of damped sinusoids representation (3) and

(24) εj(θ) = yj −
r/2∑
i=1

ai sin(2πωij + φi)

for case (20).
The fact that some of the weights Wj are equal to zero

does not make much difference in what concerns properties
of the objective function (22).

We are aware of only three papers, which are [7, 8, 11],
which contain discussion about the behaviour of the objec-
tive function (22) (with weights Wj = 1) and its multiex-
tremality. However, there were no algorithms proposed that
would effectively deal with this phenomena. In [7, 8] it is
demonstrated that the classical methods often do not even
converge to a locally optimal matrix. To give an example
demonstrating the multiextremality, we consider the follow-
ing example (which is similar to an example considered in
[7] in the case Wj = 1 for all j).

Consider the following objective function
(25)

f(ω) = f(ω1, ω2) =

N∑
j=1

Wj (fj − sin(2πω1j)− sin(2πω2j))
2

and assume we have a series of N = 10 observations, with
ω(0) = (0.3, 0.45). In this example, we assume that yj are
not observed, but rather yj +nj where {nj , j = 1, . . . , N} is
the series of uncorrelated normally distributed noise terms
with variance σ2. The value y5 was assumed missing. Fig. 4
contains plots of the function f highlighting the multimodal-
ity of the function. Fig. 5 contains contourplots of f(ω1, ω2)
for varying values of σ2. Values of f at ω(0) and the global
minimizer, which we denote ω∗, are provided.

In summary the optimization problem obtained by us-
ing the sums of damped sinusoids parameterization (3) is
very difficult with the objective function possessing many
local minima. The objective functions has very large Lips-
chitz constants which increase with N , the number of ob-
servations [7]. Moreover, the number of local minima in the
neighbourhood of the global minimum increases linearly in
N . Increasing the noise variance of the observed data in-
creases the complexity of the objective function and moves
the global minimizer away from the true value.
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